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Abstract
The influence of a hysteretic damper on the airfoil flutter instability is investigated. In particular,
its effect on the post-critical limit cycle oscillations (LCOs) is emphasized. For that purpose, an
aeroelastic model including large amplitude motions and dynamic stall phenomenon, is considered
for a rigid flat plate having two degrees of freedom in pitch and plunge motions. The hysteretic
behaviour is modeled thanks to a generalized Bouc-Wen formulation. A parametric study of
aeroelastic as well as hysteresis model parameters, allows one to draw a complete picture of the
bifurcation scenario, highlighting the capacity of the hysteretic damper in precluding the occurrence
of stall. The special case of shape memory alloy (SMA) springs is then used numerically and
experimentally for controlling the flutter oscillations of a flat plate. The study reveals the ability of
the SMA springs to drastically reduce the amplitudes of the LCOs caused by the flutter instability.
Keywords: Flutter instability, dynamic stall, hysteretic damper, shape memory alloys

1. Introduction

Undesired mechanical vibrations are a major issue in many industrial applications. Multiple
strategies exist to avoid them, depending on the type of vibration or the expecting operating range.
This paper focuses on the control of the airfoil classical flutter instability. This phenomenon re-
sults from an interaction between two modes of the structure and an axial flow, which gives rise to
strong or even fatal deformations. The flow velocity for which the instability arises is called flutter
velocity. The goal of the control is then to increase the flutter velocity and reduce the amplitude
of vibrations developing in the post-critical regime.
Flutter control is an important research topic in aeronautics. In the last decades, the most explored
strategy to prevent flutter was to actively control the unsteady aerodynamic loads on the airfoil,
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see e.g. Dowell (2004), Karpel (1982), Ko et al. (1999), and Vipperman et al. (1998). Nevertheless
some studies have investigated passive control strategies, like the implementation of a nonlinear
energy sink by Y. S. Lee et al. (2007a,b) acting on both modes of the wing or a tuned mass damper
by Kwon and Park (2004) acting on a bridge deck.
In the present study, the passive control is realized by means of a hysteretic damper which consists
of springs made of shape memory alloys (SMA) acting on the plunge motion. Indeed, in their
pseudo-elastic regime, SMA are known to dissipate an important amount of energy due to the
presence of an hysteresis loop in their stress-strain relationship, see e.g. Doaré et al. (2012) and
Ould Moussa et al. (2012).
Carboni and Lacarbonara (2015) and Carpineto et al. (2014) have studied numerically and ex-
perimentally the dynamical behaviour of hysteretic damper partly made of SMA wires. These
studies have shown promising results regarding the capacity of such damper to mitigate unwanted
vibrations.
Besides the study of the SMA hysteretic behaviour, a particular attention is paid in this work on
the estimation of the aerodynamic loads developing around the airfoil. Indeed, in the post-critical
regime, the airfoil is subjected to large amplitude motions and a nonlinear approach must be con-
sidered to estimate the aerodynamic forces. Especially a phenomenon called dynamic stall arises
for large amplitude motion as remarked by Amandolèse et al. (2013) or Razak et al. (2011). This
phenomenon is estimated by means of a phenomenological model using experiments.
The use of hysteretic damper to mitigate the flutter instability has already been explored in previ-
ous studies. For example, Candido de Sousa and De Marqui Junior (2014) considered SMA springs
acting on the airfoil pitch motion. They used a refined material modeling of the SMA behaviour in
order to express the restoring force. However a linear model was used to describe the aerodynamic
loads. Another investigation by Lacarbonara and Cetraro (2011) also used a hysteretic damper,
however it was implemented as a vibration absorber, which means that an additional degree of
freedom was added to the system. Preliminary results have also been reported by Malher et al.
(2015a,b). In this case, the SMA restoring force was estimated with a simple heuristic model,
and the nonlinearity of the aeroelastic system by using cubic stiffness. The results presented in
this study thus extend all the existing studies on the subject, by considering realistic aerodynamic
nonlinear loads together with a versatile expression of the hysteretic damper, which is estimated
by a generalized Bouc-Wen model.
The paper is organized as follows. In section 2, the structural model used to describe the airfoil
motion along with the aerodynamic forces estimation is presented. Then, in section 3, the model-
ing of the dynamic restoring force of the SMA springs is established. In section 4, an experimental
set-up inspired from Amandolèse et al. (2013) is used to investigate the influence of the SMA
springs on the flutter instability. Eventually, in section 5, the complete numerical model is used
to explore the influence of the aerodynamic loads and the SMA springs on the flutter instability.
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2. Airfoil model and dynamic stall characterization.

In this section, the equation of the aeroelastic system as well as the aerodynamic loads are
established. A particular attention is paid to the nonlinear behaviour of aerodynamic forces, in
order to derive a predictive model able to take into account dynamic stall.

2.1. Aeroelastic model
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Figure 1: Two degrees of freedom flat plate section model.

