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Companions, Codensity and Causality?

Damien Pous1 and Jurriaan Rot2

1 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP – France
2 Radboud University, Nijmegen, and CWI, Amsterdam – The Netherlands

Abstract. In the context of abstract coinduction in complete lattices,
the notion of compatible function makes it possible to introduce en-
hancements of the coinduction proof principle. The largest compatible
function, called the companion, subsumes most enhancements and has
been proved to enjoy many good properties. Here we move to universal
coalgebra, where the corresponding notion is that of a final distributive
law. We show that when it exists the final distributive law is a monad,
and that it coincides with the codensity monad of the final sequence
of the given functor. On sets, we moreover characterise this codensity
monad using a new abstract notion of causality. In particular, we re-
cover the fact that on streams, the functions definable by a distributive
law or GSOS specification are precisely the causal functions. Going back
to enhancements of the coinductive proof principle, we finally obtain that
any causal function gives rise to a valid up-to-context technique.

1 Introduction

Coinduction has been widely studied since Milner’s work on CCS [26]. In con-
currency theory, it is usually exploited to define behavioural equivalences or
preorders on processes and to obtain powerful proof principles. Coinduction can
also be used for programming languages, to define and manipulate infinite data-
structures like streams or potentially infinite trees. For instance, streams can
be defined using systems of differential equations [36]. In particular, pointwise
addition of two streams x, y can be defined by the following equations, where x0

and x′ respectively denote the head and the tail of the stream x.

(x⊕ y)0 = x0 + y0

(x⊕ y)′ = x′ ⊕ y′
(1)

Coinduction as a proof principle for concurrent systems can nicely be pre-
sented at the abstract level of complete lattices [30,32]: bisimilarity is the greatest
fixpoint of a monotone function on the complete lattice of binary relations. In
contrast, coinduction as a tool to manipulate infinite data-structures requires
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one more step to be presented abstractly: moving to universal coalgebra [15].
For instance, streams are the carrier of the final coalgebra of an endofunctor on
Set, and simple systems of differential equations are just plain coalgebras.

In both cases one frequently needs enhancements of the coinduction princi-
ple [37,38]. Indeed, rather than working with plain bisimulations, which can be
rather large, one often uses “bisimulations up-to”, which are not proper bisim-
ulations but are nevertheless contained in bisimilarity [27,2,1,10,16,24,39]. The
situation with infinite data-structures is similar. For instance, defining the shuffle
product on streams is typically done using equations of the following shape,

(x⊗ y)0 = x0 × y0

(x⊗ y)′ = x⊗ y′ ⊕ x′ ⊗ y
(2)

which fall out of the scope of plain coinduction due to the call to pointwise
addition [36,12].

Enhancements of the bisimulation proof method have been introduced by
Milner from the beginning [26], and further studied by Sangiorgi [37,38] and then
by the first author [30,32]. Let us recall the standard formulation of coinduction
in complete lattices: by Knaster-Tarski’s theorem [19,41], any monotone function
b on a complete lattice admits a greatest fixpoint νb that satisfies the following
coinduction principle:

x ≤ y ≤ b(y)

x ≤ νb
coinduction

(3)

In words, to prove that some point x is below the greatest fixpoint, it suffices
to exhibit a point y above x which is an invariant, i.e., a post-fixpoint of b.
Enhancements, or up-to techniques, make it possible to alleviate the second
requirement: instead of working with post-fixpoints of b, one might use post-
fixpoints of b ◦ f , for carefully chosen functions f :

x ≤ y ≤ b(f(y))

x ≤ νb
coinduction up to f

(4)

Taking inspiration Hur et al.’ work [13], the first author recently proposed to
systematically use for f the largest compatible function [31], i.e., the largest
function t such that t ◦ b ≤ b ◦ t. Such a function always exists and is called the
companion. It enjoys many good properties, the most important one possibly
being that it is a closure operator: t◦ t = t. Parrow and Weber also characterised
it extensionally in terms of the final sequence of the function b [29,31]:

t : x 7→
∧
x≤bα

bα where

{
bλ ,

∧
α<λ bα for limit ordinals

bα+1 , b(bα) for successor ordinals
(5)

In the present paper, we give a categorical account of these ideas, generalising
them from complete lattices to universal coalgebra, in order to encompass im-
portant instances of coinduction such as solving systems of equations on infinite
data-structures.
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Let us first be more precise about our example on streams. We consider there
the Set functor BX = R×X, whose final coalgebra is the set Rω of streams over
the reals. This means that any B-coalgebra (X, f) defines a function from X
to streams. Take for instance the following coalgebra over the two-elements set
2 = {0, 1}: 0 7→ (0.3, 1), 1 7→ (0.7, 0). This coalgebra can be seen as a system of
two equations, whose unique solution is a function from 2 to Rω, i.e, two streams,
where the first has value 0.3 at all even positions and 0.7 at all odd positions.

In a similar manner, one can define binary operations on streams by con-
sidering coalgebras whose carrier consists of pairs of streams. For instance, the
previous system of equations characterising pointwise addition (1) is faithfully
represented by the following coalgebra:

(Rω)2 → B((Rω)2)

(x, y) 7→ (x0 + y0, (x′, y′))

Unfortunately, as explained above, systems of equations defining operations like
shuffle product (2) cannot be represented easily in this way: we would need to
call pointwise addition on streams that are not yet fully defined.

To this end, one can weaken the requirement of aB-coalgebra to that of aBF -
coalgebra, when there exists a distributive law λ : FB ⇒ BF of a monad F over
B [5,12]. The proof relies on the so-called generalised powerset construction [40],
and this precisely amounts to using an up-to technique. Such a use of distributive
laws is actually rather standard in operational semantics [42,5,17]; they properly
generalise the notion of compatible function. In order to follow [31], we thus focus
on the largest distributive law.

Our first contribution consists in showing that if a functor B admits a final
distributive law (called the companion), then 1) this distributive law is that of a
monad T over B, and 2) any BT -coalgebra has a unique morphism to the final
B-coalgebra, representing a solution to the system of equations modeled by the
coalgebra (Section 3). In complete lattices, this corresponds to the facts that the
companion is a closure operator and that it can be used as an up-to technique.

Then we move to conditions under which the companion exists. We start
from the final sequence of the functor B, which is commonly used to obtain
the existence of a final coalgebra [3,4], and we show that the companion actually
coincides with the codensity monad of this sequence, provided that this codensity
monad exists and is preserved by B (Theorem 5.1). Those conditions are satisfied
by all polynomial functors. This link with the final sequence of the functor makes
it possible to recover Parrow and Weber’s characterisation (Equation (5)).

We can go even further for ω-continuous endofunctors on Set: the codensity
monad of the final sequence can be characterised in terms of a new abstract
notion of causal algebra (Definition 6.1). On streams, this notion coincides with
the standard notion of causality [12]: causal algebras (on streams) correspond to
operations such that the n-th value of the result only depends on the n-th first
values of the arguments. For instance, pointwise addition and shuffle product
are causal algebras for the functor SX = X2.
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These two characterisations of the companion in terms of the codensity
monad and in terms of causal algebras are the key theorems of the present
paper. We study some of their consequences in Section 7.

First, given a causal algebra for a functor F , we get that any system of
equations represented as a BF -coalgebra admits a unique solution. Such a tech-
nique makes it possible to define shuffle product in a streamlined way, without
using distributive laws: using pointwise stream addition as a causal S-algebra,
Equations (2) can be represented by the following BS-coalgebra:

(Rω)2 → BS((Rω)2)

(x, y) 7→ (x0 × y0, ((x, y′) , (x′, y)))

(Intuitively, the inner pairs (x, y′) and (x′, y) correspond to the corecursive calls,
and thus to the shuffle products x⊗ y′ and x′ ⊗ y; in contrast, the intermediate
pair ((x, y′) , (x′, y)) corresponds to a call to the causal algebra on S, i.e., in
this case, pointwise addition.) In the very same way, with the functor BX =
2×XA for deterministic automata, we immediately obtain the semantics of non-
deterministic automata and context-free grammars using simple causal algebras
on formal languages (Examples 7.1 and 7.2).

