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We study the multiphasic formulation of the incompressible Euler equation introduced by Brenier: infinitely many phases evolve according to the compressible Euler equation and are coupled through a global incompressibility constraint. In a convex domain, we are able to prove that the entropy, when averaged over all phases, is a convex function of time, a result that was conjectured by Brenier. The novelty in our approach consists in introducing a time-discretization that allows us to import a flow interchange inequality previously used by Matthes, McCann and Savaré to study first order in time PDE, namely the JKO scheme associated with non-linear parabolic equations.

INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Since the idea of Arnold [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits[END_REF] to consider the motion of an incompressible and inviscid fluid, described by the Euler equation, as a variational problem, namely a geodesic on the (infinite dimensional) group of orientation and measure-preserving diffeomorphisms (this is formally speaking an instance of the least action principle), this variational point of view has turned out to be fruitful. In particular, Brenier introduced relaxations leading to generalized geodesics on the group of measure-preserving maps: translated at a microscopic level, fluid particles are allowed to split and diffuse on the whole space (for a general survey, see for instance [START_REF] Daneri | Variational models for the incompressible Euler equations[END_REF]). We will concentrate in this paper on one of Brenier's model with a flavor of Eulerian point of view introduced in [START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations[END_REF] (see also [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF]Section 4], [START_REF] Daneri | Variational models for the incompressible Euler equations[END_REF]Section 1.5.3] and [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF]) which goes as follows.

There are (possibly infinitely) many phases indexed by a parameter α which belongs to some probability space pA, A, θq. At a fixed time t, each phase is described by its density ρ α t and its velocity field v α t , which are functions of the position x. We assume that all the densities are confined in a fixed bounded domain Ω, and up to a normalization constant ρ α t can be seen as a probability measure on Ω. The evolution in time of the phase α is done according to the continuity equation (1.1) B t ρ α t `∇ ¨pρ α t v α t q " 0, where ∇¨stands for the divergence operator. We assume no-flux boundary conditions on BΩ, thus the total mass of ρ α is preserved over time. The different phases are coupled through the incompressibility constraint: at a fixed t the density of all the different phases must sum up to the Lebesgue measure L (restricted to Ω). In other words, for any t we impose that (1.2)

ż A ρ α t dθpαq " L.
Looking at the problem from a variational point of view, we assume that the values of ρ α t are fixed for t " 0 and t " 1 and that the trajectories observed are those solving the following variational problem: (1.3) min

"ż A ż 1 0 ż Ω 1 2
|v α t pxq| 2 ρ α t pxq dx dt dθpαq : pρ α , v α q satisfies (1.1) and (1.2)

* .

From a physical point of view, the functional which is minimized corresponds to the average (over all phases) of the integral over time of the kinetic energy, namely the global action of all the phases. Without the incompressibility constraint, each phase would evolve independently and follow a geodesic in the Wasserstein space joining ρ α 0 to ρ α 1 . In Brenier's original formulation, the space pA, A, θq is the domain Ω endowed with the Lebesgue measure L. If h : Ω Ñ Ω is a measure-preserving map, "classical" boundary conditions are those where ρ α 0 is the Dirac mass located at α and ρ α 1 is the Dirac mass located at hpαq. In a classical solution, each phase α will be of the form ρ α t " δ y α ptq , where y α : r0 , 1s Ñ Ω is a curve joining α to hpαq. But, even if one starts with "classical" boundary conditions, there are cases where the phase α may split and ρ α may not be a Dirac mass for any t P p0 , 1q, leading to a "non-classical" solution (for examples of such cases, the reader can consult [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF]Section 6] or the detailed study [START_REF] Bernot | Generalized solutions for the Euler equations in one and two dimensions[END_REF]).

With formal considerations (see for instance [START_REF] Brenier | Extended Monge-Kantorovich theory[END_REF]Section 4]), one can be convinced that for each phase α, the optimal velocity field is the gradient of a scalar field ϕ α (i.e. v α t " ∇ϕ α t ), and that each ϕ α evolves according to a Hamilton-Jacobi equation

B t ϕ α t `|∇ϕ α t | 2 2 " ´pt ,
with a pressure field p that does not depend on α and that arises from the incompressibility constraint. If we look at the Boltzmann entropy of the phase α, a lengthy formal computation leads to where n stands for the outward normal of Ω. At this point, it becomes natural to assume that Ω is convex. Indeed, if this is the case, the acceleration of a fluid particle located on the boundary will be directed toward the interior of Ω because the particle is constrained to stay in Ω. As the acceleration of the fluid particles is -at least heuristically -equal to ´∇p, it is reasonable to expect that ∇p ¨n ě 0 on BΩ. Therefore, at a formal level, assuming the convexity of Ω leads to H 2 ě 0, i.e. to the property that the averaged entropy H is a convex function of time. This was remarked and conjectured by Brenier in [10, section 4], but has received no proof to our knowledge until now. Indeed, the main difficulty lies in the fact that a priori the solutions are not regular enough to make the above computation rigorous. The goal of this paper is to give a rigorous statement and to prove this conjecture. The two main statements can informally be stated as follows:

d
Theorem. Let us assume that Ω is convex. If pρ α , v α q αPA is the unique solution of the variational problem (1.3) whose total entropy ş 1 0 Hptq dt is finite and minimal compared to all other solutions, then H is a convex function.

Theorem. Let us assume that Ω is convex and that the boundary terms are such that Hp0q and Hp1q are finite. Then there exists a solution of the variational problem (1.3) such that ş 1 0 Hptq dt is finite and minimal compared to all other solutions. More precisely, see Theorem 2.15 and Theorem 2.14 for the exact assumptions and statements, and Section 5 for the translation in Brenier's parametric setting (see below).

Let us remark that the convexity of the entropy is invisible for classical solutions. Indeed, if ρ α t is a Dirac mass for any α, then Hptq " `8. Thus the convexity of the entropy is non trivial only for "strongly" non-classical solutions.

The strategy to prove the convexity of the entropy goes as follows. For a fixed α, we see t Þ Ñ ρ α t as a curve in the space of probability measures on Ω. This space (denoted PpΩq) can be endowed with the 2-Wasserstein distance W 2 p¨, ¨q coming from optimal transport: the squared distance W 2 2 pµ, νq between two measures µ and ν is just the optimal transport cost among all transport between µ and ν. The interest of this distance is that the action ş 1 0 ş Ω 1 2 |v α t pxq| 2 ρ α t pxq dx dt of the curve ρ α (or at least, the minimal value of the action among all velocity field v α satisfying the continuity equation (1.1)) can be seen as the integral w.r.t. time of the square of the metric derivative of the curve t Þ Ñ ρ α t in the metric space pPpΩq, W 2 q. In particular, there appears a natural time-discretization of the action: if N is large enough and τ :" 1{N we expect that inf v α satisfying (1.1)

ż 1 0 ż Ω 1 2 |v α t pxq| 2 ρ α t pxq dx dt " ż 1 0 1 2 | 9 ρ α t | 2 dt » N ÿ k"1 τ 2 ˜W2 pρ α pk´1qτ , ρ α kτ q τ ¸2 .
At a discrete level, ρ α , which is a curve valued in PpΩq, is approximated by an element of PpΩq N `1. The incompressibility constraint will be relaxed in order to allow comparison of the optimizer with any other competitor. If C q : PpΩq Ñ R penalizes (more and more as q Ñ `8) the probability measures that are different from the Lebesgue measure, a discretized version of the Euler variational formulation (1.3) might read

min $ & % ż A » - N ÿ k"1 τ 2 ˜W2 pρ α pk´1qτ , ρ α kτ q τ ¸2fi fl dθpαq `N ÿ k"0 C q ˆżA ρ α kτ dθpαq ˙: ρ α 0 , ρ α 1 fixed for θ-a.e. α
, .

-

.
Even though it would be possible, we will not write down the optimality conditions of this discretized problem as they contain much more information than needed for our goal. Instead, if we take the minimizer of the discretized problem, we will let the k-th component follow the flow of the heat equation (with no-flux boundary conditions) and use the result as a competitor. The key point is that the heat equation is strongly related to the Wasserstein distance: the heat flow is the gradient flow of the functional entropy ρ Þ Ñ ş Ω ρ ln ρ in the metric space pPpΩq, W 2 q. In particular, and this is called the Evolution Variational Inequality, one can estimate the derivative of the Wasserstein distance along the heat flow Φ s :

d ds W 2 2 pΦ s µ, νq 2 
ˇˇˇs "0 ď ż Ω ν ln ν ´żΩ µ ln µ.
This kind of inequality was previously used by Matthes, Mccann and Savaré in [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF] under the name of flow interchange to tackle first order (in time) PDEs (basically discretizations via the JKO scheme of gradient flows). As far as we know, this kind of technique has never been used for second order PDEs like the Euler equation 1 . With this evolution variational inequality, one can show in a very simple way that the averaged entropy ş A ş Ω ρ α kτ ln ρ α kτ dθpαq is a (discrete) convex function of k. Then, one can expect that the solutions of the discretized problem will converge to those of the original one, and that the convexity of the entropy will be preserved at the limit.

It happens that all the quantities involved do not really depend on the particular dependence of the ρ α in α. Indeed, if one denotes by Γ the space of continuous curves valued in the probability measures on Ω endowed with the Wasserstein distance (in short Γ " Cpr0 , 1s, PpΩqq), everything only depends on the image measure of θ through the map α Þ Ñ ρ α . The natural object we are dealing with is therefore a probability measure on Γ, something that one can call (by analogy with [START_REF] Bernot | Traffic plans[END_REF]) a W 2 -traffic plan. In a way, the application α Þ Ñ ρ α is a parametrization of a W 2 -traffic plan: that's why we will call Brenier's formulation the parametric one, while we will work in the non parametric setting, dealing directly with probability measures on Γ. In our setting, most topological properties are easier to handle, and notations are according to us simplified. Even though any probability measure on Γ cannot be a priori parametrized, we will show that it is the case for the solutions of Euler's variational problem. Therefore, our results can be translated in Brenier's parametric setting.