The classical pitch and plunge model is used to describe the airfoil motion (see e.g Dowell (2004)
for more details). The plunge (resp. pitch) motion depicts the first flexural (resp. torsional) mode
of the airfoil. Pitch and plunge are respectively described by the heave h and the angle of attack
α as shown in Fig. 1, where EC refers to the elastic center, AC to the aerodynamic center and
GC to the gravity center. U is the upstream flow speed, c the chord and b the mid-chord of
the plate. The distance between AC and EC is denoted by e. Kh and Dh (resp. Kα and Dα)
refer to the plunge (resp. pitch) stiffness and viscous damping. The inertia moment is denoted
by Iα, the airfoil mass by m and the static moment by Sα. The static moment is proportional
to the distance between GC and EC and is responsible of the coupling. The kinetic energy reads
T = 1

2mḣ
2+ 1

2Iα α̇
2+Sα cos(α) ḣα̇, and the potential energy which comes from the pitch and plunge

stiffnesses reads V = 1
2Kαα

2 + 1
2Khh

2. By means of a Lagrangian formulation, the equations of
motion writes :

[
m Sα cos(α)

Sα cos(α) Iα

] [
ḧ
α̈

]
+
[
Dh 0
0 Dα

] [
ḣ
α̇

]
+
[
Kh 0
0 Kα

] [
h
α

]
=
[
−L+ Sα sin(α)α̇2

M

]
,

(1)
where ( ˙ ) denotes the time derivative. In equation (1), L is the lift and M the aerodynamic

moment. The detailed expressions used for L and M , taking into account dynamic stall, are
examined in the next section.
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2.2. Dynamic Stall
For small amplitudes, L and M are assumed to depend directly on an equivalent unsteady

angle of attack α+ ḣ/U (see e.g. Dowell (2004)). However as we are interested in the post-critical
behaviour of the wing, the airfoil may encounter large amplitude motions. Thus nonlinearities have
to be taken into account in the aerodynamic forces. Whereas a structural polynomial nonlinearity
is generally added to the 2 dofs model flutter in order to describe the post-critical behaviour as in
B. H. K. Lee et al. (1997) and Y. S. Lee et al. (2007a), the aerodynamic nonlinear forces arising
from the dynamic stall phenomenon, are here taken into account. This choice is motivated by
the fact that experimental results (shown later in section 4) led on a flat plate show limit cycle
oscillation (LCOs) with large amplitude, around 40 degrees in pitch, in the post-critical regime.
Hence dynamic stall, which appears for stall angles around 15 degrees for a NACA0012 and around
9 degrees for a flat plate, plays a significant role for the LCOs characteristics in the post-critical
regime. Several models have been proposed in the literature to reproduce dynamic stall, the most
frequently used are the Beddoes-Leishmann model (see Leishman and Beddoes (1989)) and the
ONERA model introduced by Petot (1989). The first one endeavors to model the different steps of
the dynamic stall : leading edge vortex built-up, vortex shedding, trailing edge vortex and leading
edge vortex collapse. It has the advantage to be close to the physical phenomena but at the expense
of a rather tedious formulation. The second one, which has been selected for the present study,
is based on a phenomenological approach and relies on the use of a stall parameter extrapolated
from the airfoil static lift curve. Its main advantage is to be able to fit a large variety of airfoils
and flow conditions. On the other hand, it does not rely on a precise description of the physical
mechanisms involved, as is usual with phenomenological models.
Let us now detail the main equations of the ONERA model (Petot (1989)). The expression of the
global lift is modeled as

L =
1
2 ρS U

2(Cl1 + Cl2), (2)

where ρ is the fluid density, S the lifting surface and U the flow speed. The main variables are
Cl1, the lift unstall part, and Cl2, the lift stalled part. Their evolutions are estimated by means of
the following differential equations :

Ċl1 + λLCl1 = λL
(
∂Cl

∂α

∣∣∣∣∣
α=0

W0 + σLW1

)
+
(
κL

∂Cl

∂α

∣∣∣∣∣
α=0

+ dL
)
Ẇ0 + κL σLẆ1, (3a)

C̈l2 + aLĊl2 + rLCl2 = −
(
rL∆Cl|W0

+ ELẆ0
)
. (3b)

The nonlinearity only relies on the stall parameter ∆Cl, which is the key component of the
ONERA model. This parameter is equal to the difference between the static lift extrapolated in
the stall region and the actual static lift of the airfoil as shown in Fig. 2. The numerous parameters
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appearing in equation (3) may be gathered in three categories,

• the constant parameters : λL and κL,

• the parameters showing a constant part plus a dependence on (∆Cl)2 : rL = rL0 + rL2 (∆Cl)2;
aL = aL0 + aL2 (∆Cl)2 and σL = σL0 + σL2 (∆Cl)2,

• the parameters depending only on ∆Cl with no constant terms : EL = −EL
2 (∆Cl)2 and

dL = σ2 |∆Cl|.