Second, we obtain that algebras on the final coalgebra are causal if and only if
they can be defined by a distributive law. Similar results were known to hold for
streams [12] and languages [34]. Our characterisation is more abstract and less
syntactic; the precise relationship between those results remains to be studied.

Third, we can combine our results with some recent work [6] where we rely
on (bi)fibrations to lift distributive laws on systems (e.g., automata, LTSs) to
obtain up-to techniques for coinductive predicates or relations on those systems
(e.g., language equivalence, bisimilarity, divergence). Doing so, we obtain that
every causal algebra gives rise to a valid up-to context technique (Section 7.3).
For instance, bisimulation up to pointwise additions and shuffle products is a
valid technique for proving stream equalities coinductively.

We conclude with an expressivity result (Section 8): while abstract GSOS
specifications [42] seem more expressive than plain distributive laws, we show
that this is actually not the case: any algebra obtained from an abstract GSOS
specification can actually be defined from a plain distributive law.

Acknowledgments. We are grateful to Henning Basold, Filippo Bonchi, Bart
Jacobs, Joshua Moerman, Daniela Petrişan, and Jan Rutten for valuable discus-
sions and comments.

2 Preliminaries

A coalgebra for a functor B : C → C is a pair (X, f) where X is an object in C
and f : X → BX a morphism. A coalgebra homomorphism from (X, f) to (Y, g)
is a C-morphism h : X → Y such that g ◦h = Fh◦f . A coalgebra (Z, ζ) is called
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final if it is final in the category of coalgebras, i.e., for every coalgebra (X, f)
there exists a unique coalgebra morphism from (X, f) to (Z, ζ).

An algebra for a functor F : D → D is defined dually to a coalgebra, i.e., it is
a pair (X, a) where a : FX → X, and an algebra morphism from (X, a) to (Y, b)
is a morphism h : X → Y such that h ◦ a = b ◦ Fh.

A monad is a triple (T, η, µ) where T : C → C is a functor, and η : Id ⇒
T and µ : TT ⇒ T are natural transformations called unit and multiplication
respectively, such that µ ◦ Tη = id = µ ◦ ηT and µ ◦ µT = µ ◦ Tµ.

Distributive laws. A distributive law of a functor F : C → C over a functor
B : C → C is a natural transformation λ : FB ⇒ BF . If B has a final coalgebra
(Z, ζ), then such a λ induces a unique algebra α making the following commute.

FZ

α

��

Fζ // FBZ
λZ // BFZ

Bα
��

Z
ζ

// BZ

We call α the algebra induced by λ (on the final coalgebra).
Let (T, η, µ) be a monad. A distributive law of (T, η, µ) over B is a natural

transformation λ : TB ⇒ BT such that Bη = λ ◦ ηB and λ ◦µB = Bµ ◦λT ◦Tλ.

Final sequence. Let B : C → C be an endofunctor on a complete category C.
The final sequence is the unique ordinal-indexed sequence defined by B0 = 1
(the final object of C), Bi+1 = BBi and Bj = limi<j Bi for a limit ordinal j,
with connecting morphisms Bj,i : Bj → Bi for all i ≤ j, satisfying Bi,i = id,
Bj+1,i+1 = BBj,i and if j is a limit ordinal then (Bj,i)i<j is a limit cone.

The final sequence is a standard tool for constructing final coalgebras: if there
exists an ordinal k such that Bk+1,k is an isomorphism, then B−1

k+1,k : Bk → BBk
is a final B-coalgebra [4, Theorem 1.3] (and dually for initial algebras [3]). In
the sequel, we shall sometimes present it as a functor B̄ : Ordop → C, given by
B̄(i) = Bi and B̄(j, i) = Bj,i.

Example 2.1. Consider the functor B : Set→ Set given by BX = A×X, whose
coalgebras are stream systems. Then B0 = 1 and Bi+1 = A×Bi for 0 < i < ω.
Hence, for i < ω, Bi is the set of all finite lists over A of length i. The limit Bω
consists of the set of all streams over A. For each i, j with i ≤ j, the connecting
map Bj,i maps a stream (if j = ω) or a list (if j < ω) to the prefix of length i.
The set Bω of streams is a final B-coalgebra.

Example 2.2. For the Set functor BX = 2×XA whose coalgebras are determin-
istic automata over A, Bi is (isomorphic to) the set of languages of words over
A with length below i. In particular, Bω = P(A∗) is the set of all languages, and
it is a final B-coalgebra.

A functor B : C → C is called (ω)-continuous if it preserves limits of ωop-
chains. For such a functor, Bω is the carrier of a final B-coalgebra. The functors
of stream systems and automata in the above examples are both ω-continuous.
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3 Properties of the companion

Definition 3.1. Let B : C → C be a functor. The category
DL(B) of distributive laws is defined as follows. An object is
a pair (F, λ) where F : C → C is a functor and λ : FB ⇒ BF
is a natural transformation. A morphism from (F, λ) to (G, ρ)
is a natural transformation κ : F ⇒ G s.t. ρ ◦ κB = Bκ ◦ λ.
The companion of B is the final object of DL(B), if it exists.

FB

λ
��

κB +3 GB

ρ

��
BF

Bκ
+3 BG

Morphisms in DL(B) are a special case of morphisms of distributive laws,
see [33,43,22,18]. In the remainder of this section, we assume that the companion
of B exists, and we denote it by (T, τ). We first prove that it is a monad.

Theorem 3.1. There are unique η : Id⇒ T and µ : TT ⇒ T such that (T, η, µ)
is a monad and τ : TB ⇒ BT is a distributive law of this monad over B.

Proof. Define η and µ as the unique morphisms from idB and τT ◦Tτ respectively
to the companion:

B

ηB

��

B

Bη

��
TB

τ +3 BT

TTB

µB

��

Tτ +3 TBT
τT +3 BTT

Bµ

��
TB

τ +3 BT

By definition, they satisfy the required axioms for τ to be a distributive law of
monad over functor. The proof that (T, η, µ) is indeed a monad is routine, using
finality of (T, τ), see the appendix. ut

A distributive law λ of a monad over a functor allows one to strengthen the coin-
duction principle obtained by finality, as observed in [5] (specifically its Corol-
lary 4.3.6), where it is called λ-coiteration. This principle allows one to solve
(co)recursive equations, see, e.g., loc. cit. and [14,25]. Since the companion is a
distributive law of a monad (Theorem 3.1) we obtain the following.

Corollary 3.1. Let (Z, ζ) be a final B-coalgebra. For every morphism f : X →
BTX there is a unique morphism f† : X → Z such that the following commutes:

X

f

��

f† // Z

ζ

��
BTX

BTf†
// BTZ

Bα
// BZ

where α is the algebra induced by the distributive law τ of the companion.

Instantiated to the complete lattice case, this is a soundness result: any invariant
up to the companion (a post-fixpoint of b ◦ t) is below the greatest fixpoint (νb).

Now assume that C has an initial object 0. One can define the final coalgebra
and the algebra induced by the companion explicitly:
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Theorem 3.2. The B-coalgebra (T0, τ0 ◦T !B0) is final, and the algebra induced
on it by the companion is given by µ0.

More generally, the algebra induced by any distributive law factors through
the algebra µ0 induced by the companion.

Proposition 3.1. Let (T, η, µ) be the monad on the companion (Theorem 3.1).
Let λ : FB ⇒ BF be a distributive law, and α : FT0 ⇒ T0 the algebra on the
final coalgebra induced by it. Let λ̄ : F ⇒ T be the unique natural transformation
induced by finality of the companion. Then α = µ0 ◦ λ̄T0.

4 The codensity monad

The notion of codensity monad is a special instance of a right Kan extension,
which plays a central role in the following sections. We briefly define them here;
see [20,28,21] for a comprehensive study.

HF
κF +3

α ��

IF

β��
G

Given F : C → D, G : C → E two functors. Define the
category K(F,G) whose objects are pairs (H,α) of a func-
tor H : D → E and a natural transformation α : HF ⇒ G.
A morphism from (H,α) to (I, β) is a natural transformation
κ : H ⇒ I such that β ◦ κF = α.