This paper is organized as follows. In Section 2, we introduce the notations that we will use, we briefly recall some properties of the Wasserstein distance and of the heat equation seen as the gradient flow of the entropy. We state explicitly the variational problem we are interested in and prove the existence of a solution (a result which is known since [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF]). We give a rigorous statement of the theorems that we prove in the next two sections. Section 3 introduces the discrete problem and proves the convexity of the averaged entropy at the discrete level. This section contains the key ingredient around which all the proof revolves. In Section 4, we show that the solutions of the discrete problems converge to the solution of the original one, and that the convexity of the averaged entropy is preserved when the limit is taken. Though lengthy and technical, this section does not contain profound ideas. Finally, Section 5 is devoted to the proof of the equivalence between the parametric and non parametric formulations.

NOTATIONS, PRELIMINARY RESULTS AND EXISTENCE OF A SOLUTION TO THE CONTINUOUS PROBLEM

If X is a polish space (complete, metric, separable), the space of Borel probability measures on X will be denoted by PpXq, and CpXq is the space of continuous and bounded functions on X valued in R. The space PpXq will be endowed with the topology of the weak convergence of measures (i.e. the topology induced by the duality with CpXq).

In all the sequel, we will denote by Ω a closed bounded convex subset of R d with non empty interior. In particular, Ω is compact. In order to avoid normalization constants, we assume that the Lebesgue measure of Ω is 1. The Lebesgue measure on Ω, which is therefore a probability measure, will be denoted by L. For general results about optimal transport, the reader might refer to [START_REF] Villani | Topics in optimal transportation[END_REF] or [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]. We recall that W 2 defines a metric on PpΩq that metrizes the weak convergence of measures. Therefore, thanks to Prokhorov's Theorem, the space pPpΩq, W 2 q is a compact metric space. We also recall that pPpΩq, W 2 q is a geodesic space and if γ P PpΩ ˆΩq is optimal in formula (2.1), then a constant-speed geodesic ρ : r0 , 1s Ñ PpΩq joining µ to ν is given by ρptq :" π t #γ with π t : px, yq P Ω ˆΩ Ñ p1 ´tqx `ty P Ω (remark that the convexity of Ω is important here). Reciprocally, every constant-speed geodesic is of this form (see [17, prop. 5.32]). We also recall that W 2 2 : PpΩq ˆPpΩq Ñ R is a convex function. We will consider the entropy (w.r.t. the Lebesgue measure) functional H on PpΩq. It is the functional H : PpΩq Ñ r0 , `8s defined by, for any µ P PpΩq, (2.2)

Hpµq :"

$ & % ż Ω µpxq lnpµpxqq dx if µ is absolutely continuous w.r.t. L, ` 8 else. 
The fact that H ě 0 on PpΩq is a consequence of Jensen's inequality and of the normalization LpΩq " 1.

We will also deal with an other functional on PpΩq that we will use to penalize the concentrated measures, namely the q-th power of the density. More precisely, if q ą 1, we denote by C q : PpΩq Ñ r0 , `8s the congestion functional defined by, for any µ P PpΩq,

(2.3) C q pµq :" $ & % ż Ω µpxq q dx ´1 if µ is absolutely continuous w.r.t. L, ` 8 else. 
Again, thanks to Jensen's inequality, we see that C q pµq ě 0 with equality if and only if µ " L. We recall that a functional is geodesically convex on pPpΩq, W 2 q if for any two given probability measures, there exists a constant-speed geodesic connecting these two measures along which the functional is convex. A functional will be called convex if it is so w.r.t. the usual affine structure on PpΩq. Well known facts about H and C q are summarized in the following proposition (see [17, chap. 7]).

Proposition 2.1. For any q ą 1, the functionals H and C q are l.s.c. (lower semi-continuous), strictly convex and geodesically convex on pPpΩq, W 2 q.

Let us underline that the convexity of Ω is needed to get the geodesic convexity of H and C q .

2.2. Absolutely continuous curves in the Wasserstein space. If S is a closed subset of r0 , 1s, Γ S will denote the set of continuous functions on S valued in PpΩq (in practice, we will only consider subsets S that have a finite number of points or that are subintervals of r0 , 1s). In the case where the index S is omitted, it is assumed that S " r0 , 1s. This space will be equipped with the distance d of the uniform convergence, i.e.

dpρ 1 , ρ 2 q :" max tPS W 2 pρ 1 ptq, ρ 2 ptqq.

For any closed subset S 1 of S, the application e S 1 : Γ S Ñ Γ S 1 is the restriction operator. In the case where S 1 " ttu is a singleton, we will use the notation e t :" e ttu and often use the compact writing ρ t for e t pρq " ρptq. The quantity | 9 ρ t | is called the metric derivative of the curve ρ and heuristically corresponds to the norm of the derivative of ρ at time t in the metric space pPpΩq, W 2 q. The link between this metric derivative and the continuity equation is the following (and difficult) theorem, whose proof can be found in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Theorem 8.3.1] (see also [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Theorem 5.14]). Theorem 2.4. Let ρ P Γ be a 2-absolutely continuous curve. Then

(2.5) 1 2 ż 1 0 | 9 ρ t | 2 dt " min "ż 1 0 ˆżΩ 1 2 |v t | 2 dρ t ˙dt * ,
where the minimum is taken over all families pv t q tPr0,1s such that v t P L 2 pΩ, R d , ρ t q for a.e. t and such that the continuity equation B t ρ t `∇ ¨pρ t v t q " 0 with no-flux boundary conditions is satisfied in a weak sense. This result shows that if we are only interested in the minimal value taken by the action of the curve (the r.h.s. (right hand side) of (2.5)), we only need to consider the metric derivative of the curve ρ and we can forget the velocity field v. Therefore we define the action A : Γ Ñ r0 , `8s by, for any ρ P Γ,

(2.6) Apρq :" $ & % 1 2 ż 1 0 | 9 ρ t | 2 dt if ρ is 2 ´absolutely continuous, ` 8 else. 
Some standard but useful properties of this functional are the following.

Proposition 2.5. The functional A is convex, l.s.c. and its sublevel sets are compact in Γ.

Proof. To prove that A is convex and l.s.c., we rely on the representation formula (2.4) which shows that A is the supremum of convex continuous functions. Moreover if ρ P Γ is a curve with finite action and s ă t, then, again with (2.4), one can see that W 2 pρ s , ρ t q ď a 2Apρq ? t ´s. This shows that the sublevel sets of A are uniformly equicontinuous, therefore they are relatively compact thanks to Ascoli-Arzela's theorem. In the equation above, n stands for the outward normal vector to the boundary BΩ. As Ω is convex, it has a Lipschitz boundary, a regularity which is known to be sufficient for this Cauchy problem to be well posed and to admit a unique solution (see for instance [4, Section 7] and [START_REF] Pierre | Uniqueness of the solutions of u t ´∆φpuq " 0 with initial datum a measure[END_REF]). Moreover (see [START_REF] Arendt | Semigroups and evolution equations: functional calculus, regularity and kernel estimates[END_REF]Section 7]), a regularizing effect of the heat flow is encoded in the following estimate (with C a constant that depends only on Ω):

@µ P PpΩq, @s ą 0, }Φ s µ} L 8 ď C ´s´d{2 `1¯.
In particular, for any s ą 0 there exists a constant C s such that for any µ P PpΩq, we have HpΦ s µq ď C s .

The key point in what follows is that the heat flow can be seen as the gradient flow of the entropy functional H in the metric space pPpΩq, W 2 q. That is (and this was remarked first by [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]), in a very informal way, Φ flows in the direction where the entropy H decreases the most. The standard reference about gradient flows in metric spaces is [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], one can also look at the survey [START_REF] Santambrogio | Euclidean, Metric, and Wasserstein ( Gradient Flows: an overview[END_REF]. In any case, this seminal point of view explains the three following identities involving the heat flow, the Wasserstein distance, and the entropy.

Proposition 2.6. The Wasserstein distance decreases along the heat flow: if µ and ν P PpΩq, and s ě 0, (2.7) W 2 pΦ s µ, Φ s νq ď W 2 pµ, νq.

Moreover, let µ P PpΩq with Hpµq ă `8. Then the curve s Þ Ñ Φ s µ is 2-absolutely continuous and the Energy Identity holds: for any s ě 0, (EI)

ż s 0 | 9 Φ r µ| 2 dr " Hpµq ´HpΦ s pµqq.
In addition, for any µ, ν P PpΩq with Hpµq ă `8 and any s ě 0, the Evolution Variational Inequality holds:

(EVI) lim sup hÑ0, hą0 W 2 2 pΦ s`h µ, νq ´W 2 2 pΦ s µ, νq 2h 
ď Hpνq ´HpΦ s µq.

One can look at [2, Theorem 11.2.1] to see the generalization of these identities to more general functionals than H along their gradient flow, provided that assumptions of λ-convexity along generalized geodesics are satisfied by the functional (and this is the case for H with λ " 0 because of our assumption of convexity of Ω). All this properties are also summarized in [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF]Theorem 2.4].

Statement of the continuous problem.

As explained in the introduction, the object on which we will work, a "W 2 -traffic plan", is a probability measure on the set of curves valued in PpΩq, i.e. an element of PpΓq. Recall that the space PpΓq is equipped with the topology of weak convergence of measures. If Q P PpΓq, we need to translate the constraints, namely the fact that the values of the curves at t " 0 and t " 1 are fixed, and the incompressibility at each time t. Incompressibility means that at each time t, the measure e t #Q (which is an element of PpPpΩqq) when averaged (its mean value is an element of PpΩq), is equal to L. We therefore need to define what the mean value of e t #Q is. Definition 2.7. Let S be a closed subset of r0 , 1s and t P S. If Q P PpΓ S q, we denote by m t pQq the probability measure on Ω defined by (2.8) @a P CpΩq, ż Ω apxq drm t pQqspxq :" ż ΓS ˆżΩ apxq dρ t pxq ˙dQpρq.

We can easily see that, for a fixed t, Q Þ Ñ m t pQq is continuous. It is an easy application of Fubini's theorem to show that, if Q-a.e. ρ t is absolutely continuous w.r.t. to L, then m t pQq is also absolutely continuous w.r.t. L, and its density is the mean density of the ρ t w.r.t. Q. Incompressibility is then expressed by the fact that m t pQq " L for any t.

To encode the boundary conditions, we just consider a coupling γ P PpΓ t0,1u q " PpPpΩq ˆPpΩqq between the initial and final values, compatible with the incompressibilty constraint (i.e. m 0 pγq " m 1 pγq " L), and we impose that pe 0 , e 1 q#Q " γ. Definition 2.8. Let γ P PpΓ t0,1u q be a coupling compatible with the incompressibility constraint (i.e. m 0 pγq " m 1 pγq " L) and S be a closed subset of r0 , 1s containing 0 and 1. The space of incompressible W 2 -traffic plans is P in pΓ S q :" tQ P PpΓ S q : @t P S, m t pQq " Lu .