W0 and W1 from equation (3) are equal to α+ ḣ/U and bα̇ respectively. Eventually ∆Cl|W0
is the

stall parameter corresponding to the apparent angle of attack W0.
The same model is used to estimate the aerodynamic moment, which quantities are denoted with
the superscript M instead of L. ∆Cl is estimated using static lift measurement. Eventually, λL,
κL, rL0 , rL2 , aL0 , aL2 , σL0 , σL2 and EL

2 have to be fitted by means of experiments. An example of this
procedure is shown in the next section for a flat plate.
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Figure 2: Schematic representation of the lift coefficient as function of the angle of attack. Solid
line : static measurement. Dotted line : extrapolation of the lift coefficient before stall. The stall
parameter ∆Cl is defined as the difference between this extrapolated line and the lift coefficient

when the wing encounters stall (Petot (1989)).

2.3. Dynamic stall measurements on a flat plate
The goal of the present section is to measure the unsteady force and moment encountered by a

flat plate controlled in pitch motion for a given range of airflow speed, pitch oscillation frequency
and amplitude. The experiments are realized with a flat plate, which is the profile that will be
used in the flutter experiment. The plate is rigid, rectangular and made of steel, with a span
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of 236 mm, a chord of 70 mm and a thickness of 3 mm which means a 4.3 % thickness-to-chord
ratio. The plate is mounted vertically in the test-section of a closed-loop wind tunnel of width
and height 0.46m. End plates made of plexiglass are also used. The one at the top of the profile
is fixed to it and the one at the bottom is fixed to the wind tunnel test-section. A picture of the
experimental set-up is given in Fig. 3. The motion is imposed by a motor controlled in amplitude
and frequency. Clamped inside the motor, an aerodynamic balance, on which the plate is attached
at its mid-chord, measures the normal and tangential forces applied to the profile along with
the moment around the center of the balance. Acquisition and control is realized on a National
Instrument acquisition board with a sampling frequency at 2 kHz. The angle of attack of the
profile is measured using the feedback of the motor controller. Each acquisition is done for 25
periods of pitching oscillation.
In order to obtain precise and reliable measurements, one has to take care of two effects. The
first one is the fundamental vibration mode of the plate. In our case, its eigenfrequency has been
measured around 19 Hz. Therefore, a low-pass 8th order Butterworth numeric filter with a 18Hz
cutoff frequency has been used for the data post-treatment. Since the largest pitch frequency
tested is equal to 2 Hz, in the non-linear regime, up to nine harmonics are taken into account,
which has been found to be enough. The second effect is related to the fact that the aerodynamic
balance measures all the forces, including inertia. Our measurements clearly demonstrates that
this effect has to be removed from the moment, whereas it is negligible on normal and tangential
force measurements. The different steps of the unsteady aerodynamics loads measurements are
then :

1. set a sinusoidal pitch motion at a given frequency and amplitude using the motor,
2. get the force and moment signal by mean of the aerodynamic balance,
3. low pass filtering,
4. averaging measurement over 25 periods,
5. subtract the mean moment measured without wind to the moment measured with wind.

These measurements are exploited to fit the several parameters of equation (3). With this
aim in view, the Matlab function fmincon is used, which implements a nonlinear optimization
procedure. The objective function to minimize is the sum of the squared difference between
measurements and model predictions. An example of the obtained results is presented in Fig. 4,
where measurements of lift and aerodynamic moment at several amplitudes are plotted with the
result of the ONERA model with parameters from Table 1. One can observe the good agreement
between model and experiments. This procedure has been done for the several flow speed tested
in the previous experiment. It has shown the ability of the ONERA model to reproduce different
situations.
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Figure 3: Dynamic stall measurement set-up. 1 : Motor with aerodynamic balance inside, 2 : flat
plate and 3 : end plates.
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Figure 4: Lift (a) and Aerodynamic moment (b) coefficients measurements for 3 pitch amplitudes
(12◦ in blue, 23◦ in green and 37◦ in red). Circles are for measurements and solid lines for ONERA
model estimation. The reduced frequency 2π f U/b is equal to 0.03 and the Reynolds number to
2.2 104. The ONERA parameters used for the model are reported in Table 1.
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Lift parameters
λL κL σL0 rL0 aL0 σL2 rL2 aL2 EL

2

0.119 0.81 0.1 0.15 0.24 -0.005 0.09 0.26 -0.004
Aerodynamic moment parameters

λM κM σM0 rM0 aM0 σM2 rM2 aM2 EM
2

0.1 0.43 0.15 0.19 0.4 -0.026 0 0.08 0

Table 1: ONERA parameters corresponding to the dynamic stall measurements shown in figure 4.
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3. Hysteretic behaviour of SMA

The passive control strategy proposed in this paper is to use Shape Memory Alloys (SMA)
springs in their pseudo-elastic regime as hysteretic dampers. Indeed when these alloys are sub-
jected to cyclic deformations, they exhibit an hysteretic response allowing an important amount of
energy dissipation. This hysteretic behaviour stems from a solid-solid phase change between two
different states. The first one called austenite is stable at large temperatures and is the natural state
of the spring at rest. The second state, present when the SMA is deformed, is called martensite,
which is energetically stable at small temperatures and for which the microstructure is oriented
(Delaey et al. (1974)). The energy dissipated during a cycle is equal to the area of the hysteresis
loop so that the more the loop area is large, the more energy is prone to be dissipated in the device.