The right Kan extension of G along F is a final object (RanFG, ε) in K(F,G);
the natural transformation ε : (RanFG)F ⇒ G is called its counit. A functor
K : E → F is said to preserve RanFG if K ◦ RanFG is a right Kan extension of
KG along F , with counit Kε : K(RanFG)F ⇒ KG.

HF
α̂F +3

α
��

CFF

ε�	
F

The codensity monad is a special case, with F = G. Explic-
itly, the codensity monad of a functor F : C → D consists of a
functor CF : D → D and a natural transformation ε : CFF ⇒ F
s.t. for every functor H : D → D and natural transformation
α : HF ⇒ F there is a unique α̂ : H ⇒ CF s.t. ε ◦ α̂F = α.

As the name suggests, CF is a monad: the unit η and the multiplication µ
are the unique natural transformations such that ε◦ηF = id and ε◦µF = ε◦CF ε.
In the sequel we will abbreviate the category K(F, F ) as K(F ).

Right Kan extensions can be computed pointwise as a limit, if sufficient limits
exist. For an object X in D, denote by ∆X : C → D the functor that maps every
object to X. By ∆X/F we denote the comma category, where an object is a pair
(Y, f) consisting of an object Y in C and an arrow f : X → FY in D, and an
arrow from (Y, f) to (Z, g) is a map h : Y → Z in C such that Fh ◦ f = g. There
is a forgetful functor (∆X/F )→ C, which remains unnamed below.

Lemma 4.1. Let F : C → D, G : C → E be functors. If, for every object X in D,

the limit lim
(

(∆X/F )→ C G−→ D
)

exists, then the right Kan extension RanFG

exists, and is given on an object X by that limit.

The codensity monad of a functor F is the right Kan extension of F along
itself. Hence, Lemma 4.1 gives us a way of computing the codensity monad.
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The hypotheses are met in particular if C is essentially small (equivalent to a
category with a set of objects and a set of arrows) and D is locally small and
complete. The latter conditions hold for D = Set. In that case, we have the
following concrete presentation; see, e.g., [8, Section 2.5] for a proof.

Lemma 4.2. Let F : C → Set be a functor, where C is essentially small. The
codensity monad CF is given by CF (X) = {α : (F−)X ⇒ F} and, for h : X → Y ,
(CF (h)(α))A : (FA)Y → FA is given by f 7→ αA(f ◦ h). The natural transfor-
mation ε : CFF ⇒ F is given by εX(α : FFX ⇒ F ) = αX(idFX).

5 Constructing the companion by codensity

It is standard in the theory of coalgebras to compute the final coalgebra of a
functor B as a limit of the final sequence B̄, see Section 2. In this section, we
focus on the codensity monad of the final sequence, and show that it yields—
under certain conditions—the companion of B.

The codensity monad of B̄ is final in the category of natural transformations
of the form FB̄ ⇒ B̄ (see Section 4), whereas the companion of B is final in the
category of distributive laws over B. The following lemma is a first step towards
connecting companion and codensity monad.

Lemma 5.1. For every λ : FB ⇒ BF there exists a unique α : FB̄ ⇒ B̄ such
that for all i ∈ Ord: αi+1 = Bαi ◦ λBi . Moreover, if Bk+1,k is an isomorphism
for some k, then αk is the algebra induced by λ on the final coalgebra.

We turn to the main result of this section: the codensity monad of B̄ yields
the companion of B, if B preserves this codensity monad. The latter condition,
as well as the concrete form of the companion computed in this manner, becomes
clearer when we instantiate this result to the case where C is a lattice (Section 5.1)
and the case C = Set (Section 6).

Theorem 5.1. Let B̄ : Ordop → C be the final sequence of an endofunctor B.
If the codensity monad CB̄ exists and B preserves it (as a right Kan extension)
then there is a distributive law τ of the codensity monad (CB̄ , η, µ) over B such
that (CB̄ , τ) is the companion of B.

Proof (Outline). The preservation assumption means that (BCB̄ , Bε) is a right
Kan extension of BB̄ along B̄. The natural transformation τ is defined, using the
universal property of Bε, as the unique τ : CB̄B ⇒ BCB̄ such that Bεi ◦ τBi =
εi+1 : CB̄BBi ⇒ BBi for all i. See the appendix for a full proof. ut

The following result characterises the algebra induced on the final coalgebra
by the distributive law of the companion, in terms of the counit ε of the codensity
monad of B̄. This plays an important role for the case C = Set (Section 7).

Proposition 5.1. Suppose B is a functor satisfying the hypotheses of Theo-
rem 5.1. Let (CB̄ , ε) be the codensity monad of B̄, with distributive law τ and
monad structure (CB̄ , η, µ). If Bk+1,k is an isomorphism for some k, then

1. εk : CB̄Bk → Bk is the algebra induced by τ on the final coalgebra;
2. if C has an initial object 0 then εk is isomorphic to µ0.

8



5.1 Codensity and the companion of a monotone function

Throughout this section, let b : L → L be a monotone function on a complete
lattice. By Theorem 5.1, the companion of a monotone function b (viewed as
a functor on a poset category) is given by the right Kan extension of the final
sequence b̄ : Ordop → L along itself. Using Lemma 4.1, we obtain the characteri-
sation of the companion given in the Introduction (5).

Theorem 5.2. The companion t of b is given by

t : x 7→
∧
x≤bi

bi

Proof. By Lemma 4.1, the codensity monad Cb̄ can be computed by

Cb̄(x) = (Ranb̄b̄)(x) =
∧
x≤bi

bi ,

a limit that exists since L is a complete lattice. We apply Theorem 5.1 to show
that Cb̄ is the companion of b. The preservation condition of the theorem amounts
to the equality b ◦Ranb̄b̄ = Ranb̄(b ◦ b̄) which, by Lemma 4.1, in turn amounts to

b(
∧
x≤bi

bi) =
∧
x≤bi

b(bi)

for all x ∈ L. The sequence (bi)i∈Ord is decreasing and stagnates at some ordinal
ε; therefore, the two intersections collapse into their last terms, say bδ and b(bδ)
(with δ the greatest ordinal such that x 6≤ bδ+1, or ε if such an ordinal does not
exist). The equality follows. ut

In fact, the category K(b) defined in Section 4 instantiates to the following: an
object is a monotone function f : L→ L such that f(bi) ≤ bi for all i ∈ Ord, and
an arrow from f to g exists iff f ≤ g. The companion t is final in this category.
This yields the following characterisation of functions below the companion.

Proposition 5.2. Let t be the companion of b. For any monotone function f
we have f ≤ t iff ∀i ∈ Ord : f(bi) ≤ bi.

A key intuition about up-to techniques is that they should at least preserve
the greatest fixpoint (i.e., up-to context is valid only when bisimilarity is a con-
gruence). It is however well-known that this is not a sufficient condition [37,38].
The above proposition gives a stronger and better intuition: a technique should
preserve all approximations of the greatest fixpoint (the elements of the final
sequence) to be below the companion, and thus sound.

This intuition on complete lattices leads us to the abstract notion of causality
we introduce in the following section.
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6 Causality by codensity

We focus on the codensity monad of the final sequence of an ω-continuous Set
endofunctor B. For such a functor, Bω is the carrier of a final coalgebra and
Lemma 4.2 provides us with a description of the codensity monad in terms of
natural transformations of the form (B̄−)X ⇒ B̄. We show that such natural
transformations correspond to a new abstract notion which we call causal al-
gebras. Based on this correspondence and Theorem 5.1, we will get a concrete
understanding of the companion of B in Section 7.