The space of W 2 -traffic plans satisfying the boundary conditions is P bc pΓ S q :" tQ P PpΓ S q : pe 0 , e 1 q#Q " γu .

The space of admissible W 2 -traffic plans is P adm pΓ S q :" P in pΓ S q X P bc pΓ S q.

The following proposition derives directly from the definition.

Proposition 2.9. If S is a closed subset of r0 , 1s containing 0 and 1, the spaces P in pΓ S q, P bc pΓ S q and P adm pΓ S q are closed in PpΓ S q.

We have now enough vocabulary to state the minimization problem we are interested in, namely to minimize the averaged action over the set of admissible W 2 -traffic plans. We denote by A : PpΓq Ñ r0 , `8s the functional defined by, for any Q P PpΓq, ApQq :"

ż Γ Apρq dQpρq,
where we recall that Apρq is the action of the curve ρ, see (2.6).

Definition 2.10. The continuous problem is defined as (CP) mintApQq : Q P P adm pΓqu.

Any Q P P adm pΓq with ApQq ă `8 realizing the minimum will be referred as a solution of the continuous problem.

In order to prove the existence of a solution to (CP), we rely on the classical following lemma which is valid if Γ S is replaced by any metric space (see for instance [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Proposition 7.1] and [2, Remark 5.15]). Lemma 2.11. Let S be a closed subset of r0 , 1s and F : Γ S Ñ r0 , `8s a l.s.c. positive function. Then the function F : PpΓ S q Ñ r0 , `8s defined by F pQq " ż ΓS F pρq dQpρq is convex and l.s.c. Moreover, if the sublevel sets of F are compact, so are those of F .

The existence of a solution to (CP) is then a straightforward application of the direct method of calculus of variations.

Theorem 2.12. There exists at least one solution to (CP).

Proof. The functional A is l.s.c. and has compact sublevel sets thanks to Proposition 2.5 and Lemma 2.11. Moreover the set P adm pΓq is closed. To use the direct method of calculus of variations, we only need to prove that there exists Q P P adm pΓq such that ApQq ă `8.

Notice that as Ω is convex, it is the image of the unit cube of R d by a Lipschitz and measure-preserving map (see [START_REF] Fonseca | Equilibrium configurations of defective crystals[END_REF]Theorem 5.4] 2 ). It is known (see [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF]Theorem 3.3] and Proposition 5.1 to translate the result in our setting) that the fact that Ω is the image of the unit cube by a Lipschitz and measure-preserving map ensures the existence of an admissible W 2 -traffic plan with finite action.

Let us mention here some already known results about the continuous problem (the existence of a solution being one of them). In some cases there is no uniqueness in (CP), we refer the reader to [START_REF] Bernot | Generalized solutions for the Euler equations in one and two dimensions[END_REF] for a comprehensive study of one of such cases. In [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF], it is shown how, from a pair of measure-preserving plans (i.e. a pair of elements of tµ P PpΩ ˆΩq : π 0 #µ " L and π 1 #µ " Lu), one can build an incompressible coupling γ P P in pΓ t0,1u q which is, in some sense, a concatenation of them. Indeed, if µ, ν P PpΩ ˆΩq are two measurepreserving plans, one can consider pµ x q xPΩ and pν x q xPΩ the disintegration of µ and ν w.r.t. π 1 , and then define γ P P in pΓ t0,1u q by its action on continuous functions a P CpΓ t0,1u q " CpPpΩq 2 q:

ż Γ t0,1u apρ 0 , ρ 1 q dγpρ 0 , ρ 1 q :" ż Ω apµ x , ν x q dLpxq.
(To understand this construction and check that it is incompressible, one can look at [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF] and Section 5 for the translation in the non parametric case, as [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF] corresponds to the parametric case with pA, θq " pΩ, Lq). Using this construction, then [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF]Proposition 3.4] states that the minimal cost (or more precisely the square root of the minimal value of (CP)) defines a distance on the space of measure-preserving plans.

In this article we are interested in the temporal behavior of the entropy when averaged over all phases. Definition 2.13. Let S be a closed subset of r0 , 1s. For any Q P PpΓ S q, we define the averaged entropy H Q : S Ñ r0 , `8s by, for any t P S,

H Q ptq :" ż ΓS Hpρ t q dQpρq.
If Q P PpΓq, the quantity ż 1 0 H Q ptq dt will be called the total entropy of Q.

We recall that H is the entropy of a probability measure w.r.t. L, see (2.2). By lower semi-continuity of H and Lemma 2.11, we can see that the function (of the variable t) H Q is l.s.c. In the sequel, we will concentrate on the cases where the averaged entropy belongs to L 1 pr0 , 1sq, i.e. where the total entropy is finite. By doing so, we exclude classical solutions: indeed, for a classical solution Q P P adm pΓq, for any t the measure e t #Q is concentrated on Dirac masses, for which the entropy is infinite. We denote by P H adm pΓq the set of admissible W 2 -traffic plans for which the total entropy is finite:

P H adm pΓq :" P adm pΓq X " Q P PpΓq : ż 1 0 H Q ptq dt ă `8*
The main (and restrictive) assumption that we will consider is that there exists a solution of the continuous problem (CP) in P H adm pΓq: Assumption 1. There exists Q P P H adm pΓq such that ApQq " mintApQ 1 q : Q 1 P P adm pΓqu. We will also work with a second assumption which will turn out to be more restrictive than Assumption 1, but which has the advantage of involving only the boundary terms, namely the fact that the initial and final values have finite averaged entropy. Assumption 2. The coupling γ is such that H γ p0q and H γ p1q are finite. 2 Strictly speaking, in [START_REF] Fonseca | Equilibrium configurations of defective crystals[END_REF], it is required that Ω has a piecewise C 1 boundary, but this assumption is only used to prove that the Minkowski functional of Ω is Lipschitz. If Ω is convex, then its Minkowski functional is convex, hence Lipschitz. Thus, one can drop the assumption of a piecewise C 1 boundary if Ω is convex.

In other words, we impose that ż γ ˆżΩ ρ 0 ln ρ 0 ˙dγpρq ă `8 and

ż γ ˆżΩ ρ 1 ln ρ 1 ˙dγpρq ă `8.
In particular, Assumption 2 implies that e 0 #γ and e 1 #γ are concentrated on measures that are absolutely continuous w.r.t. L: it excludes any classical boundary data.

The two main results of this paper can be stated as follows. Recall that Ω is assumed to be convex.

Theorem 2.14. Suppose that Assumption 2 holds. Then there exists a solution Q P P adm pΓq of the continuous problem (CP) such that H Q ptq ď maxpH γ p0q, H γ p1qq for any t P r0 , 1s.

In other words, if the initial and final averaged entropy are finite, then there exists a solution of the continuous problem with a uniformly bounded averaged entropy. In particular, Assumption 2 implies Assumption 1.

Theorem 2.15. Suppose that Assumption 1 holds. Then, among all the solutions of the continuous problem (CP), the unique Q P P H adm pΓq which minimizes the total entropy

ş 1 0 H Q ptq dt is such that H Q is convex.
In other words, we are able to prove the convexity of the averaged entropy for the solution which is "the most mixed", i.e. the one for which the total entropy is minimal. This statement contains the fact that the criterion of minimization of the total entropy selects a unique solution among the -potentially infinitely many -solutions of (CP). Let us mention that our proof could be easily adapted to show that the convexity also holds for the solution Q which minimizes ş 1 0 H Q ptqaptq dt, where a : r0 , 1s Ñ p0 , `8q is any continuous and strictly positive function.

The next two sections are devoted to the proof of these two theorems. As explained in the introduction, we will introduce a discrete (in time) problem (DP) which approximates the continuous one. Without any assumption, we will be able to prove the convexity of the averaged entropy at the discrete level (Theorem 3.2). Then we will show that, under Assumption 1 or Assumption 2, the solutions of the discrete problems converge to a solution of the continuous one (Proposition 4.6). Under Assumption 2, this solution will happen to have a uniformly bounded entropy (Corollary 4.8). Then we will show that, under Assumption 1, this solution will be the one with minimal total entropy (Corollary 4.9) and that its averaged entropy is a convex function of time (Corollary 4.13).

Finally, the uniqueness of such a Q P P H adm pΓq with minimal total entropy has nothing to do with the discrete problem, it is a simple consequence of the strict convexity of H. We will therefore prove it here to end this section. Indeed, it is a consequence of the following proposition. Proposition 2.16. Let Q 1 and Q 2 P P H adm pΓq be two distinct admissible W 2 -traffic plans. Then there exists

Q P P H adm pQq with ApQq ď 1 2 `ApQ 1 q `ApQ 2 q ȃnd ż 1 0 H Q ptq dt ă 1 2 ˆż 1 0 H Q 1 ptq dt `ż 1 0 H Q 2 ptq dt ˙. Proof. As Q Þ Ñ H Q is linear, it is not sufficient to consider the mean of Q 1 and Q 2 .
Instead, we will need to take means in Γ. In order to do so, we disintegrate Q 1 and Q 2 w.r.t. e t0,1u " pe 0 , e 1 q. We obtain two families Q 1 ρ0,ρ1 and Q 2 ρ0,ρ1 of W 2 -traffic plans indexed by pρ 0 , ρ 1 q P Γ t0,1u " PpΩq 2 . We define Q by its disintegration w.r.t. e t0,1u : we set Q :" Q ρ0,ρ1 b γ where Q ρ0,ρ1 is taken to be the image measure of Q 1 ρ0,ρ1 b Q 2 ρ0,ρ1 by the map pρ 1 , ρ 2 q Þ Ñ pρ 1 `ρ2 q{2 (where the `refers to the usual affine structure on Γ). In other words, for any a P CpΓq,

ż Γ apρq dQpρq :" ż Γ t0,1u ˆżΓ a " ρ 1 `ρ2 2 
 dQ 1 ρ0,ρ1 pρ 1 q dQ 2 ρ0,ρ1 pρ 2 q ˙dγpρ 0 , ρ 1 q.