3.1. Modelization of the hysteretic behaviour.
The nonlinear behaviour of single dof SMAs can be derived from a general, three-dimensional

model inferred from thermodynamical laws and then reduced by considering ad-hoc assumptions,
see e.g. Bernardini and Vestroni (2003), Lacarbonara et al. (2004), D. Lagoudas et al. (2012),
Ould Moussa (2012), Ould Moussa et al. (2012), and Popov and D. C. Lagoudas (2007). In this
case the model contains, in-built within the oscillator equation, additional equations governing the
evolution of the fraction of martensite, the description of heat transfer, and the thermodynamic
force, the expression of which is derived from a pseudopotential of dissipation that can include
yields functions in order to express the phase transformations, as explained by e.g. Ould Moussa
et al. (2012). These modeling features are typical of hysteretic systems (Visintin (1994)) and give
rise to a complex formulation which, in turn, induces numerical difficulties for solving the whole
system.
Contrary to this approach, a heuristic model is used in this paper. Indeed, because the aim is to
reproduce the global effect of the the SMA spring in pseudoelastic regime, the SMA can be seen
as an hysteretic damper. A large variety of hysteresis model exist in the literature, e.g. the Dahl
model (Dahl (1976)), the Duhem model (Duhem (1897) and Ivshin and Pence (1994)) or the one
used in this paper, the Bouc-Wen model (Bouc (1971) and Wen (1976)). The latter has already
been used to express the global restoring force of an hysteretic damper, see e.g. Carpineto et al.
(2014) or Song and Der Kiureghian (2006). The retained formulation of the SMA spring restoring
force F SMA

NL resulting from the Bouc-Wen model reads

F SMA
NL (h, t) = KEh+K3h

3 + z(t), (4)

where KE describes the global stiffness of the material and K3 the potential hardening or softening
behaviour for large deformation. The hysteretic behaviour is modeled using the function z which
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Parameter Definition
l0 Spring length at rest
lini Spring length after a pre-strain
δl Amplitude step for a quasi-static loading
∆l Amplitude of one displacement cycle
lf Displacement imposed to the spring
fe Excitation frequency for a dynamic loading
εini lini/l0
∆ε ∆l/l0
δε δl/l0
εf lf/l0

Table 2: Definitions of the parameters used in the tensile tests experiments.

is estimated by means of this first-order differential equation,

ż = [KD − |z|n(γ + βsign(ḣz))]ḣ. (5)

This equation depends on two kinds of parameters : KD, KE and K3 which contributes to the
global linear and nonlinear stiffness of the material and β, γ and n, the aim of which is to model
the shape of the hysteresis loop. Eventually, sign() denotes the sign function. Because the model
used is heuristic, KD, KE, K3, β, γ and n have to be fitted experimentally by means of tensile
tests.

3.2. Tensile tests and model fitting
In order to validate the use of the Bouc-Wen model, several tensile tests have been performed.

The length of the spring at rest is called l0. For all the experiments presented, the spring is pre-
strained by imposing a static length of deformation lini and then deformed periodically, with a
peak-to-peak amplitude of loading ∆l, around this pre-strained state. Besides we call εini (resp.
∆ε) the pre-strained rate (resp. peak to peak amplitude of loading rate). Eventually, εf is the
displacement rate imposed to the spring, it can be quasi-static or dynamic as detailed below. These
quantities are depicted in Fig. 5(b) and summarized in Table 2.
A first measurement set is realized with a quasi-static loading. A discrete displacement, with

an amplitude step δε, is enforced to the spring and the restoring force is measured by a balance.
An example of such measurement is shown in Fig. 5(a) for a given εini and several ∆ε, here δε is
equal to 0.1. In order to characterize the damping ability of the SMA we introduce an equivalent
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damping ratio ζSMA inspired from Carpineto et al. (2014) which reads (see Fig. 5(a))

ζSMA =
ASMA

KG (∆l)2,

where ASMA is the hysteresis loop area of the SMA spring and KG its global stiffness. These
quantities are detailed in Fig. 5(a). The influence of εini and ∆ε on ζSMA is shown in Fig. 5(c).
Whereas εini has a little effect on the damping ratio ζSMA, ∆ε is directly proportional to the
damping capacity. Hence, when used in a flutter experiment, one should try to maximize ∆ε.
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Figure 5: Quasi-static tensile test of SMA spring. (a) Example of quasi-static restoring force
for several amplitudes, δε = 0.1 (b) Definition of spring quantities and (c) Cartography of SMA
damping ratio vs strain rate per cycle and prestressing.
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A second measurement set is realized with a dynamic loading. In this case, the imposed
displacement is εf (t) = εini + (∆ε/2) sin(2πfe t), where fe is the excitation frequency. This dis-
placement is imposed by a slider-crank mechanism and the restoring force is measured by means
of a force sensor. An example of such measurement is shown in Fig. 6(a) for fe = 5Hz, which
is in the range of frequency observed in the flutter experiment. For comparison, the quasi-static
measurement obtained with the same values for εini and ∆ε is also represented in Fig. 6(a). Even
if the hysteresis loop decreases significantly in the dynamic case, the hysteresis phenomena is still
present, and the damping effect of the SMA spring does not vanish. The evolution of the damping
ratio as a function of fe is shown in Fig. 6(b). For small frequencies, ζSMA decreases significantly,
nevertheless, after a certain frequency threshold (∼ 0.3 Hz in the presented case), the damping
ratio remains stable. The evolution of the damping capacity of SMAs has already been investi-
gated in the past, see e.g Doaré et al. (2012), Yin et al. (2014) and Soul et al. (2010). These
studies clearly evidenced that an optimum of damping capacity is obtained for a given excitation
frequency, which has to be small, considering the physical processes involved. In the present case,
this optimal frequency is clearly below the smallest tested frequency in Fig. 6(b).
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Figure 6: SMA spring dynamic tensile test. (a) Comparison between quasi-static and dynamic
tensile test and (b) influence of the excitation frequency on the SMA damping ratio.