Definition 6.1. Let B,F : Set→ Set be functors. An algebra α : FBω → Bω is
called (ω)-causal if for every set X, functions f, g : X → Bω and i < ω:

Bω Bω,i

((
X

f 66

g ((
Bi

Bω Bω,i

66

implies FBω
α // Bω Bω,i

((
FX

Ff 55

Fg
))

Bi

FBω α
// Bω Bω,i

66

Causal algebras form a category causal(B): an object is a pair (F, α : FBω → Bω)
where α is causal, and a morphism from (F, α) to (G, β) is a natural transfor-
mation κ : F ⇒ G such that β ◦ κBω = α.

An (ω)-causal function on |V | arguments is a causal algebra for the functor
(−)V . Equivalently, α : (Bω)V → Bω is causal iff for every h, k ∈ (Bω)V and
every i < ω: if Bω,i ◦ h = Bω,i ◦ k then Bω,i ◦ α(h) = Bω,i ◦ α(k).

Example 6.1. Recall from Example 2.1 that, for the functor BX = A × X, Bi
is the set of lists of length i, and in particular Bω is the set of streams over A.
We focus first on causal functions. To this end, for σ, τ ∈ Bω, we write σ ≡i τ if
σ and τ are equal up to i, i.e., σ(k) = τ(k) for all k < i. It is easy to verify that
a function of the form α : (Bω)n → Bω is causal iff for all σ1, . . . , σn, τ1, . . . , τn
and all i < ω: if σj ≡i τj for all j ≤ n then α(σ1, . . . , σn) ≡i α(τ1, . . . , τn).

For instance, taking n = 2, alt(σ, τ) = (σ(0), τ(1), σ(2), τ(3), . . .) is causal,
whereas even(σ) = (σ(0), σ(2), . . .) (with n = 1) is not causal. For A = R,
standard operations from the stream calculus such as pointwise stream addition,
shuffle product and shuffle product are all causal.

The above notion of causal functions (with a finite set of arguments V ) agrees
with the standard notion of causal stream functions (e.g., [12]). Our notion
of causal algebras generalises it from single functions to algebras for arbitrary
functors. This includes polynomial functors modelling a signature. For A = R,
the algebra α : Pω(Bω) → Bω for the finite powerset functor Pω, defined by
α(S)(n) = min{σ(n) | σ ∈ S} is a causal algebra which is not a causal function.
The algebra β : Pω(Bω) → Bω given by β(S)(n) =

∑
σ∈S σ(n) is not causal

according to Definition 6.1. Intuitively, β({σ, τ})(i) depends on equality of σ
and τ , since addition of real numbers is not idempotent.

Example 6.2. For the functor BX = 2×XA, Bω = P(A∗) is the set of languages
over A (Example 2.2). Given languages L and K, we write L ≡i K if L and K

10



contain the same words of length below i. A function α : (P(A∗))n → P(A∗)
is causal iff for all languages L1, . . . , Ln,K1, . . . ,Kn: if Lj ≡i Kj for all j ≤
n then α(L1, . . . , Ln) ≡i α(K1, . . . ,Kn). For instance, union, concatenation,
Kleene star, and shuffle of languages are all causal. An example of a causal
algebra that is not a causal function is α : P(P(A∗))→ P(A∗) defined by union.

The following result connects causal algebras to natural transformations of
the form FB̄ ⇒ B̄ (which, from Section 4, form a category K(B̄)).

Theorem 6.1. Let B,F : Set→ Set be functors, and suppose B is ω-continuous.
The category causal(B) of causal algebras is isomorphic to the category K(B̄).
Concretely, there is a one-to-one correspondence

α : FB̄ ⇒ B̄

αω : FBω → Bω causal

From top to bottom, this is given by evaluation at ω. Moreover, we have β ◦κB̄ =
α iff βω ◦ κBω = αω for any α : FB̄ ⇒ B̄, β : GB̄ ⇒ B̄ and κ : F ⇒ G.

By the above theorem, the universal property of the codensity monad amounts
to the following property of causal algebras.

Corollary 6.1. Suppose B : Set → Set is ω-continuous. Let ε be the counit of
CB̄. Then εω is final in causal(B), i.e., for every causal algebra α : FBω → Bω,
there is a unique natural transformation α̂ : F ⇒ CB̄ such that εω ◦ α̂Bω = α.

FBω
α̂Bω //

α
""

CB̄Bω

εω{{
Bω

By Lemma 4.2 and Lemma 6.1, we obtain the following concrete description
of the codensity monad CB̄ of the final sequence of a Set endofunctor B, as a
functor of causal functions.

Theorem 6.2. Let B : Set → Set be an ω-continuous functor. The codensity
monad CB̄ of the final sequence of B is given by

CB̄(X) = {α : BXω → Bω | α is a causal function} ,
CB̄(h : X → Y )(α) = λf. α(f ◦ h) ,

and, for the counit ε : CB̄B̄ ⇒ B̄, we have εω(α : BBωω → Bω) = α(idBω ).

Hence, the codensity monad of the final sequence of the functor X 7→ A×X of
stream systems maps a set X to the set of all causal stream functions with |X|
arguments. Similarly for the functor X 7→ 2×XA: we obtain a functor of causal
functions on languages.

11



7 Companion of a Set functor

The previous sections gives us a concrete understanding of the codensity monad
of the final sequence of a Set functor in terms of causal functions, and Theo-
rem 5.1 provides us with a sufficient condition for this codensity monad to be
the companion. We now focus on several applications of these results.

A rather general class of functors that satisfy the hypotheses of Theorem 5.1 is
given by the polynomial functors. Automata, stream systems, Mealy and Moore
machines, various kinds of trees, and many more are all examples of coalgebras
for polynomial functors (e.g., [15]). A functor B : Set→ Set is called polynomial
(in a single variable) if it is isomorphic to a functor of the form

X 7→
∐
a∈A

XBa

for some A-indexed collection (Ba)a∈A of sets. As explained in [11, 1.18], a Set
functor B is polynomial if and only if it preserves connected limits. This implies
existence and preservation by B of the codensity monad of B̄, as required by
Theorem 5.1 (see the appendix for details).

Lemma 7.1. If B : Set → Set is polynomial, then it satisfies the hypotheses of
Theorem 5.1.

As a consequence, if B is polynomial, the functor of causal functions in Theo-
rem 6.2 is the companion of B.

7.1 Solving equations via causal algebras

As explained in the introduction, a distributive law of F over B allows one to
solve systems of equations, formalised in terms of BF -coalgebras, leading to an
expressive coinductive definition technique. This approach is formally supported
by a solution theorem, stated for the companion in Corollary 3.1. Based on the
characterisation of the companion in terms of causal algebras, we obtain a new,
simplified solution theorem: it does not mention distributive laws at all, but is
stated purely in terms of causal algebras.

Theorem 7.1. Let B : Set → Set be a polynomial functor, with final coalgebra
(Bω, ζ). Let α : FBω → Bω be a causal algebra. For every f : X → BFX there
is a unique f† : X → Z such that the following diagram commutes.

X

f

��

f† // Bω

ζ

��
BFX

BFf†
// BFBω

Bα
// BBω

12



Example 7.1. For the functor BX = A × X, Bω is the set of streams. Take
SX = X2 for F , and consider the coalgebra f : 1→ BS1 with 1 = {∗}, defined
by ∗ 7→ (1, (∗, ∗)). Pointwise addition is a causal function on streams, modelled
by an algebra on Bω for the functor S. By Theorem 7.1 we obtain a unique
solution σ ∈ Bω, satisfying σ0 = 1 and σ′ = σ⊕σ. Similarly, the shuffle product
of streams is causal, so that by applying Theorem 7.1 with that algebra and the
same coalgebra f we obtain a unique stream σ satisfying σ0 = 1, σ′ = σ ⊗ σ.

As explained in the Introduction, this method also allows one to define func-
tions on streams. For instance, for the shuffle product, define a BS-coalgebra
f : (Bω)2 → BS(Bω)2, by f(σ, τ) = (σ0 × τ0, ((σ′, τ), (τ, σ′)). Since addition of
streams is causal, by Theorem 7.1 there is a unique f† : Bω×Bω → Bω such that
f†(σ, τ)(0) = σ(0)× τ(0) and (f†(σ, τ))′ = (f†(σ′, τ)⊕ f†(σ, τ ′)), matching the
definition given in the Introduction (2). Notice that not every function defined
in this way is causal; for instance, it is easy to define even (see Example 6.1),
even with the standard coinduction principle (i.e., where F = Id and α = id).