As pe 0 , e 1 q#Q 1 ρ0,ρ1 and pe 0 , e 1 q#Q 2 ρ0,ρ1 are Dirac masses concentrated on pρ 0 , ρ 1 q, we can easily see that Q P P bc pΓq. The incompressibility constraint is straightforward to obtain: for any a P CpΩq and any t P r0 , 1s,

ż Ω apxq drm t pQqspxq " ż Γ t0,1u ˆżΓ "ż Ω apxq dρ 1 t pxq `dρ 2 t pxq 2  dQ 1 ρ0,ρ1 pρ 1 q dQ 2 ρ0,ρ1 pρ 2 q ˙dγpρ 0 , ρ 1 q " ż Γ t0,1u ˆżΓ "ż Ω apxq dρ 1 t pxq 2  dQ 1 ρ0,ρ1 pρ 1 q `żΓ "ż Ω apxq dρ 2 t pxq 2  dQ 2 ρ0,ρ1 pρ 2 q ˙dγpρ 0 , ρ 1 q " 1 2 ż Ω apxq dx `1 2 ż Ω apxq dx " ż Ω apxq dx.
Thus, we have Q P P adm pΓq. To handle the action, let us just remark that for any ρ 1 and ρ 2 in Γ, by convexity of A,

A ˆρ1 `ρ2 2 
˙ď 1 2 `Apρ 1 q `Apρ 2 q ˘.
Integrating this inequality w.r. 

ż Γ ˆż 1 0 H " ρ 1 t `ρ2 t 2  dt ˙dQ 1 ρ0,ρ1 pρ 1 q dQ 2 ρ0,ρ1 pρ 2 q ď 1 2 ˆżΓ ˆż 1 0 Hrρ 1 t s dt ˙dQ 1 ρ0,ρ1 pρ 1 q `żΓ ˆż 1 0 Hrρ 2 t s dt ˙dQ 2 ρ0,ρ1 pρ 2 q ˙,
with a strict inequality if Q 1 ρ0,ρ1 ‰ Q 2 ρ0,ρ1 and if the r.h.s. is finite. Then, we integrate w.r.t. γ and notice that, as

Q 1 ‰ Q 2 , then Q 1 ρ0,ρ1 ‰ Q 2 ρ0,ρ1
for a γ-non negligible sets of pρ 0 , ρ 1 q, and as Q 1 and Q 2 P P H adm pΓq, the r.h.s. of the equation above is finite for γ-a.e. pρ 0 , ρ 1 q. Using Fubini's theorem, we are led to the announced conclusion.

ANALYSIS OF THE DISCRETE PROBLEM

As we explained before, to tackle the continuous problem (CP), we will introduce a discretized (in time) variational problem that approximates the continuous one. In this section, we give a brief heuristic justification of it, prove its well-posedness, and show that the discrete averaged entropy is convex. In the proof of the latter property, we use the flow interchange technique that was previously introduced in [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF].

The discrete problem is obtained by performing three different approximations:

• We consider a number of discrete times N `1 ě 2. We will use τ :" 1{N as a notation for the time step. The set T N Ă r0 , 1s will stand for the set of all discrete times, namely T N :" tkτ : k " 0, 1, . . . , N u . In particular, Γ T N " PpΩq N `1. We will work with W 2 -traffic plans on Γ T N , i.e. elements of PpΓ T N q. According to the representation of the action (2.4), we expect that for a curve ρ P Γ,

Apρq » N ÿ k"1 W 2 2 pρ pk´1qτ , ρ kτ q 2τ .
• The incompressibility constraint will be relaxed. For any k P t1, 2, . . . , N ´1u, we penalize the densities m kτ pQq which are away from the Lebesgue measure by adding a term C q pm kτ pQqq, where C q is defined in (2.3). As explained in Section 2, this term is positive and vanishes if and only if m kτ pQq " L, moreover it goes to `8 as q Ñ `8 if m kτ pQq ‰ L.

• We will also add an entropic penalization, i.e. a discretized version of

λ ż 1 0 H Q ptq dt,
with λ a small parameter. This term explains why we select, at the limit λ Ñ 0, the minimizers whose total entropy is minimal. It is crucial because it enables us to show that the averaged entropy of the discrete problem converges pointwisely to the averaged entropy of the continuous problem. This pointwise convergence is necessary to ensure that the averaged entropy of the continuous problem is convex. In particular, the limit λ Ñ 0 must be taken after N Ñ `8 and q Ñ `8. Let us state formally our discrete minimization problem. We fix N ě 1 (τ :" 1{N ), q ą 1 and λ ą 0 and define T N " tkτ : k " 0, 1, . . . , N u. We denote by A N,q,λ : PpΓ T N q Ñ r0 , `8s the functional defined by, for any Q P PpΓ T N q, A N,q,λ pQq :"

N ÿ k"1 ż Γ T N W 2 2 pρ pk´1qτ , ρ kτ q 2τ dQpρq `N´1 ÿ k"1 C q pm kτ pQqq `λ N ´1 ÿ k"1 τ H Q pkτ q .
The Discrete Problem consists in minimizing this functional under the only constraint that the initial and final values are coupled through γ, the set of such W 2 -traffic plans being P bc pΓ T N q (cf. Definition 2.8):

(DP) min A N,q,λ pQq : Q P P bc pΓ T N q ( . A solution of the discrete problem is a Q P P bc pΓ T N q with A N,q,λ pQq ă `8 which minimizes A N,q,λ . Proposition 3.1. The discrete problem (DP) admits a solution.

Proof. We can see that A N,q,λ is a positive l.s.c. functional. Lower semi-continuity of the discretized action and of the entropic penalization are not difficult to see thanks to Lemma 2.11. Moreover, Q Þ Ñ C q pm t pQqq is the composition of the linear and continuous map Q Þ Ñ m t pQq and of the l.s.c. map C q , hence is l.s.c.

As the space PpΓ T N q " PpPpΩq N `1q is compact, P bc pΓ T N q is also a compact space, thus it is enough to show that there exists one Q P P bc pΓ T N q such that A N,q,λ pQq ă `8. We take Q to be equal to γ on the endpoints, and such that e kτ #Q is a Dirac mass concentrated on the Lebesgue measure L for any k P t1, 2, . . . , N ´1u. As HpLq " 0 and as the incompressibility constraint m kτ pQq " L is satisfied for every k P t0, 1, . . . , N u, we can see that for this Q we have

A N,q,λ pQq " ż Γ t0,1u W 2 2 pρ 0 , Lq `W 2 2 pL, ρ 1 q 2τ dγpρq.
As the Wasserstein distance is uniformly bounded by the diameter of Ω, the r.h.s. of the above equation is finite. The conclusion derives from a straightforward application of the direct method of calculus of variations.

One could show that the discrete problem (DP) admits a unique solution (it is basically the same proof as Proposition 2.16), but we will not need it. The key result of this section is the following: Theorem 3.2. Let Q P P bc pΓ T N q be a solution of the discrete problem (DP). Then the function k P t0, 1, . . . , N u Þ Ñ H Q pkτ q is convex, i.e. for every k P t1, 2, . . . , N ´1u,

(3.1) H Q pkτ q ď 1 2 H Q ppk ´1qτ q `1 2 H Q ppk `1qτ q .
Proof. As A N,q,λ pQq is finite we know that for every k P t1, 2, . . . , N ´1u, H Q pkτ q ă `8 and m kτ pQq P L q pΩq. Let us remark that if H Q p0q " `8 then there is nothing to prove in equality (3.1) for k " 1 (the r.h.s. being infinite); and, equivalently, if H Q p1q " `8 there is nothing to prove for k " N ´1. So from now on, we fix k P t1, 2, . . . , N ´1u such that H Q ppk ´1qτ q, H Q pkτ q and H Q ppk `1qτ q are finite, and it is enough to show (3.1) for such a k. We recall that Φ : r0 , `8q ˆPpΩq Ñ PpΩq denotes the heat flow, let us call Φ k : r0 , `8q ˆΓT N Ñ Γ T N the heat flow acting only on the k-th component: for any s ě 0, ρ P Γ T N and l P t0, 1, . . . , N u,

Φ k s pρqplτ q :" # Φ s pρ lτ q if l " k, ρ lτ if l ‰ k.
If s ě 0, it is clear that Φ k s leaves unchanged the boundary values, thus Φ k s #Q P P bc pΓ T N q, and therefore by optimality of Q we have that (3.2)

A N,q,λ pQq ď A N,q,λ pΦ k s #Qq. Let us expand this formula. We can see (by definition of H Q ) that

H Φ k s #Q plτ q " $ & % ż Γ T N HpΦ s rρ lτ sq dQpρq if l " k, H Q plτ q if l ‰ k.
Concerning the term m lτ pQq, the linearity of the flow enables us to write

m lτ pΦ k s #Qq " # Φ s pm lτ rQsq if l " k, m lτ pQq if l ‰ k.
Let us underline that the linearity of the heat flow is crucial to handle the congestion term. Our proof would not have worked if we would have wanted to show the convexity (w.r.t. time) of a functional (different from the entropy) whose gradient flow in the Wasserstein space were not linear. We can rewrite (3.2) in the following form (all the terms that do not involve the time kτ cancel):

ż Γ T N W 2 2 pρ pk´1qτ , ρ kτ q `W 2 2 pρ kτ , ρ pk`1qτ q 2τ dQpρq `Cq pm kτ pQqq `λτ ż Γ T N Hpρ kτ q dQpρq ď ż Γ T N W 2 2 pρ pk´1qτ , Φ s ρ kτ q `W 2 2 pΦ s ρ kτ , ρ pk`1qτ q 2τ dQpρq `Cq pΦ s pm lτ rQsqq `λτ ż Γ T N HpΦ s ρ kτ q dQpρq.
It is a well known fact that the heat flows decreases the L q norm, thus C q pΦ s pm kτ rQsqq ď C q pm kτ pQqq. It is also a well known fact the the heat flow decreases the entropy (it is for example encoded in (EI)), thus

ż Γ T N HpΦ s ρ kτ q dQpρq ď ż Γ T N Hpρ kτ q dQpρq.
Therefore, multiplying by τ and dividing by s, we are left with the following inequality, valid for any s ą 0:

ż Γ T N W 2 2 pρ pk´1qτ , Φ s ρ kτ q ´W 2 2 pρ pk´1qτ , ρ kτ q 2s dQpρq `żΓ T N W 2 
2 pΦ s ρ kτ , ρ pk`1qτ q ´W 2 2 pρ kτ , ρ pk`1qτ q 2s dQpρq ě 0.