The Matlab function fmincon is used to fit the Bouc-Wen model parameters (KD, KE, K3,
β, γ and n), the implemented procedure relies on a constrained nonlinear optimization. The
objective function to minimize is the sum of the squared difference between measurements and
model predictions. An example is presented in Fig. 7, where experimental measurements of the
SMA spring restoring force with quasi-stating loading at several amplitudes are plotted with the
result of the Bouc-Wen model with parameters from Table 3. One can observe the good agreement
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Stiffness parameters Hysteresis parameters

KD [kg.s−2] KE [kg.s−2] K3 [kg.m−2.s−2] β γ n

138 0 8.7 103 154 0 1

Table 3: Bouc Wen parameters corresponding to the case presented in Fig. 7

between model and experiments. It is remarked to the reader’s attention, that the Bouc-Wen
model parameters depend on the excitation frequency.
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Quasi-static test
Bouc-Wen model

Figure 7: Comparison between SMA quasi-static tensile test for ∆ε = 1.6, 2.4 and 3.6 and Bouc-
Wen model estimation.
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4. Experimental demonstration of flutter mitigation with SMA springs

In this section, the experimental set-up used to demonstrate the effect of SMA on the flutter
instability is presented. A typical result is shown on the post-critical regime of flutter with and
without SMA.

4.1. Flutter experimental set-up
The flutter experiment is realized with a rectangular flat plate of span 225 mm, chord 35 mm

and thickness 1.5 mm, which means a 4.3% thickness-to-chord ratio, the same ratio as the one used
in section 2 for the dynamic stall measurements. The set-up is shown in Fig. 8, the flat plate is held
with tow rods slotted into bearings, the pitch stiffness is carried out with spiral springs and the
plunge stiffness with coil springs. The plunge spring restoring force is measured by means of force
sensor PCB 208-C03 and the displacement of the two degrees of freedom with laser displacement
sensors Keyence LK-G. The sensors are placed as shown in Fig. 8. To apply the control, the coil
springs are replaced by the SMA springs with the appropriate pre-stress in order to have the same
linear stiffness at small amplitude than the coil spring. The center of mass can be set by adding
weights on the restoring bar (see Fig. 8). All the structural parameters are estimated by means
of free decay tests. End plates are fastened to the flat plate ends to reduce 3D aerodynamic effects.

SMA or
Linear spring

Airfoil

Laminated spring

Fre
estr

eam

Spiral spring

Force sensor

Laser displa-
cement sensor

Restoring bar

Figure 8: Sketch (left) and picture (right) of the experimental set-up used to study the flutter
instability.
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4.2. Flutter measurements
An example of time response to an arbitrary initial condition with and without SMA springs

is shown in Fig. 9(a). The flow velocity is equal to 9 m/s, which is beyond the flutter velocity cal-
culated at 5.6 m/s. The corresponding restoring force of the plunge springs is shown in Fig. 9(b).
The effect of using SMA springs is evidenced in Fig. 9(a), where the amplitude ratio between
the limit cycles with and without SMA is equal to 2.53. Note that for the purpose of accurate
comparison, the equivalent linear stiffness of the SMA is equal to that of the linear springs, as
shown in Fig. 9(b) ; the only difference being the hysteresis loop of the strain-stress curve.

0 5 10 15 20

−10

0

10

(a) Time (s)

Pl
un

ge
(m

m
)

Linear springs
SMA springs

−4−2 0 2 4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) Displacement (mm)

R
es
to
rin

g
fo
rc
e
(N

)

Linear springs
SMA springs

−4−2 0 2 4

Linear springs
SMA springs

Figure 9: Time response measurement realized on the flutter experiment with and without SMA
springs for U = 9 m/s. (a) Displacement amplitude of the plunge mode. (b) Restoring force of
the plunge springs on a stable LCO, the left plot is for left spring and the right plot for the right
spring of the set-up (see Fig. 8).