Example 7.2. Consider the functor BX = 2 × XA, whose final coalgebra con-
sists of the set P(A∗) of languages. A BP-coalgebra f : X → 2 × (P(X))A is a
non-deterministic automaton. Taking the causal algebra α : P(P(A∗))→ P(A∗)
defined by union, the unique map f† : X → P(A∗) from Theorem 7.1 is the usual
language semantics of non-deterministic automata.

In [44], a context-free grammar (in Greibach normal form) is modelled as a
BP?-coalgebra f : X → 2×(P(X)∗)A, and its semantics is defined operationally
by turning f into a deterministic automaton over P(X∗). In [35] this operational
view is related to the semantics of CFGs in terms of language equations. Con-
sider the causal algebra α : P(P(A∗)∗)→ P(A∗) defined by union and language
composition: α(S) =

⋃
L1...Lk∈S L1L2 . . . Lk. By Theorem 7.1, any context-free

grammar f has a unique solution in languages, which is the semantics of CFGs
in the usual sense. As such, we obtain an elementary coalgebraic semantics of
CFGs that does not require us to relate it to an operational semantics.

7.2 Causal algebras and distributive laws

Another application of the fact that the codensity monad is the companion is
that the final causal algebra in Corollary 6.1 is, by Proposition 5.1, the alge-
bra induced by a distributive law. Hence, any causal algebra is “definable” by
a distributive law, in the sense that it factors as a (component of a) natural
transformation followed by the algebra induced by a distributive law.

More precisely, suppose B : Set → Set has a final coalgebra (Z, ζ). We say
an algebra α : FZ → Z is definable by a distributive law over B if there exists a
distributive law λ : GB ⇒ BG with induced algebra β : GZ → Z and a natural
transformation κ : F ⇒ G such that the following commutes:

FZ
κZ //

α
!!

GZ

β}}
Z

13



Theorem 7.2. Let B : Set → Set be polynomial. An algebra α : FBω → Bω is
causal if and only if it is definable by a distributive law over B.

Since the functors for stream systems and automata are polynomial, as a special
case of Theorem 7.2 we obtain that a stream function, or a function on languages,
is causal if and only if it is definable by a distributive law.

In [12], a similar result is shown concretely for causal stream functions, and
this is extended to languages in [34]. In both cases, very specific presentations
of distributive laws for the systems at hand are used to present the distributive
law based on a “syntax”, which however is not too clearly distinguished from the
semantics: it consists of a single operation symbol for every causal function. In
our case, in the proof of Theorem 7.2, we use the companion, which consists of
the actual functions rather than a syntactic representation. Indeed, the setting
of Theorem 7.2 applies more abstractly to all causal algebras, not just causal
functions. However, it remains an intriguing question how to obtain a concrete
syntactic characterisation of a distributive law for a given causal algebra.

7.3 Soundness of up-to techniques

The contextual closure of an algebra is one of the most powerful up-to tech-
niques, which allows one to exploit algebraic structure in bisimulation proofs.
In [7], it is shown that the contextual closure is sound (compatible) on any bial-
gebra for a distributive law. Here, we move away from distributive laws and
give an elementary condition for soundness of the contextual closure on the final
coalgebra: that the algebra under consideration is causal. In fact, we prove that
this implies that the contextual closure lies below the companion, which not only
gives soundness, but also allows to combine it with other up-to techniques.

Due to space limitations, we can not fully explain the relevant definitions,
and refer to [7] for details. Bisimulations on a B-coalgebra (X, f) are the post-
fixed points of a monotone function bf : RelX → RelX on the lattice RelX of
relations on X, defined by bf (R) = f∗ ◦ Rel(B)(R). Here Rel(B) is the relation
lifting of B, and f∗ is inverse image along f×f , see, e.g., [15]. Contextual closure
ctxα : RelX → RelX with respect to an algebra α : FX → X is defined dually by
ctxα(R) =

∐
α ◦ Rel(F )(R), where

∐
α is direct image along α× α.

Theorem 7.3. Let B : Set→ Set be polynomial, and (Bω, ζ) a final B-coalgebra.
Let tζ be the companion of bζ . For any causal algebra α : FBω → Bω: ctxα ≤ tζ .

This implies that one can safely use the contextual closure for any causal
algebra, such as union, concatenation and Kleene star of languages, or product
and sum of streams. Endrullis et al. [9] prove the soundness of causal contexts in
combination with other up-to techniques, for equality of streams. The soundness
of causal algebras for streams is a special case of Theorem 7.3, but the latter
provides more: being below the companion, it is possible to compose it to other
such functions to obtain combined up-to techniques in a modular fashion, cf. [31].
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8 Abstract GSOS

To obtain expressive specification formats, Turi and Plotkin [42] use natural
transformations of the form λ : F (B × Id) ⇒ BF ∗, where F ∗ is the free monad
for F . These are the so-called abstract GSOS specifications. We conclude this
article by showing that they are actually equally expressive as plain distributive
laws of a functor F over B.

If B has a final coalgebra (Z, ζ), then any abstract GSOS specification
λ : F (B × Id)⇒ BF ∗ defines an algebra α : FZ → Z on it, which is the unique
algebra making the following diagram commute.

FZ

α

��

F 〈ζ,id〉// F (B × Id)Z
λZ // BF ∗Z

Bα∗

��
Z

ζ
// BZ

Here α∗ is the Eilenberg-Moore algebra for the free monad corresponding to α.
Intuitively, this algebra gives the interpretation of the operations defined by λ.

Like plain distributive laws (Lemma 5.1), abstract GSOS specifications in-
duce natural transformations of the form FB̄ ⇒ B̄.

Lemma 8.1. For every λ : F (B × Id) ⇒ BF ∗ there is a unique α : FB̄ ⇒ B̄
such that for all i ∈ Ord: αi+1 = Bα∗i ◦ λBi ◦ F 〈id, Bi+1,i〉. Moreover, if Bk+1,k

is an isomorphism for some k, then αk is the algebra induced by λ on the final
coalgebra.

This places abstract GSOS specifications within the framework of the com-
panion, constructed via the codensity monad of the final sequence B̄. Whenever
that construction applies (e.g., for polynomial functors), any algebra defined by
an abstract GSOS is thus already definable by a plain distributive law over B.

Theorem 8.1. Suppose B : C → C satisfies the conditions of Theorem 5.1. Ev-
ery algebra induced on the final coalgebra by an abstract GSOS specification
λ : F (B × Id)⇒ BF ∗ is definable by a distributive law over B (cf. Section 7.2).

In this sense, abstract GSOS is no more expressive than plain distributive laws.
Note, however, that this does involve moving to a different (larger) syntax.

Remark 8.1. Every abstract GSOS specification λ : F (B × Id) ⇒ BF ∗ corre-
sponds to a unique distributive law λ† : F ∗(B × Id) ⇒ (B × Id)F ∗ of the free
monad F ∗ over the (cofree) copointed functor B × Id, see [23]. The algebra in-
duced by λ decomposes as the algebra induced by λ† and the canonical natural
transformation F ⇒ F ∗. This implies that every algebra induced by an ab-
stract GSOS is definable by a distributive law over the copointed functor B× Id.
Theorem 8.1 strengthens this to definability by a distributive law over B.
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A Proof of Theorem 3.1

Proof. It only remains to prove that (T, η, µ) is a monad. For the unit axioms,
consider the following diagrams.

TB

τ

��

TηB //

TBη ##

TTB

Tτ
��

µB // TB

τ

��

TBT

τT
��

BT
BTη
// BTT

Bµ
// BT

TB

τ

��

ηTB // TTB

Tτ
��

µB // TB

τ

��

TBT

τT
��

BT
BηT
//

ηBT
;;

BTT
Bµ
// BT

Both diagrams commute, by definition of η (the triangles), definition of µ (the
rectangles) and by naturality (the rest). We obtain µ ◦ Tη = id = µ ◦ ηT by
uniqueness of morphisms to (T, τ).