The integrand of the first integral is exactly the rate of increase of the function s Þ Ñ W 2 2 pρ pk´1qτ , Φ s ρ kτ q{2 whose lim sup is bounded, when s Ñ 0, by Hpρ pk´1qτ q ´Hpρ kτ q according to (EVI). Moreover, as the entropy is positive, the same inequality (EVI) shows that this rate of increase is uniformly (in s) bounded from above by Hpρ pk´1qτ q, and the latter is integrable w.r.t. to Q. Hence by applying a reverse Fatou's lemma, we see that

ż Γ T N rHpρ pk´1qτ q ´Hpρ kτ qs dQpρq ě lim sup sÑ0 ż Γ T N W 2
2 pρ pk´1qτ , Φ s ρ kτ q ´W 2 2 pρ pk´1qτ , ρ kτ q 2s dQpρq.

We have a symmetric minoration for ż Γ T N rHpρ pk`1qτ q ´Hpρ kτ qs dQpρq, hence we end up with

0 ď ż Γ T N
rHpρ pk´1qτ q ´Hpρ kτ qs dQpρq `żΓ T N rHpρ pk`1qτ q ´Hpρ kτ qs dQpρq " ż Γ T N rHpρ pk´1qτ q `Hpρ pk`1qτ q ´2Hpρ kτ qs dQpρq " H Q ppk ´1qτ q `HQ ppk `1qτ q ´2H Q pkτ q .

LIMIT OF THE DISCRETE PROBLEMS TO THE CONTINUOUS ONE

In all this section, let us denote by QN,q,λ a solution (in fact there exists only one but this is not important) of the discrete problem (DP) with parameters N , q and λ. We want to pass to the limit in the following way:

• By sending q Ñ `8, the incompressibility constraint m t pQq " L will be strictly enforced at the discrete times t P T N . • Then, we will interpolate geodesically between discrete instants and show that this builds a sequence of W 2 -traffic plans which converges to a limit Qλ P P adm pΓq when N Ñ `8. This Qλ is expected to be a solution min

" ApQq `λ ż 1 0 H Q ptq dt : Q P P H adm pΓq * .
• In the end, when λ Ñ 0, the W 2 -traffic plans Qλ will converge to the solution Q of the original problem with minimal total entropy and ş 1 0 H Qλ ptq dt will converge to ş 1 0 H Qptq dt. This is the convergence of the total entropy that enables us to get a pointwise convergence of the averaged entropy.

Basically, we are performing three successive Γ-limits. Let us stress out that the order in which the limits are taken is important, though this importance may be hard to see under the various technical details. In particular taking the limit λ Ñ 0 at the end is needed to show that at the limit the selected minimizer of the continuous problem is the one with minimal total entropy (cf. the proof of Proposition 4.9). It may be possible to take the limit N Ñ `8 first (instead of sending q Ñ `8 first), but then the incompressibility constraint must be handled differently from us.

This section is organized as follows. First we show some kind of Γ´lim sup, i.e. given continuous curves we build discrete ones whose discrete action and total entropy are close to their continuous counterparts. Then, and thanks to these constructions, we show a uniform bound on QN,q,λ that allows us to extract converging subsequences toward a limit Q, and we show that Q is a solution of the continuous problem. Finally, we show that Q is the minimizer of A with minimal total entropy and that its averaged entropy is convex.

Building discrete curves from continuous ones.

Let us first show a result that will be crucial to handle Assumption 2, namely a procedure to regularize curves in order for the total entropy to be finite. Proposition 4.1. Under Assumption 2, for any Q P P adm pΓq and for any ε ą 0, there exists Q 1 P P H adm pΓq such that ApQ 1 q ď ApQq `ε and H Q 1 P L 8 pr0 , 1sq.

Proof. Let us fix Q P P adm pΓq. The idea is to use the heat flow Φ to regularize the curves: indeed, we know that if s ą 0 is fixed, then for any ρ P Γ, HpΦ s ρ t q is bounded independently on t and ρ. Moreover, applying uniformly the heat flow decreases the action. Indeed, we recall that at a discrete level the Wasserstein distance decreases along the heat flow: it is Inequality (4.1). Using the representation formula (2.4) for the action, one concludes that for a fixed s ě 0, (4.1)

ż 1 0 1 2 | 9 Φ s ρ t | 2 dt ď ż 1 0 1 2 | 9 ρ t | 2 dt.
However, by doing this, we lose the boundary values. To recover them, we squeeze the curve Φ s ρ into the subinterval rs , 1 ´ss, and then use the heat flow (acting on ρ 0 ) to join ρ 0 to Φ s pρ 0 q on r0 , ss and Φ s pρ 1 q to ρ 1 on r1 ´s , 1s. Formally, for 0 ă s ď 1{2, let us define the regularizing operator R s : Γ Ñ Γ by @ρ P Γ, @t P r0 , 1s, R s pρqptq :"

$ ' ' & ' ' % Φ t pρ 0 q if 0 ď t ď s, Φ s ´ρ " t´s 1´2s ı¯i f s ď t ď 1 ´s, Φ 1´t pρ 1 q if 1 ´s ď t ď 1.
The continuity of the heat flow allows us to assert that R s pρq is a continuous curve. As the entropy decreases along the heat flow (cf. (EI)), and as HpR s rρsq is uniformly bounded on rs , 1 ´ss (independently on ρ), we can see that there exists a constant C s depending only on s such that (4.2) @ρ P Γ, @t P r0 , 1s, HrR s pρqptqs ď maxpHpρ 0 q, Hpρ 1 q, C s q.

To estimate the action of R s pρq, we use the estimate (4.1) on rs , 1 ´ss and the identity (EI) to hold the boundary terms:

ApR s pρqq ď ż s 0 1 2 | 9 Φ t ρ 0 | 2 dt `ż 1´s s 1 2 | 9 ρ pt´sq{p1´2sq | 2 dt `ż 1 1´s 1 2 | 9 Φ 1´t ρ 1 | 2 dt " Hpρ 0 q ´HpΦ s rρ 0 sq 2 `1 1 ´2s ż 1 0 1 2 | 9 ρ t | 2 dt `Hpρ 1 q ´HpΦ s rρ 1 sq 2 " 1 1 ´2s
Apρq `1 2 pHpρ 0 q ´HpΦ s rρ 0 sq `Hpρ 1 q ´HpΦ s rρ 1 sqq .

In particular, using the lower semi-continuity of the entropy H and the continuity w.r.t. s of the heat flow, we see that if Hpρ 0 q and Hpρ 1 q are finite,

(4.3) lim sup sÑ0
ApR s pρqq ď Apρq.

We are now ready to use the regularization operator on the W 2 -traffic plan Q. For a fixed 0 ă s ď 1{2, we define Q s :" R s #Q. As R s does not change the boundary points, we still have pe 0 , e 1 q#Q s " γ. Integrating (4.2) w.r.t. Q, we get that @t P r0 , 1s, H Qs ptq ď H Qs p0q `HQs p1q `Cs " H γ p0q `Hγ p1q `Cs , and we know that the r.h.s. is finite because of Assumption 2. Concerning the action, since Hpρ 0 q and Hpρ 1 q are finite for Q-a.e. ρ P Γ, we can integrate (4.3) w.r.t. Q by using a reverse Fatou's lemma to get lim sup sÑ0 ApQ s q ď ApQq.

It remains to check the incompressibility. For a fixed t P r0 , 1s, we notice that e t #Q s is of the form pΦ r ˝et 1 q#Q for a some r ě 0 and t 1 P r0 , 1s (for example, r " t and t 1 " 0 if t P r0 , ss, and r " s and t 1 " pt ´sq{p1 ´2sq if t P rs , 1 ´ss). Thus, by linearity of the heat flow, m t pQ s q " Φ r pm t 1 rQsq. But m t 1 pQq " L for any t 1 and the Lebesgue measure is preserved by the heat flow, hence m t pQ s q " L.

Therefore, the Q 1 that we take is just Q s for s ą 0 small enough.

It is then possible to show how one can build a discrete curve from a continuous one in such a way that the action and the total entropy do not increase too much. This is a standard procedure which would be valid for probability on curves valued in arbitrary geodesic spaces. Proposition 4.2. Let Q P P H adm pΓq be an admissible W 2 -traffic plan with finite total entropy. For any N ě 1, we can build a W 2 -traffic plan Q N P P in pΓ T N q in such a way that lim sup

N Ñ`8 A N,q,λ pQ N q ď ApQq `λ ż 1 0 H Q ptq dt.
Proof. We can assume that ApQq ă `8. The idea is to sample each curve on a uniform grid, but not necessarily on T N . Indeed, the key point in this sampling is to ensure that the discrete entropic penalization of the functional A N,q,λ is bounded by λ ş 1 0 H Q ptq dt. Let us fix N ě 1 and recall that τ " 1{N . We can see that

ż τ 0 N ´1 ÿ k"1 H Q pkτ `sq ds " ż 1 τ H Q ptq dt ď ż 1 0 H Q ptq dt.
Therefore, there exists s N P p0 , τ q such that τ

N ´1 ÿ k"1 H Q pkτ `sN q ď ż 1 0 H Q ptq dt.
We define the sampling operator S N : Γ Ñ Γ T N (which samples on the grid tkτ `sN : k " 1, 2, . . . , N ´1u) by @ρ P Γ, @k P t0, 1, . . . , N u, S N pρq pkτ q "

$ ' & ' % ρ 0 if k " 0, ρ 1 if k " N, ρ kτ `sN if 1 ď k ď N ´1.
Then we simply define Q N :" S N #Q. As the initial and final values are left unchanged, it is clear that pe 0 , e 1 q#Q N " pe 0 , e 1 q#Q " γ, i.e. Q N P P bc pΓ T N q. By construction, we have that

λ N ´1 ÿ k"1 τ H QN pkτ q " λτ N ´1 ÿ k"1 H Q pkτ `sN q ď λ ż 1 0 H Q ptq dt.
Moreover, as

Q P P adm pΓq is incompressible, it is clear that Q N is incompressible too, hence N ´1 ÿ k"1
C q pm kτ rQ N sq " 0.