As dry friction cannot be avoided in the bearings of the experimental set-up, the system does
not encounter flutter oscillations near the flutter velocity in the absence of external perturbations.
For that reason, a small disturbance is given to the flat plate when running the experiments.
Consequently initial transient regimes are different from one experiment to the other. Nevertheless,
repeated experiments have shown that, as in Fig. 9(a), the LCO settles down earlier with the SMA
springs (at ∼5s) than with the linear springs (∼15s). Hence the dissipated energy (by means of
SMA) also helps in reducing the transient regime, which is logical since the damping capacity has
been increased. Consequently, if the SMA springs are adjusted to dissipate energy before the airfoil
encounters stall flutter, we can expect to prevent the dynamic stall phenomenon. This point will
be addressed in section 5.
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We focus now on the behaviour of LCOs for varying flow speeds, in order to draw a more complete
flutter bifurcation diagram.

4.3. Effect of SMA on flutter bifurcation diagram
The time response measurement described previously is now realized for a range of flow speeds.

The maximum flow speed value is set at 9 m/s, and then decreased step by step. At 9 m/s, a
disturbance is applied to the plate so that the LCO can settle down. Then the amplitude of the
LCO is recorded and the flow speed decreased. The resulting experimental bifurcation diagram
is given in Fig. 10. The structural parameters identified for this measurement are reported in
Table 4. Two main effects are observed. The first one is the reduction of LCO amplitude for all
the flow speeds tested, one can observe a substantial gain in using SMA springs since the LCO
amplitude has been divided by 3 on the plunge mode and by 1.6 the pitch mode, even if SMA
springs are not applied to this degree of freedom. The second effect is the shift in the flow speed
at which the instability disappears : with the SMA this flow speed is equal to 7 m/s whereas
without SMA springs it is equal to 5.6 m/s. These two results show that SMA springs are able
to bring an important effect both on the amplitude of the LCO and on the size of the bifurcated
branches. In order to analyze more deeply the post-flutter branches, a complete model including
the aerodynamic forces from dynamic stall and SMA is investigated in the next section.
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Figure 10: Experimental measurement of LCO amplitude of pitch (a) and plunge (b) motion vs
the flow speed U .
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m [kg] Iα [kg.m2] Dh [kg.s−1] Dα [kg.m2.s−1] Kh [kg.s−2] Kα [kg.m2.s−2] Sα [kg.m]

0.389 2.11x10−4 0.126 1.65x10−4 282.3 0.143 1x10−3

Table 4: Structural parameters of the flutter experiment presented in Fig. 10.
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5. Influence of model parameters on the bifurcation diagram

In this section, the aeroelastic, aerodynamic and SMA models are coupled in order to predict
the evolution of the pitch and plunge motion numerically. The effect of the several parameters is
detailed and the influence of the SMA springs is then discussed.

5.1. Complete model
The complete model including both effects of the nonlinear aerodynamic loads and the SMA

nonlinear restoring forces reads :

mḧ+ Sα cos(α)α̈ +
bDh

U
ḣ+

b2

U2 (δlKh + δsKE)h− Sα sin(α)α̇2 = −b3ρ s (Cl1 + Cl2)−
δsb

2

U2 (K3h
3 + z),

(6a)

Iαα̈ + Sα cos(α)ḧ+
bDα

U
α̇ +

b2 Kα

U2 α = 2 b4ρ s (Cm1 + Cm2), (6b)

Ċl1 + λLCl1 = λL
(
∂Cl

∂α

∣∣∣∣∣
α=0

W0 + σLW1

)
+
(
κL

∂Cl

∂α

∣∣∣∣∣
α=0

+ dL
)
Ẇ0 + κL σLẆ1, (6c)

C̈l2 + aLĊl2 + rLCl2 = −
(
rL∆Cl|W0/U

+ ELẆ0
)
, (6d)

Ċm1 + λM Cm1 = λM
(
∂Cm

∂α

∣∣∣∣∣
α=0

W0 + σMW1

)
+
(
κM

∂Cm

∂α

∣∣∣∣∣
α=0

+ dM
)
Ẇ0 + κM σMẆ1, (6e)

C̈m2 + aM Ċm2 + rMCm2 = −
(
rM∆Cm|W0/U

+ EMẆ0
)
, (6f)

ż = [KD − |z|n(γ + β sign(ḣz))]ḣ. (6g)

The time integration is realized using a 4th order Runge-Kutta scheme, at each time step the
aerodynamics loads as well as the SMA restoring forces are computed and then introduced in the
aeroelastic system in order to compute the value of α, α̇, h and ḣ at the same time step.
The parameters δl and δs introduced in equation (6a) are Kronecker-like delta symbols used to
switch from one model to another. Indeed, the behaviour of the aeroelastic system without SMA
springs is computed by selecting δl = 1 and δs = 0, whereas the motion with SMA springs is
calculated by using δs = 1 and δl = 0.
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5.2. Characteristics of the bifurcation diagram
A typical result of the procedure presented above without SMA springs, i.e. with δl = 1 and

δs = 0, is shown in Fig. 11 for the pitch motion. This generic result shows that the bifurcation dia-
gram is composed of two branches with different amplitudes. The branch with a small amplitude,
ranging from Uf to Us on the forwarding branch, corresponds to classical flutter. The branch with
a larger amplitude including the part of the forwarding branch ranging after Us and the part of
the decreasing branch ranging after Uc, corresponds to stall flutter.
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Figure 11: Amplitude of pitch LCO without SMA springs numerically calculated by resolving the
complete system equation (6) for increasing [o] and decreasing [+] flow speeds.