For the multiplication, we have the following diagrams:

TTTB

TTτ
��

TµB // TTB

Tτ

��

µB // TB

τ

��

TTBT

TτT
��

TBTT

τTT
��

TBµ // TBT

τT
��

BTTT
BTµ

// BTT
Bµ
// BT

TTTB

TTτ
��

µTB // TTB

Tτ
��

µB // TB

τ

��

TTBT

TτT
��

µBT // TBT

τT

��

TBTT

τTT
��

BTTT
BµT

// BTT
Bµ
// BT

The rectangles commute by definition of µ, the squares by naturality. It follows
by uniqueness of morphisms to (T, τ) that µ ◦ µT = µ ◦ Tµ. ut

B Proof of Theorem 3.2

Proof. Let (X, f) be a B-coalgebra. Write X̂ for the constant-to-X functor,

and f̂ for the constant-to-f distributive law of X̂ over B. By finality of the
companion, there exists a unique natural transformation λ : X̂ ⇒ T such that
Bλ◦f̂ = τ◦λB. One checks easily that λ0 is the unique coalgebra homomorphism
from (X, f) to (T0, τ0 ◦ T !B0).

To prove that µ0 is the algebra induced by the companion, it suffices to prove
that (τ0 ◦T !B0) ◦µ0 = Bµ0 ◦ τT0 ◦T (τ0 ◦T !B0), which follows from naturality of
µ and the fact that τ is a distributive law of a monad over B. ut
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C Proof of Proposition 3.1

Proof. By Theorem 3.2, τ0 ◦ T !B0 : T0 → BT0 is a final B-coalgebra. By def-
inition of the algebra induced on the final coalgebra by λ, and uniqueness of
morphisms into final coalgebras, it suffices to prove that the following diagram
commutes.

FT0
λ̄T0 //

FT !B0

��

TT0

TT !B0

��

µ0 // T0

T !B0

��
FTB0

Fτ0
��

λ̄TB0 // TTB0

Tτ0
��

µB0 // TB0

τ0

��

FBT0

λT0

��

λ̄BT0 // TBT0

τT0

��
BFT0

Bλ̄T0

// BTT0
Bµ0

// BT0

Everything commutes: clockwise starting from the top right by naturality, def-
inition of µ, the fact that λ̄ is a morphism from (F, λ) to (T, τ), and twice
naturality. ut

D Proof of Lemma 5.1

Proof. This natural transformation is completely determined by the successor
case given in the definition; on a limit ordinal j, Bj is a limit, and naturality
requires it to be defined as the unique arrow αj : FBj → Bj such that

FBj

FBj,i

��

αj // Bj

Bj,i

��
FBi αi

// Bi

commutes, for all i < j.
For naturality, we have to prove that the relevant square (as above) commutes

for all i ≤ j. For i = j, this follows since Bj,j = idBj by definition. We prove
that the square commutes for any i < j, by induction on j. The case that j is a
limit ordinal follows immediately from the definition of αj . Now suppose that,
for any i with i < j, the square commutes for i, j. Then it also commutes for
i+ 1 < j + 1:

FBj+1 = FBBj
λBj //

FBj+1,i+1=FBBj,i

��

BFBj
Bαj //

BFBj,i

��

BBj = Bj+1

Bj+1,i+1=BBj,i

��
FBi+1 = FBBi

λBi // BFBi
Bαi // BBi = Bi+1
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by naturality and assumption. For i a limit ordinal, consider the following dia-
gram:

FBj
FBj,i //

αj

��

FBi
FBi,l //

αi

��

FBl

��
αl

��
Bj

Bj,i

// Bi
Bi,l

// Bl

For all l < i, the outer rectangle commutes by the inductive hypothesis, and the
right square by definition of αi on the limit ordinal i. Since Bi is a limit with
projections Bi,l for l ≤ i, it follows that the square on the left commutes, as
desired.

For the second point in the statement: if Bk+1,k : Bk+1 → Bk is an iso-
morphism, then B−1

k+1,k : Bk → B(Bk+1) is a final B-coalgebra. Consider the
following diagram:

FBk
αk //

FB−1
k+1,k

��

Bk

B−1
k+1,k

��

FBBk

λBk
��

αk+1

$$
BFBk

Bαk

// BBk

The triangle commutes by definition of α, and the shape above it by naturality
and the fact that Bk+1,k is an isomorphism. It follows that αk is the algebra
induced on the final coalgebra by λ. ut

E Proof of Theorem 5.1

Proof. By assumption, (BCB̄ , Bε) is the right Kan extension of BB̄ along B̄.
This means that for all α : HB̄ ⇒ BB̄, there exists a unique α̂ : H ⇒ BCB̄
such that α = Bε ◦ α̂B̄ . We use this universal property to define the natural
transformation τ , choosing H = CB̄B.

To this end, consider the functor S : Ordop → Ordop defined by S(i) = i+ 1.
The following diagram commutes:

Ordop
B̄ //

S
��

C

B

��
Ordop

B̄

// C

(6)

It simply expresses that Bj+1,i+1 = BBj,i for all i ≤ j, which holds by definition
of the final sequence. As a consequence, there is the natural transformation on
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the top row of the diagram below:

CB̄BB̄

τB̄
��

CB̄B̄S
εS +3 B̄S BB̄

BCB̄B̄

Bε

/7

.

(7)

By the universal property of (BCB̄ , Bε) we obtain τ : CB̄B ⇒ BCB̄ as the unique
natural transformation making the above diagram (7) commute.

We prove that τ is a distributive law of the codensity monad (CB̄ , η, µ) overB.
To this end, recall that η and µ are defined as the unique natural transformations
making the following diagrams commute:

B̄
ηB̄ +3 CB̄B̄

ε

��
B̄

CB̄CB̄B̄
CB̄ε +3

µB̄

��

CB̄B̄

ε

��
CB̄B̄ ε

+3 B̄

(8)

For the unit axiom, we need to show commutativity of:

B
ηB +3

Bη �%

CB̄B

τ

��
BCB̄

which we do by showing that Bε ◦ τB̄ ◦ ηBB̄ = Bε ◦ BηB̄ ; the desired equality
then follows from uniqueness (from the universal property of Bε). This, in turn,
follows from commutativity of:

CB̄BB̄

τB̄

��

BB̄

ηBB̄

19

BηB̄

��

B̄S
ηB̄S +3 CB̄B̄S

εS

��
B̄S BCB̄B̄

Bεv~
BCB̄B̄ Bε

+3 BB̄

The two triangles within the big square commute by (8), the upper left triangle
and the trapezoid in the square since B̄S = BB̄ (see (6)), and the right triangle
by definition of τ (see (7)).
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For the multiplication, we are to prove commutativity of:

CB̄CB̄B
µB +3

CB̄τ

��

CB̄B

τ

��

CB̄BCB̄

τCB̄

��
BCB̄CB̄ Bµ

+3 BCB̄

which, in a similar manner as above for the unit, follows from the universal
property of Bε and commutativity of the following diagram.

CB̄CB̄BB̄
µBB̄ +3

CB̄τB̄

��

CB̄BB̄
τB̄ +3 BCB̄B̄

Bε

��

CB̄CB̄B̄S
µB̄S +3

CB̄εS

��

CB̄B̄S

εS

��
CB̄B̄S εS

+3 B̄S

CB̄BCB̄B̄

τCB̄B̄

��

CB̄Bε +3 CB̄BB̄

τB̄
��

BCB̄B̄
Bε +3 BB̄

BCB̄CB̄B̄

BCB̄ε
4<

BµB̄

+3 BCB̄B̄

Bε

KS

The square in the middle commutes by definition of µ (see (8)). The rest com-
mutes, clockwise starting from the north, by the equality B̄S = BB̄ (see (6)),
twice definition of τ (see (7)), definition of µ (the south), naturality of τ and
again definition of τ .