The last term to handle is the action. Indeed, we have to take care of the fact that we use a translated grid which is not uniform close to the boundaries. After a standard computation (which would be valid in any geodesic space) that we do not detail here, one finds that

N ÿ k"1 ż Γ T N W 2 2 pρ pk´1qτ , ρ kτ q 2τ dQ N pρq ď ApQq `żΓ ˆż 2τ 0 1 2 | 9 ρ s | 2 ds ˙dQpρq.
For every 2-absolutely continuous curve, it is clear that the quantity ş 2τ 0 1 2 | 9 ρ s | 2 ds goes to 0 as N Ñ `8 and it is dominated by Apρq which is integrable w.r.t. Q. Therefore, by dominated convergence,

lim sup N Ñ`8 ˜N ÿ k"1 ż Γ T N W 2 2 pρ pk´1qτ , ρ kτ q 2τ dQ N pρq ¸ď ApQq.
Gluing all the inequalities we have collected on Q N , we see that A N,q,λ pQ N q satisfies the desired asymptotic bound.

Corollary 4.3. Under Assumption 1 or Assumption 2, there exists C ă `8, such that, uniformly in N ě 1, λ P p0 , 1s and q ą 1, we have A N,q,λ p QN,q,λ q ď C.

Proof. Indeed, it is enough to take Q any element of P H adm pΓq with finite action (it exists by definition under Assumption 1 and we use Proposition 4.1 under Assumption 2), to construct Q N as in Proposition 4.2, to define C :" sup N ě1 A N,q,λ pQ N q, and to use the fact that A N,q,λ p QN,q,λ q ď A N,q,λ pQ N q ď C.

Solution of the continuous problem as a limit of discrete solutions.

To go from W 2 -traffic plans on discrete curves to W 2 -traffic plans on continuous ones, we will need an extension operator E N : Γ T N Ñ Γ that interpolates a discrete curve along geodesics in pPpΩq, W 2 q. More precisely, Definition 4.4. Let N ě 1. If ρ P Γ T N , the curve E N pρq P Γ is defined as the one that coincides with ρ on T N and such that for any k P t0, 1, . . . , N ´1u, the restriction of E N pρq to rkτ , pk `1qτ s is a 3 constant-speed geodesic joining ρ kτ to ρ pk`1qτ .

In particular, for any k P t0, 1, 2, . . . , N ´1u, | 9

E N pρq| is constant on rkτ , pk`1qτ s and equal to W 2 pρ kτ , ρ pk`1qτ q{τ . Thus, we have the identity

ż pk`1qτ kτ 1 2 | 9 E N pρq t | 2 dt " W 2 2 pρ kτ , ρ pk`1qτ q 2τ ,
summed over k P t0, 1, . . . , N ´1u, these identities led to (4.4)

ApE N rρsq " N ÿ k"1 W 2 2 pρ pk´1qτ , ρ kτ q 2τ .
In other words, the action of the extended curve E N pρq is equal to the discrete one of ρ. 3 One may worry about the non uniqueness of the geodesic and hence of the fact that the extension operator E N is ill-defined. However, it is a classical result of optimal transport that the constant-speed geodesic joining two measures is unique as soon as one of the two measures is absolutely continuous w.r.t. L. Moreover, for a traffic plan

Q P PpΓ T N q, if H Q ptq ă `8 for t P T N , then Q-a.e.
ρ is absolutely continuous w.r.t. L at time t. Thus as long as we work with W 2 -traffic pans Q such that H Q pkτ q ă `8 for any k P t1, 2, . . . , N ´1u (and we leave it to the reader to check that it is the case), the operator E N is well defined.

We are now ready to show the convergence of QN,q,λ to some limit Q P P adm pΓq. We take three sequences pN n q nPN , pq m q mPN and pλ r q rPN that converge respectively to `8, `8 and 0. We will not relabel the sequences when extracting subsequences. Moreover, to avoid heavy notations, we will drop the indexes n, m and r, and lim nÑ`8 , lim mÑ`8 , lim rÑ`8 will be denoted respectively by lim N Ñ`8 , lim qÑ`8 and lim λÑ0 . Proposition 4.5. Under Assumption 1 or Assumption 2, there exists Q P P adm pΓq, and families p QN,λ q N,λ P P adm pΓ T N q, p Qλ q λ P P adm pΓq such that (up to extraction)

lim qÑ`8 QN,q,λ " QN,λ in PpΓ T N q, lim N Ñ`8 pE N # QN,λ q " Qλ in PpΓq, lim λÑ0 Qλ " Q in PpΓq.
Proof. We denote by C the constant given by Corollary 4.3.

To prove the existence of p QN,λ q N,λ , it is enough to notice that for any N ě 1 the space PpΓ T N q is compact and therefore every sequence admits a converging subsequence. By continuity of the Wasserstein distance, we know that

N ÿ k"1 ż Γ T N W 2 2 pρ pk´1qτ , ρ kτ q 2τ d QN,λ pρq " lim qÑ`8 ˜N ÿ k"1 ż Γ T N W 2 2 pρ pk´1qτ , ρ kτ q 2τ d QN,q,λ pρq ¸ď C.
To go on, we use (4.4), namely the fact that E N transforms the discrete action into the continuous one:

ApE N # QN,λ q " ż Γ T N ApE N pρqq d QN,λ pρq " N ÿ k"1 ż Γ T N W 2 2 pρ pk´1qτ , ρ kτ q 2τ d QN,λ pρq ď C.
We know that the functional A is l.s.c. and that its sublevel sets are compact. Hence, we get the existence of p Qλ q λ such that lim

N Ñ`8
pE N # QN,λ q " Qλ in PpΓq and Ap Qλ q ď C. Applying exactly the same argument, we can conclude at the existence of Q P PpΓq with lim λÑ0

Qλ " Q in PpΓq together with Ap Qq ď C.

It is easy to show that pe 0 , e 1 q# Q " γ as we have that pe 0 , e 1 q# QN,q,λ " γ: this condition passes to the limit and is preserved by E N .

It is slightly more difficult to show the incompressibility. Let us first show that QN,λ P P in pΓ T N q. We fix N, k and λ. As A N,q,λ p QN,q,λ q ď C, we see that ˆżΩ |m kτ p QN,q,λ q| q ˙1{q ď pC `1q 1{q .

As LpΩq " 1, the L q norms are increasing with q. Thus, for any q 0 ď q, we have ˆżΩ |m kτ p QN,q,λ q| q0 ˙1{q0 ď pC `1q 1{q .

Let us take the limit q Ñ `8. We have that m kτ p QN,q,λ q converges in PpΩq to m kτ p QN,λ q. As the L q0 norm is l.s.c. w.r.t. the weak convergence of measures, we can see that

ˆżΩ |m kτ p QN,λ q| q0 ˙1{q0 ď 1.
But now q 0 is arbitrary, thus the L 8 norm of m kτ p QN,λ q is bounded by 1. As we know that m kτ p QN,λ q is a probability measure and that LpΩq " 1, we deduce that m kτ p QN,λ q is equal to 1 L-a.e. on Ω: it exactly means that m kτ p QN,λ q " L. As QN,λ also satisfies the boundary conditions, QN,λ P P adm pΓ T N q.

To show that the incompressibility constraint is satisfied by Qλ for every t, we proceed as follows: let us consider t P r0 , 1s and N ě 1. Let k P t0, 1, . . . , N ´1u such that kτ ď t ď pk `1qτ . We denote by s P r0 , 1s the real such that t " pk `sqτ . By definition of E N , if ρ P Γ T N , there exists γ an optimal transport plan between ρ kτ and ρ pk`1qτ (i.e. an optimal γ in formula (2.1) with µ " ρ kτ and ν " ρ pk`1qτ ) such that E N pρqptq " π s #γ with π s : px, yq Þ Ñ p1 ´sqx `sy. For any a P C Taking the limit N Ñ `8 (hence τ Ñ 0), we know that m t pE N # QN,λ q converges to m t p Qλ q, thus we get ż Ω a drm t p Qλ qs "

ż Ω apxq dx.
As a is an arbitrary C 1 function, we have the equality m t p Qλ q " L for any t, in other words, Qλ P P in pΓq.

As we already know that Qλ P P bc pΓq, we conclude that Qλ P P adm pΓq for any λ ą 0. But P adm pΓq is closed, therefore Q P P adm pΓq.

With all the previous work, it is easy to conclude that Q is a minimizer of A: we just copy a standard proof of Γ-convergence. Proposition 4.6. Under Assumption 1 or Assumption 2, Q is a solution of the continuous problem (CP).

Proof. We have already seen that ApE N # QN,λ q ď lim inf qÑ`8

A N,q,λ p QN,q,λ q. By lower semi-continuity of A, we deduce that

Ap Qq ď lim inf λÑ0 ˆlim inf N Ñ`8 ˆlim inf qÑ`8
A N,q,λ p QN,q,λ q ˙˙. By contradiction, let us assume that there exists Q P P adm pΓq such that ApQq ă Ap Qq. If we are under Assumption 2, we can regularize it thanks to Proposition 4.1, and under Assumption 1 we know that we can assume that Q 1 P P H adm pΓq and ApQ 1 q ď ApQq. In any of these two cases, we can assume that there exists Q P P H adm pΓq such that ApQq ă Ap Qq. Thanks to Proposition 4.2, we know that we can construct a sequence

Q N with lim sup N Ñ`8 A N,q,λ pQ N q ď ApQq `λ ż 1 0 H Q ptq dt
Taking the limit λ Ñ 0 and using ApQq ă Ap Qq, we get

lim sup λÑ0 ˆlim sup N Ñ`8
A N,q,λ pQ N q ˙ă lim inf

λÑ0 ˆlim inf N Ñ`8 ˆlim inf qÑ`8
A N,q,λ p QN,q,λ q ˙˙.

Taking N and q large enough and λ small enough, one has A N,q,λ pQ N q ă A N,q,λ p QN,q,λ q, which contradicts the optimality of QN,q,λ .

4.3.

Behavior of the averaged entropy of Q. Now, we will show that H Q P L 1 pr0 , 1sq and that Q is the minimizer of A with minimal total entropy. If Q P PpΓ T N q, let us denote by H int Q : r0 , 1s Ñ r0 , `8s the piecewise affine interpolation of H Q . More precisely, if k P t0, 1, . . . , N ´1u and s P r0 , 1s, we define H int Q ppk `sqτ q :" p1 ´sqH Q pkτ q `sH Q ppk `1qτ q . We show the following estimate, which relies on the lower semi-continuity of the entropy: Proposition 4.7. For any t P r0 , 1s, we have the following upper bound for H Qptq:

H Qptq ď lim inf λÑ0 ˆlim inf N Ñ`8 ˆlim inf qÑ`8
H int QN,q,λ ptq ˙˙.