The bifurcation diagram can thus be completely analyzed by the following four characteristics :
the three critical velocities Uc, Uf and Us; and the amplitude of the jump αJ . The flutter velocity
Uf depends only on the structural parameters and on the lift and moment coefficient slope at zero
angle of attack. Since the SMA springs are set such that their linear stiffnesses are equal to the
linear spring stiffness at small amplitude, the SMA springs have no effect on this velocity. Us is the
stall flutter speed. Stall flutter occurs when the angle of attack is larger than the airfoil stall angle,
therefore the flow around the plate is entirely separated and reattached on the plate over one cycle
of oscillation, see e.g. Razak et al. (2011). Increasing Us is very advantageous because the airfoil
undergoes very large angle of attack when stall flutter appears. Uc is the flow speed at which the
instability stops, it is different from Uf for a subcritical instability, which is detrimental for the
structure. Eventually αJ is the amplitude gap in pitch for U = Us, it is also a key quantity to
prevent the structure from large deformations. Us, Uc and αJ rely on nonlinear phenomena, which
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means that the nonlinear behaviour of SMA springs might have an effect on them. To prevent the
airfoil to encounter large deformations, the optimal control should :

• reduce αJ ,

• increase Us,

• increase Uc as much as possible; at best rendering the bifurcation supercritical.

Therefore, the ideal situation is to avoid stall flutter and keep the system in the classical flutter
regime. The effect of aerodynamic forces on these quantities is discussed in section 5.3 and the
influence of the SMA springs in section 5.5.

5.3. Effect of aerodynamic forces
Because the dynamic stall might be different from one airfoil to the other, an insight is given on

the influence of the ONERA parameters on the bifurcation diagram of the 2 dofs system. With this
aim in view, bifurcations diagrams have been calculated while varying each ONERA parameter in
order to estimate its influence. The result of these investigations is summarized in Table 5 and
illustrated in Fig. 12. For each ONERA parameter, the + signs indicate the qualitative magnitude
of its effect on the bifurcation point.

XXXXXXXXXXXXXXX
Bif. pt

ONERA par.
Linear Nonlinear

λL κL σL0 rL0 aL0 σL2 rL2 aL2 EL
2

Us + +++ = ++ +++ = = + ++
Uc ++ ++ = ++ +++ ++ ++ + +++
αJ ++ ++ = +++ +++ +++ +++ ++ ++

λM κM σM0 rM0 aM0 σM2 rM2 aM2 EM
2

Us = +++ = + ++ + = = =
Uc + +++ = + ++ +++ + = +++
αJ ++ ++ = + ++ +++ + = +++

Table 5: Influence of the ONERA parameters on the identified points in the bifurcation diagram.
The number of plus sign shows the magnitude of the influence on the bifurcation point, while an
equal sign indicates that it has no effect.
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For a better understanding, four examples are highlighted in Fig. 12 where the blue curve is
the bifurcation diagram presented in section 5.2. The examples have been chosen to cover the
three categories depicted in section 2.2 and to show as much different situations as possible. In
Fig. 12(a), the influence of aL0 is shown. By decreasing aL0 from 0.25 to 0.1, it can be observed
that the stall flutter is significantly postponed, Us is shifted from 7 m/s to 7.7 m/s. Moreover the
jump αJ goes down from 43 degrees to 6 degrees and the subcriticality is vanished, then Uc = Uf .
As reported in Table 5, aL0 is the parameter which has the most influence (+++) on all bifurca-
tions points. The influence of aL0 (and to a lesser extent of aM0 ) on the bifurcations points is large
because this term appear as a damping coefficients in equation (6c) and is then more prone to
have an effect on LCO amplitude. The influence of σM2 is plotted in Fig. 12(b), its influence is
substantial (+++) on αJ , moderate (++) on Uc , and negligible (=) on Us. In comparison with
aL0 , the subcriticality is not canceled and the stall flutter is almost not shifted, and the main effect
resides in the important decrease of the LCOs amplitude in stall flutter regime. Regarding κL, as
shown in Fig. 12(c), this parameter has a large influence on Us (+++) but a moderate one (++)
on αJ and Uc. Eventually, EM

2 , shown in Fig. 12(d) has almost the same effect than σM2 .
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Figure 12: Influence of four ONERA parameters on the bifurcation diagram. The blue curve is for
the reference case used in section 5.2 whereas the red curve is for the modified ONERA parameter.
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λL κL σL0 rL0 aL0 σL2 rL2 aL2 EL
2

0.119 0.81 0.1 0.15 0.16 -0.005 0.09 0.26 -0.004
λM κM σM0 rM0 aM0 σM2 rM2 aM2 EM

2

0.1 0.43 0.15 0.19 0.4 -0.026 0 0.08 0

Table 6: Fitted ONERA parameters used for the bifurcation diagram in Fig. 13.

Stiffness parameters Hysteresis parameters

KD [kg.s−2] KE [kg.s−2] K3 [kg.m−2.s−2] β γ n

141.15 141.15 1.7 104 100 20 1.78

Table 7: Bouc-Wen parameters experimentally fitted used for the bifurcation diagram in Fig. 13.