This concludes the proof that τ is a distributive law. We now show that it is
the companion of B, i.e., that it is final in the category DL(B). To this end, let
λ : FB ⇒ BF be a distributive law. We need to prove that there exists a unique
natural transformation α̂ : F ⇒ B̄ which is a morphism from λ to τ , i.e., making
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the following diagram commute:

FB
α̂B +3

λ

��

CB̄B

τ

��
BF

Bα̂ +3 BCB̄

(9)

For every natural transformation of the form α : FB̄ ⇒ B̄, there is a unique
α̂ : F ⇒ CB̄ such that ε ◦ α̂B̄ = α, by the universal property of Bε. We shall
prove that α̂ satisfies (9) if and only if α makes the following diagram commute:

FBB̄
λB̄ +3 BFB̄

Bα
��

FB̄S
αS
+3 B̄S BB̄

(10)

By Lemma 5.1, λ induces a unique α making the above diagram commute. Hence,
it then follows that α̂ is the unique morphism to τ .

By the universal property of Bε, (9) commutes if and only if the following
equation holds:

Bε ◦ τB̄ ◦ α̂BB̄ = Bε ◦Bα̂B̄ ◦ λB̄ (11)

Hence, it suffices to prove that (10) is equivalent to (11).

Consider the following diagram:

FBB̄
α̂BB̄ +3

λB̄

��

CB̄BB̄

τB̄

��

FB̄S
α̂B̄S +3

αS �&

CB̄B̄S

εSw�
B̄S

BB̄

BFB̄
Bα̂B̄

+3

Bα

19

BCB̄B̄

Bε

em

The two triangles commute by definition of α̂, the upper trapezoid by the equality
BB̄ = B̄S, the right trapezoid by definition of τ . The left trapezoid is (10). The
equivalence of (10) and (11) follows from a straightforward diagram chase. ut
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F Proof of Proposition 5.1

Proof. By definition of τ in the proof of Theorem 5.1, we have Bεi ◦ τBi = εi+1

for all i. Hence, by Lemma 5.1, εk is the algebra induced by τ on the final
B-coalgebra.

For the second point, τ is a distributive law of the codensity monad (CB̄ , η, µ)
over B. Since CB̄ is the companion of B, η and µ coincide with the natural
transformations in Theorem 3.1. By Theorem 3.2, CB̄0 is the carrier of a final
coalgebra and µ0 is the algebra induced on CB̄0. It follows from the first point
that µ0 is isomorphic to εk. ut

G Proof of Theorem 6.1

Proof. Let α : FB̄ ⇒ B̄. We need to prove that αω is causal; to this end, let
f, g : X → FBω be functions such that Bω,i ◦ f = Bω,i ◦ g for some i. Then the
following diagram commutes:

FBω
αω //

FBω,i ##

Bω
Bω,i

!!
FX

Ff
<<

Fg ##

FBi
αi // Bi

FBω

FBω,i
;;

αω
// Bω

Bω,i

==

by assumption and naturality of α. Hence αω is causal.
Next, we show how to define α from a given αω. Since B is ω-continuous and

any Set endofunctor preserves epimorphims, one can prove by induction that for
any i < ω, the map Bω,i is an epi. We will use that epis in Set split, i.e., every
Bω,i has a right inverse B−1

ω,i with Bω,i ◦B−1
ω,i = id.

Given αω : FBω → Bω, define α : FB̄ ⇒ B̄ on a component i < ω by

FBi
F (B−1

ω,i)// FBω
αω // Bω

Bω,i // Bi

where B−1
ω,i is a right inverse of Bω,i; and, on a component i ≥ ω by

FBi
FBi,ω // FBω

αω // Bω
B−1
i,ω // Bi

where B−1
i,ω is the inverse of Bi,ω (which is an isomorphism).

We need to show that α is a natural transformation, and that the correspon-
dence is bijective. For the bijective correspondence, first note that mapping αω
to α and back trivially yields αω again. Conversely, given α, we need to prove
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that the following diagrams commute for i < ω (on the left) and i ≥ ω (on the
right):

FBi
αi //

F (B−1
ω,i)

��

Bi

FBω αω
// Bω

Bω,i

OO FBi
αi //

FBi,ω

��

Bi

FBω αω
// Bω

B−1
i,ω

OO

The case i < ω follows by naturality of α and since B−1
ω,i is a right inverse of

Bω,i, the case i ≥ ω by naturality of α and since B−1
i,ω is a (left) inverse of Bi,ω.

It remains to show that α, defined from a given αω as above, is natural, using
that αω is causal. To this end, let i ≤ j; to prove is that the following diagram
commutes:

FBi
αi // Bi

FBj αj
//

Bj,i

OO

Bj

Bi,j

OO

where αi, αj are defined from αω as above. We proceed with a case distinction.
If i, j < ω, then the following diagram commutes:

Bj
Bj,i //

B−1
ω,j

��

Bi
B−1
ω,i // Bω

Bω,i

��
Bω

Bω,j //

Bω,i

88Bj
Bj,i // Bi

since B−1
ω,i and B−1

ω,j are right inverses (for the two triangles) and the final se-

quence B̄ is a functor (for the crescent). By causality of αω (and functoriality of
B̄) we obtain commutativity of:

FBi
F (B−1

ω,i)// FBω
αω // Bω

Bω,i // Bi

FBj

FBj,i

OO

F (B−1
ω,j)

// FBω αω
// Bω

Bω,i

>>

Bω,j

// Bj

Bj,i

OO

which is what we needed to prove, by definition of αi,αj .
If i < ω ≤ j, then the following diagram commutes:

Bi
B−1
ω,i // Bω

Bω,i // Bi

Bj
Bj,ω

//

Bj,i

OO

Bω

Bω,i

OO

25



since Bω,i ◦B−1
ω,i = id, and the final sequence B̄ is a functor. Hence, by causality

of α we obtain the commutativity of the large inner part in:

FBi
F (B−1

ω,i)// FBω
αω // Bω

Bω,i // Bi

FBj

FBj,i

OO

FBj,ω

// FBω αω
// Bω

Bω,i

>>

B−1
j,ω

// Bj

Bj,i

OO

The triangle commutes by functoriality of B̄ and that B−1
j,ω is an inverse of Bj,ω.

Finally, if ω ≤ i ≤ j, then we immediately obtain commutativity of:

FBi
FBi,ω // FBω

αω // Bω
B−1
i,ω // Bi

FBj

FBj,i

OO

FBj,ω

//

FBj,ω

;;

FBω αω
// Bω

B−1
i,ω

>>

B−1
j,ω

// Bj

Bj,i

OO

The triangles commute by functoriality of B̄ and the fact that B−1
i,ω and B−1

j,ω are
inverses of Bi,ω and Bj,ω respectively.

This concludes the one-to-one correspondence between natural transforma-
tions α and causal algebras αω. We turn to the second correspondence in the
statement: the equivalence

FB̄
κB̄ //

α
  

GB̄

β~~
B̄

FBω
κBω //

αω ""

GBω

βω||
Bω

for any α : FB̄ ⇒ B̄, β : GB̄ ⇒ B̄ and κ : F ⇒ G. From left to right this is
trivial; suppose that the right triangle commutes. Let i < ω. By the above, we
have αi = Bω,i ◦ αω ◦B−1

ω,i and βi = Bω,i ◦ βω ◦B−1
ω,i, for any right inverse (B−1

ω,i

of Bω,i. Hence, it suffices to prove that the diagram on the left below commutes:

FBi

F (B−1
ω,i)

��

κBi // GBi

G(B−1
ω,i)

��
FBω

κBω //

αω

��

GBω

βω

��
Bω

Bω,i ""

Bω

Bω,i||
Bi

FBi

FBi,ω

��

κBi // GBi

GBi,ω

��
FBω

κBω //

αω

��

GBω

βω

��
Bω

B−1
i,ω ""

Bω

B−1
i,ω||

Bi
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The upper square of the left diagram commutes by naturality of κ, and the lower
by assumption. For i ≥ ω, we have αi = B−1

i,ω ◦αω ◦Bi,ω and βi = B−1
i,ω ◦βω ◦Bi,ω,

hence it suffices to prove commutativity of the diagram on the right above. That
follows, again, from naturality of κ and the assumption. ut

H Proof of Lemma 7.1

We first recall that a category is connected if there is a zigzag of morphisms
between any two objects X and Y : a finite collection of morphisms of the form

X = X0
// X1 X2
oo // X3 X4

oo // . . . Xn = Yoo

that is, a path with both directions of arrows possible [20]. A connected limit is
a limit over a connected category.