Proof. For a fixed t, Q Þ Ñ H Q ptq is l.s.c. (Lemma 2.11). Thus, for any k P t0, 1, 2, . . . , N u, we have

H QN,λ pkτ q ď lim inf qÑ`8
H QN,q,λ pkτ q .

Then, to pass to the limit N Ñ `8, we will use the fact that the entropy is geodesically convex, i.e. convex along the constant-speed geodesics. Recall that E N : Γ T N Ñ Γ is the extension operator that interpolates along constant-speed geodesics. Let us take ρ P Γ T N . By geodesic convexity, we have for any k P t0, 1, . . . , N 1u and s P r0 , 1s H rE N pρq ppk `sqτ qs ď p1 ´sqHpρ kτ q `sHpρ pk`1qτ q.

Integrating this inequality over Γ T N w.r.t. QN,λ , we get H EN # QN,λ ppk `sqτ q ď p1 ´sqH QN,λ pkτ q `sH QN,λ ppk `1qτ q ď lim inf qÑ`8 " p1 ´sqH QN,q,λ pkτ q `sH QN,q,λ ppk `1qτ q ‰ " lim inf qÑ`8 " H int QN,q,λ ppk `sqτ q ı

We take the limit N Ñ `8, followed by λ Ñ 0 to get (thanks to the lower semi-continuity of the averaged entropy) the announced inequality.

We derive a useful consequence, which implies Theorem 2.14.

Corollary 4.8. Under Assumption 2, the function H Q is bounded by maxpH γ p0q, H γ p1qq.

Proof. This is where we use the work of Section 3: thanks to Theorem 3.2, we know that H QN,q,λ is convex and therefore bounded by the values at its endpoints which happen to be finite (independently of N, q or λ):

@k P t0, 1, 2, . . . , N u, H QN,q,λ pkτ q ď maxpH γ p0q, H γ p1qq.

Thus the function H int QN,q,λ is also bounded uniformly on r0 , 1s by maxpH γ p0q, H γ p1qq. Proposition 4.7 allows us to conclude that the same bound holds for H Q.

As we have now proved Theorem 2.14, we will work only under Assumption 1. It remains to show that the Q we constructed is the one with minimal total entropy. This is done thanks to the entropic penalization, and is standard in Γ-convergence theory, the specific structure of the Wasserstein space does not play any role. Proposition 4.9. For any Q P P H adm pΓq solution of the continuous problem (CP), we have

ż 1 0 H Qptq dt ď ż 1 0 H Q ptq dt
Proof. Let us start with an exact quadrature formula for H int QN,q,λ :

ż 1´τ τ H int QN,q,λ ptq dt " τ 2 H QN,q,λ pτ q `τ N ´2 ÿ k"2 H QN,q,λ pkτ q `τ 2 H QN,q,λ p1 ´τ q ď τ N ´1 ÿ k"1
H QN,q,λ pkτ q

Then we take successively the limits q Ñ `8, N Ñ `8 and λ Ñ 0, applying Fatou's lemma and using Proposition 4.7 to get (4.5)

ż 1 0 H Qptq dt ď lim inf λÑ0 ˜lim inf N Ñ`8 ˜lim inf qÑ`8 ˜τ N ´1 ÿ k"1
H QN,q,λ rkτ s ¸¸¸.

On the other hand, let us show that the r.h.s. of (4.5) is smaller than the total entropy of any minimizer of (CP). Indeed, assume that this is not the case for some Q P P adm pΓq solution of (CP). In particular, for some λ ą 0 small enough, we have the strict inequality

ż 1 0 H Q ptq dt ă lim inf N Ñ`8 ˜lim inf qÑ`8 ˜τ N ´1 ÿ k"1
H QN,q,λ rkτ s ¸¸.

Using the fact that ApQq ď Ap Qλ q by optimality of Q, and thanks to the lower semi-continuity of the action,

ApQq ď Ap Qλ q ď lim inf N Ñ`8 ˜lim inf qÑ`8 ˜N ÿ k"1 ż Γ T N W 2 2 pρ pk´1qτ , ρ kτ q 2τ d QN,q,λ pρq ¸¸.
Therefore, gluing these two estimates together, we obtain

ApQq `λ ż 1 0 H Q ptq dt ă lim inf N Ñ`8 ˜lim inf qÑ`8 ˜N ÿ k"1 ż Γ T N W 2 2 pρ pk´1qτ , ρ kτ q 2τ d QN,q,λ pρq `λ N ´1 ÿ k"1
τ H QN,q,λ rkτ s ¸¸.

But if we build the Q N from Q as in Proposition 4.2, we get, for N and q large enough,

A N,q,λ pQ N q ă N ÿ k"1 ż Γ T N W 2 2 pρ pk´1qτ , ρ kτ q 2τ d QN,q,λ pρq `λ N ´1 ÿ k"1
τ H QN,q,λ pkτ q ď A N,q,λ p QN,q,λ q, which is a contradiction with the optimality of QN,q,λ . Hence, we have proved that for any Q P P adm pΓq solution of the continuous problem, (4.6)

ż 1 0 H Qptq dt ď lim inf λÑ0 ˜lim inf N Ñ`8 ˜lim inf qÑ`8 ˜τ N ´1 ÿ k"1 H QN,q,λ rkτ s ¸¸¸ď ż 1 0 H Q ptq dt.
Now it remains to show that H Q is a convex function of time. This will be done by proving that H Q is the limit of H int QN,q,λ . H QN,q,λ rkτ s ¸¸¸.

In other words, the integral over time of the discrete averaged entropy converges to the integral of the continuous one. As we know moreover that the discrete averaged entropy is an upper bound for the continuous one (Proposition 4.7), it is not difficult to show that the discrete averaged entropy converges (up to extraction) a.e. to the continuous one. Proof. From Proposition 4.10, we know that H Q is a.e. the limit of the functions H int QN,q,λ . Thanks to Theorem 3.2, we can assert that for any t P r0 , 1s, one has H int QN,q,λ ptq ď p1 ´tqH int QN,q,λ p0q `tH int QN,q,λ p1q. We also know that H Q and H int QN,q,λ coincide for t " 0 and t " 1. Therefore, for a.e. As H Q is l.s.c., we see that the above inequality is valid for any t P r0 , 1s.

Now, if Q is the solution of the continuous problem (CP) with minimal total entropy, then its restriction to any subinterval of r0 , 1s is also optimal: for any 0 ď t 1 ă t 2 ď 1, e rt1,t2s # Q is also the solution of the continuous problem (on rt 1 , t 2 s) with boundary conditions e tt1,t2u # Q with minimal total entropy. This is already known [1, Remark 3.2 and below] and comes from the fact that we can concatenate traffic plans. Proposition 4.12. Let 0 ď t 1 ă t 2 ď 1. Then for any Q P P adm pΓ rt1,t2s q such that e tt1,t2u #Q " e tt1,t2u # Q, we have ż

Γ ˆż t2 t1 1 2 | 9 ρ t | 2 dt ˙d Qpρq ď ż Γ rt 1 ,t 2 s ˆż t2 t1 1 2 | 9 ρ t | 2 dt ˙dQpρq.
Moreover, if the inequality above is an equality, then

ż t2 t1 H Qptq dt ď ż t2 t1 H Q ptq dt.
Proof. This property relies on the fact that if Q P P adm pΓ rt1,t2s q with e tt1,t2u #Q " e tt1,t2u # Q, we can concatenate Q and Q together to build a W 2 -traffic plan Q 1 P PpΓq such that e r0,1szrt1,t2s #Q 1 " e r0,1szrt1,t2s # Q and e rt1,t2s #Q 1 " e rt1,t2s #Q. To do that, it is enough to disintegrate the measures Q and Q w.r.t. e tt1,t2u and then to concatenate elements of Γ r0,1szrt1,t2s and Γ rt1,t2s which coincides on tt 1 , t 2 u: we leave the details to the reader.

Combining the two above propositions, we recover the convexity of H Q. Let us remark that we rely on the fact that the minimizer of A with minimal total entropy is unique. Corollary 4.13. Under Assumption 1 or Assumption 2, for any 0 ď t 1 ă t 2 ď 1 and any s P p0 , 1q, H Qpp1 ´sqt 1 `st 2 q ď p1 ´sqH Qpt 1 q `sH Qpt 2 q.

Proof. If the r.h.s. is infinite, there is nothing to prove. Therefore, we can assume that H Qpt 1 q and H Qpt 2 q are finite. By uniqueness of the solution with minimal total entropy (Proposition 2.16), we know that e rt1,t2s # Q coincides with the solution of the continuous problem (CP) with minimal total entropy on rt 1 , t 2 s with boundary conditions e tt1,t2u # Q (Proposition 4.12). As H Qpt 1 q and H Qpt 2 q are finite, Assumption 2 is satisfied for the continuous problem on rt 1 , t 2 s and therefore we can apply Proposition 4.11 to get H Qpp1 ´sqt 1 `st 2 q ď p1 ´sqH Qpt 1 q `sH Qpt 2 q.

EQUIVALENCE WITH THE PARAMETRIC FORMULATION OF THE EULER EQUATION

In this section we will explain why our non-parametric formulation is equivalent to Brenier's parametric one. From the way we build it, it is clear that our formulation admits more potential solutions than Brenier's one, so the only technical point will be to show that, if the boundary data are in a parametric form, it is possible to parametrize the a priori non-parametric solution of the continuous problem.

Let us take A a polish space and consider θ P PpAq a Borel probability measure on A. We will assume that we have two families (the initial and the final) pρ α i q αPA and pρ α f q αPA of probabilities measures on Ω indexed by A. We denote by P bc : A Ñ Γ t0,1u " PpΩq 2 the parametrization of the boundary conditions, simply defined by P bc pαq " pρ α i , ρ α f q and assume that it is measurable. We assume that the boundary data satisfy the incompressibility condition, i.e. ż A ρ α i dθpαq " L and ż A ρ α f dθpαq " L. Translated in our language, if we set γ :" P bc #θ, we simply impose that m 0 pγq " m 1 pγq " L.

A measurable family pρ α t , v α t q pα,tqPAˆr0,1s indexed by α and t such that, for θ-a.e. α, pt Þ Ñ ρ α t q P Γ and v α t P L 2 pΩ, R d , ρ α t q for a.e. t, is said to be admissible if $ ' ' & ' ' % ρ α 0 " ρ α i and ρ α 1 " ρ α f for θ-a.e. α, B t ρ α t `∇ ¨pρ α t v α t q " 0 in a weak sense with no-flux boundary conditions for θ-a.e. α, ż A ρ α t dθpαq " L for all t P r0 , 1s.