5.4. Model fitting to experiments
The complete model presented in section 5.1 is now used to reproduce the experimental obser-

vations reported in section 4.3.
For practical reasons, the flat plate used for the dynamic stall measurements and the one used
for the flutter experiment are different, consequently the ONERA parameters are not the same in
the two cases. Consequently we choose to fit the parameters of the ONERA model by a direct
comparison with the bifurcation diagram; in order to highlight the versatility of the model. For
that purpose the general results from Table 5 have been used as guidelines to make the bifurcation
diagram of the model converge to the experimental one. The selected ONERA parameters are
gathered in Table 6. On the other hand, the Bouc-Wen parameters have been directly fitted using
the force measurements on the flutter set-up and are reported in Table 7. The corresponding
bifurcation diagram is shown in Fig. 13.
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Figure 13: LCO amplitude vs flow speed on pitch (a) and plunge (b) motion. Experimental results
for decreasing flow speeds are denoted with squares, numerical calculations for increasing flow
speeds are denoted with circles and for decreasing flow speeds with + signs.

The LCO amplitude is very well estimated on pitch and plunge, with and without SMA springs.
The first main effect of SMA springs exhibited in section 4.3, which is the LCO amplitude reduc-
tion, is correctly reproduced by the numerical model. Indeed the ratio of LCO amplitude with and
without SMA springs is equal to 1.70 numerically and 1.59 experimentally on pitch and to 3.58
numerically and 3.71 experimentally on plunge, which is very satisfactory. The second main effect
of the SMA observed experimentally is the shift in Uc. It can be due either to the subcriticality
of the flutter instability or to the fact that for U close to Uc the motion amplitude is relatively
small (especially on plunge motion) and can then be stopped by the bearings dry friction before
the instability really stops. Because the forwarding branch is not measured, the subcriticality of
the instability cannot be properly established experimentally. Nevertheless, we observe numeri-
cally with several sets of ONERA and Bouc-Wen parameters that when the flutter instability is
subcritical with linear springs it always becomes supercritical with SMA springs no matter what
the value of the Bouc-Wen parameters. Thus Uc can be shifted using SMA springs. Moreover, it
is shown in Fig. 13, that the jump calculated numerically at 5.9 m/s with linear springs is avoided
with the SMA springs. Thus, the influence of SMA springs is close to the ideal situation presented
in section 5.2.

5.5. Effect of SMA springs on the flutter instability
In this section, we discuss the influence of the hysteresis parameters of the Bouc-Wen model, n,

γ and β on the flutter post-critical regime. One must keep in mind that the hysteretic behaviour can
be realized by other device than SMA springs, see e.g Carboni and Lacarbonara, 2015; Carpineto
et al., 2014, and that this study is still relevant since the hysteretic behaviour can be modeled with
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the Bouc-Wen model.
The effects of n, γ and β on the bifurcation diagram fitted with experimental measurements
(Fig. 13) are exhibited in Fig. 14. We remark that their influence is mostly on the amplitude of
the LCOs, since the presence of the SMA has canceled the jump and the subcriticality. Nevertheless
each parameter does not affect both degree of freedom in the same way. Indeed, β and n have a
larger effect on the plunge motion, whereas γ has a larger influence on the pitch motion. Eventually,
it can be deduced from Fig. 14 that the optimal control would be obtained with a large β and a
small γ and n.
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Figure 14: Influence of Bouc-Wen hysteretic parameters on the bifurcation diagram. First line :
pitch motion; second line : plunge motion. (a,d) effect of β, (b,e) effect of γ and (c,f) effect of n.

6. Conclusion

Whether one wants to harvest energy or avoid devastating instabilities, the control of aeroelastic
flutter is a critical issue. An option is discussed here by using SMA springs in their pseudo-elastic
regime, in order to use the potential of dissipation of such materials.
A numerical model has been proposed that takes into account the nonlinear aerodynamic forces
along with the SMA springs nonlinear restoring force. An experiment including a flutter set-up
with SMA springs has been conducted and show the efficiency of the latter to reduce the amplitude
of the LCOs developing in the post-critical regime.
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The aeroelastic model has shown its capability to estimate a large variety of scenarios. Especially
the influence of all the ONERA model parameters on the bifurcation caused by the flutter insta-
bility has been studied. Then the versatility of the ONERA model has been highlighted thanks to
a model fitting to experimental bifurcations diagrams. Moreover, the Bouc-Wen model has shown
its capability to reproduce the dynamic behaviour of the SMA springs as well as their influence
on the flutter instability. A discussion on the role of each Bouc-Wen hysteresis parameters on the
LCOs has been provided.
By means of the numerical model, it has been shown that the SMA springs always allow to cancel
the jump at U = Us and the possible subcriticality of the instability. As a conclusion, this study
shows undoubtedly the important effect that can be awaited by using hysteretic dampers for a
passive control and mitigation of the flutter instability. Further research could extend the range
of applications by considering e.g. vortex induced vibration or galloping instabilities.
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