Proof. For each k ≥ ω, Bk,ω is an isomorphism, which implies that the category
∆X/B̄ is essentially small for every set X. Hence, the limit

lim
(

(∆X/F )→ C G−→ D
)

(12)

exists for each X, which, by Lemma 4.1, defines the codensity monad CB̄ . Since B
is polynomial, it preserves connected limits [11, Proposition 1.16]. We show that
∆X/B̄ is connected: ∆X/B̄ is inhabited since there is the arrow !X : X → 1; and
for any f : X → Bi, there is the arrow Bi,1 to !X : X → 1, which is a morphism
in ∆X/B̄ by uniqueness. Hence, B preserves the limits in (12). This implies that
B preserves CB̄ , which we spell out in detail.

Denote, for a given setX, the limiting cone of (12) by {sXf : CB̄X → Bi}f∈BXi ,i∈Ord.

The counit of the codensity monad is defined by εi = sBXidBi
(see, e.g., [28,20]).

Since B preserves these limits, for each X, we have that {BsXf : BCB̄X →
BBi}f∈BXi ,i∈Ord is the limit

lim
(

(∆X/F )→ C G−→ D B−→ D
)
.

Hence, by Lemma 4.1, BCB̄ is a right Kan extension of BB̄ along B̄, with counit
defined on i ∈ Ord by BsBXidBi

= Bεi as desired. ut

I Proof of Theorem 7.1

Consider the codensity monad CB̄ , with counit ε; by Lemma 7.1, it satisfies
the hypotheses of Theorem 5.1. By Corollary 6.1, there is a unique natural
transformation α̂ : F ⇒ CB̄ such that εω ◦ α̂Bω = α. By Theorem 5.1, there is a
distributive law τ of the monad (CB̄ , η, µ) over B̄. By Proposition 5.1, εω is the
algebra induced by τ on the final coalgebra.
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Let f : X → BFX. By Corollary 3.1, there exists a unique f† making the
outside of the following diagram commute (for f in the statement of the corollary
we take Bα̂X ◦ f).

X

f

��

f† // Bω

ζ

��
BFX

BFf† //

Bα̂X

��

BFBω
Bα //

Bα̂Bω
��

BBω

BCB̄X
BCB̄f

†
// BCB̄Bω Bεω

// BBω

The lower left square commutes by naturality, and lower right square by defi-
nition of α̂. Thus the outside of the diagram commutes if and only if the inner
rectangle commutes. It follows that f† is the unique map making the rectangle
commute, which is what we needed to prove. ut

J Proof of Theorem 7.2

Proof. First of all, notice that Bω is indeed the carrier of a final coalgebra, since
any polynomial functor is ω-continuous. For the implication from right to left, by
Lemma 5.1, a distributive law λ : GB ⇒ BG defines β : GB̄ ⇒ B̄ such that βω is
the algebra induced by λ. We need to prove that, given a natural transformation
κ : F ⇒ G, the algebra α = κBω ◦ βω is causal. But this follows by Theorem 6.1,
since κB ◦ β is a natural transformation.

For the converse, let α : FBω → Bω be causal. By Corollary 6.1, there is a
natural transformation α̂ : F ⇒ CB̄ such that α = εω ◦ α̂Bω . By Lemma 7.1, B
satisfies the hypotheses of Theorem 5.1, and hence by Proposition 5.1, εω is the
algebra induced by a distributive law (the companion). Hence α is definable by
a distributive law over B. ut

K Proof of Theorem 7.3

We first prove a general property of algebras and the contextual closure.

Lemma K.1. Let X be a set, and consider algebras α, β and a natural trans-
formation κ as below:

FX
κX //

α
!!

GX

β}}
X

Then ctxα ≤ ctxβ.
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Proof. This proof relies on the setting and terminology of [7], which we do not
fully recall here. The natural transformation κ lifts to a natural transformation
Rel(κ) : Rel(F )⇒ Rel(G), see [15, Exercise 4.4.6]. It follows from a general prop-
erty of fibrations (see [7, Lemma 14.5]) that there exists a natural transformation
of the form

∐
κX
◦Rel(F )⇒ Rel(G) : RelX → RelGX . Hence, we obtain a natural

transformation

ctxα =
∐
αX
◦ Rel(F )

=
∐
β◦κX ◦ Rel(F )

=
∐
β ◦
∐
κX
◦ Rel(F )

⇒
∐
β ◦ Rel(G) = ctxβ .

This is a natural transformation in RelX , which just means that ctxα ≤ ctxβ . ut

Proof (of Theorem 7.3). By Lemma 7.1, B satisfies the hypotheses of Theo-
rem 5.1, and hence by Proposition 5.1, εω is the algebra induced by the distribu-
tive law τ of the companion. This means that (Bω, εω, ζ) is a τ -bialgebra, and it
follows from [7, Corollary 6.8] that ctxεω is bζ-compatible. Thus ctxεω ≤ tζ .

Let α : FBω → Bω be causal. By Corollary 6.1, there is a natural transforma-
tion α̂ : F ⇒ CB̄ such that α = εω ◦ α̂Bω . By Lemma K.1 we obtain ctxα ≤ ctxεω ,
hence ctxα ≤ tζ .

L Proof of Lemma 8.1

Proof. The transformation α is determined by the successor case given in the
definition. Naturality is proved in a similar way as in Lemma 5.1, with the
relevant diagram in the successor case replaced by:

FBBj
F 〈id,Bj+1,j〉//

FBBj,i

��

F (B × Id)Bj
λBj //

F (B×Id)Bj,i

��

BF ∗Bj
Bα∗j //

BF∗Bj,i

��

BBj

BBj,i

��
FBBi

F 〈id,Bi+1,i〉
// F (B × Id)Bi

λBi

// BF ∗Bi
Bα∗i

// BBi

The left square commutes since Bi+1,i ◦ BBj,i = Bi+1,i ◦ Bj+1,i+1 = Bj+1,i =
Bj,i ◦ Bi+1,i by functoriality and definition of the final sequence. The middle
square commutes by naturality. The one on the right commutes, since Bj,i is
(by assumption in the inductive proof) an algebra morphism, i.e., Bj,i ◦ αj =
αi ◦ FBj,i, and hence Bj,i ◦ α∗j = α∗i ◦ F ∗Bj,i (it holds in general that the (−)∗

construction preserves algebra homomorphisms).
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SupposeBk+1,k : Bk+1 → Bk is an isomorphism. ThenB−1
k+1,k : Bk → B(Bk+1)

is a final B-coalgebra. Consider the following diagram:

FBk

αk

��

F 〈B−1
k+1,k,id〉//

FB−1
k+1,k ((

F (B × Id)Bk
λBk // BF ∗Bk

Bα∗k

��

FBBk

F 〈id,Bi+1,i〉

OO

αk+1

((
Bk

B−1
k+1,k

// BBk

The big triangle commutes by naturality and the fact that Bk+1,k is an isomor-
phism, the small triangle since Bk+1,k is an isomorphism, and the remaining
inner shape by definition of α. Hence, αk is the algebra induced on the final
coalgebra by λ. ut

M Proof of Theorem 8.1

Proof. By Lemma 8.1, the algebra induced by an abstract GSOS λ is given by
αω for some α : FB̄ ⇒ B̄. By the universal property of the codensity monad
(CB̄ , ε), there exists a (unique) natural transformation α̂ : F ⇒ CB̄ such that
α = ε ◦ α̂B . This means in particular that αk = εk ◦ α̂Bk . By Proposition 5.1, εω
is the algebra induced by a distributive law, so αk is definable by a distributive
law over B. ut
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