The first equation corresponds to the temporal boundary conditions, the second one is the continuity equation while the last one is the coding of the incompressibility. If pρ α t , v α t q pα,tqPAˆr0,1s is an admissible family, we define its (parametrized) action A P by A P pρ, vq :"

ż A ż 1 0 ż Ω 1 2
|v α t pxq| 2 dρ α t pxq dt dθpαq and its parametrized averaged entropy H P pρ, vq : r0 , 1s Ñ R by, for any t P r0 , 1s, H P pρ, vqptq :" ż A Hpρ α t q dθpαq. The first proposition is very simple: it asserts that every parametric family can be seen as an non parametric one. In the sequel, we define the boundary conditions γ P P in pΓ t0,1u q for the non-parametric problem by γ :" P bc #θ. Proposition 5.1. Let pρ α t , v α t q pα,tqPAˆr0,1s be an admissible family. Then there exists Q P P adm pΓq such that ApQq ď A P pρ, vq and H Q ptq " H P pρ, vqptq for any t P r0 , 1s.

Proof. Let P : A Ñ Γ, defined by P pαq " pt Þ Ñ ρ α t q be the parametrization. We set Q :" P #θ and leave it to the reader to check that this choice works (Theorem 2.4 might be useful).

The reverse proposition is slightly more difficult to prove: it asserts that one can always build a parametric family from a non-parametric W 2 -traffic plan in such a way that the global action and the total entropy decrease. In particular, it implies together with Proposition 5.1 that (provided that the boundary conditions are in a parametric form) the solution of the continuous problem (CP) with minimal total entropy can be parametrized. Proposition 5.2. Let Q P P adm pΓq. Then there exists an admissible family pρ α t , v α t q pα,tqPAˆr0,1s such that A P pρ, vq ď ApQq and H P pρ, vqptq ď H Q ptq for any t P r0 , 1s.

Proof. Let us disintegrate Q w.r.t. to e t0,1u " pe 0 , e 1 q. We obtain a family pQ ρ0,ρ1 q ρ0,ρ1 of W 2 -traffic plans indexed by pρ 0 , ρ 1 q P Γ t0,1u " PpΩq 2 . We define the curve ρ α t as the average of all the curves in Γ w.r.t. to Q ρ α i ,ρ α f : for any t P r0 , 1s and any α for which Q ρ α i ,ρ α f is defined (and this property holds for θ-a.e. α), we set ρ α t :" m t ´Qρ α i ,ρ α f ¯.

By definition of disintegration, e t0,1u #Q ρ α i ,ρ α f is a Dirac mass at the point pρ α i , ρ α f q, thus the boundary conditions are satisfied. The incompressibility condition is just a consequence of the incompressibility of Q: for any a P CpΩq, To handle the action, we use the fact that A is convex and l.s.c. Thus, thanks to Jensen's inequality, for θ-a.e. α, Apρ α q ď ż Γ Apρq dQ ρ α i ,ρ α f pρq. Integrating w.r.t. θ, we end up with ż A Apρ α q dθpαq ď ApQq.

We consider only the case ApQq ă `8 (else there is nothing to prove). Thus, for θ-a.e. α the quantity Apρ α q is finite. By Theorem 2.4, we can find for each α a family pv α t q tPr0,1s of functions Ω Ñ R d such that the continuity equation is satisfied, v α t P L 2 pΩ, R d , ρ α t q for a.e. t and such that the following identity holds

ż 1 0 ż Ω 1 2 |v α t pxq| 2 dρ α t pxq dt " ż A ż 1 0 1 2 | 9 ρ α t | 2 dt
. Therefore, we see that the family pρ α t , v α t q pα,tqPAˆr0,1s is admissible and, integrating the last equality w.r.t. θ, that A P pρ, vq ď ApQq.

To get the inequality involving the entropy, we use the fact that the functional H is convex and l.s.c. on PpΩq, thus by Jensen's inequality, H ´mt ´Qρ α i ,ρ α f ¯¯ď ż Γ Hpρ t q dQ ρ α i ,ρ α f pρq. Integrating w.r.t. θ leads to the announced inequality.

2. 3 .

 3 The heat equation and the Wasserstein space. Let us denote by Φ : r0 , `8qˆPpΩq Ñ PpΩq the flow of the heat equation with Neumann boundary conditions. In other words, for any s ě 0 and any µ P PpΩq, Φ s pµq " upsq where u is the solution (in the sense of distributions) of the Cauchy problem in p0 , `8q ˆΩ ∇u ¨n " 0 on p0 , `8q ˆBΩ lim tÑ0 uptq " µ in PpΩq .

  pB ij ϕ α t q 2 is the square of the Hilbert-Schmidt norm of the Hessian w.r.t. (with respect to) space of ϕ α t . Thus, if one defines the averaged entropy H as a function of time by

			2	ż						ż
			dt 2	Ω	ρ α t pxq ln ρ α t pxq dx "	Ω	" ∆p t pxq `|D 2 ϕ α t pxq| 2 ‰	ρ α t pxq dx,
	where |D 2 ϕ α t | 2 "	ř	i,j Hptq :"	ż A ˆżΩ	ρ α t pxq ln ρ α t pxq dx ˙dθpαq,
	the previous computation leads to			
						ż			ż	ż
			H 2 ptq "	Ω	∆p t	`żA	Ω	|D 2 ϕ α t pxq| 2 ρ α t pxq dx dθpαq ě	BΩ	∇p t	¨n

2.1. The Wasserstein space. The

  space PpΩq of probability measures on Ω is endowed with the Wasserstein distance: if µ and ν are two elements of PpΩq, the 2-Wasserstein distance W 2 pµ, νq between µ and ν is defined by In the formula above, π 0 and π 1 : Ω ˆΩ Ñ Ω stand for the projections on respectively the first and second component of Ω ˆΩ. If T : X Ñ Y is a measurable application and µ is a measure on X, then the image measure of µ by T , denoted by T #µ, is the measure defined on Y by pT #µqpBq " µpT ´1pBqq for any measurable set B Ă Y . It can also be defined by

			d	
			"ż	
	(2.1)	W 2 pµ, νq :"	min	
			ż	ż
			Y	apyq dpT #µqpyq :"	X	apT pxqq dµpxq,
	this identity being valid as soon as a : Y Ñ R is an integrable function.

ΩˆΩ

|x ´y| 2 dγpx, yq : γ P PpΩ ˆΩq and π 0 #γ " µ, π 1 #γ " ν * .

  One can see that Γ S is a polish space, and that it is compact if S contains a finite number of points. Following [2, Definition 1.1.1], we give ourselves the following definition.

	Definition 2.2. We say that a curve ρ P Γ is 2-absolutely continuous if there exists a function f P L 2 pr0 , 1sq ż s such that, for every 0 ď t ď s ď 1, W 2 pρ t , ρ s q ď t f prq dr.
	The main interest of this notion lies in the two following theorems that we recall.
	Theorem 2.3. If ρ P Γ is a 2-absolutely continuous curve, then the quantity | 9 ρ t | :" lim hÑ0 W 2 pρ t`h , ρ t q h
	exists and is finite for a.e. t. Moreover,
	(2.4) Proof. The first part is just [2, Theorem 1.1.2]. The proof of the representation formula (2.4) can easily be ż 1 0 | 9 ρ t | 2 dt " sup N ě2 sup 0ďt1ăt2ă...ătN ď1 N ÿ k"2 W 2 2 pρ t k´1 , ρ t k q . t k ´tk´1
	obtained by adapting the proof of [3, Theorem 4.1.6].

  t. to Q 1 ρ0,ρ1 b Q 2ρ0,ρ1 and then w.r.t. γ gives the result. We use the same kind of reasoning for the entropy, but this functional is strictly convex. Hence, for any t P r0 , 1s,

	H	ˆρ1 t	`ρ2 t 2	˙ď 1 2	`Hpρ 1 t q `Hpρ 2 t q with
	a strict inequality if ρ 1				

t ‰ ρ 2 t and if the r.h.s. is finite. Integrating w.r.t. t and w.r.t. Q 1 ρ0,ρ1 b Q 2 ρ0,ρ1 we get,

  1 pΩq, we can see that W 2 pρ kτ , ρ pk`1qτ q.Therefore, if we estimate the action of m t pE N # QN,λ q on a C 1 function a, we find that

	ˇˇˇż Ω	a drE N pρqptqs	´żΩ	a dρ kτ ˇˇˇ" ˇˇˇż ΩˆΩ	parp1 ´sqx `sys ´arxsq dγpx, yq ˇˇď
				ż			
				ΩˆΩ	s|∇apxq||x ´y| dγpx, yq
				d				d
				ż			ż
				ď	ΩˆΩ	|∇apxq| 2 dγpx, yq	ΩˆΩ	|x ´y| 2 dγpx, yq
	ď }∇a} L 8 ˇˇˇż Ω a drm t pE N # QN,λ qs ´żΩ apxq dx ˇˇˇ" ˇˇˇż Ω	a drm t pE N # QN,λ qs	´żΩ	a drm kτ p QN,λ qs ˇˇď
						ż	Γ T N	ˇˇˇż	Ω	a drE N pρqptqs	´żΩ	a dρ kτ ˇˇˇd QN,λ pρq
								ż
				ď }∇a} L 8	Γ T N	W 2 pρ kτ , ρ pk`1qτ q d QN,λ pρq
				ď ď	? 2τ }∇a} L 8 ? 2Cτ }∇a} L 8 . d ż Γ T N	W 2 2 pρ kτ , ρ pk`1qτ q 2τ	d QN,λ pρq

  Proposition 4.10 is slightly weaker than the result we claimed, as we get information about H Q only for a.e. time. The first step toward true convexity is to show that, under Assumption 2, the averaged entropy is everywhere below the line joining the endpoints. Under Assumption 2, for any t P r0 , 1s, we have H Qptq ď p1 ´tqH Qp0q `tH Qp1q.

	Proposition 4.11.

4.4. From convexity a.e. to true convexity.

Let us precise that this idea is adapted from an ongoing work[START_REF] Lavenant | Optimal density evolution with congestion: L 8 bounds via flow interchange techniques and applications to variational Mean Field Games[END_REF] with Filippo Santambrogio where the same kind of technique is used to provide regularity for solutions of quadratic Mean Field Games.
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