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TIME-CONVEXITY OF THE ENTROPY IN THE MULTIPHASIC FORMULATION OF THE

INCOMPRESSIBLE EULER EQUATION

HUGO LAVENANT

ABSTRACT. We study the multiphasic formulation of the incompressible Euler equation introduced by Brenier:
infinitely many phases evolve according to the compressible Euler equation and are coupled through a global incom-
pressibility constraint. In a convex domain, we are able to prove that the entropy, when averaged over all phases,
is a convex function of time, a result that was conjectured by Brenier. The novelty in our approach consists in in-
troducing a time-discretization that allows us to import a flow interchange inequality previously used by Matthes,
McCann and Savaré to study first order in time PDE, namely the JKO scheme associated with non-linear parabolic
equations.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Since the idea of Arnold [5] to consider the motion of an incompressible and inviscid fluid, described by the
Euler equation, as a variational problem, namely a geodesic on the (infinite dimensional) group of orientation
and measure-preserving diffeomorphisms (this is formally speaking an instance of the least action principle),
this variational point of view has turned out to be fruitful. In particular, Brenier introduced relaxations
leading to generalized geodesics on the group of measure-preserving maps: translated at a microscopic level,
fluid particles are allowed to split and diffuse on the whole space (for a general survey, see for instance [11]).
We will concentrate in this paper on one of Brenier’s model with a flavor of Eulerian point of view introduced
in [9] (see also [10, Section 4], [11, Section 1.5.3] and [1]) which goes as follows.

There are (possibly infinitely) many phases indexed by a parameter α which belongs to some probability
space pA,A, θq. At a fixed time t, each phase is described by its density ραt and its velocity field v

α
t , which are

functions of the position x. We assume that all the densities are confined in a fixed bounded domain Ω, and
up to a normalization constant ραt can be seen as a probability measure on Ω. The evolution in time of the
phase α is done according to the continuity equation

(1.1) Btραt ` ∇ ¨ pραt vα
t q “ 0,

where ∇¨ stands for the divergence operator. We assume no-flux boundary conditions on BΩ, thus the total
mass of ρα is preserved over time. The different phases are coupled through the incompressibility constraint:
at a fixed t the density of all the different phases must sum up to the Lebesgue measure L (restricted to Ω).
In other words, for any t we impose that

(1.2)
ż

A

ραt dθpαq “ L.

Looking at the problem from a variational point of view, we assume that the values of ραt are fixed for t “ 0

and t “ 1 and that the trajectories observed are those solving the following variational problem:

(1.3) min

"
ż

A

ż 1

0

ż

Ω

1

2
|vα

t pxq|2ραt pxq dx dt dθpαq : pρα,vαq satisfies (1.1) and (1.2)
*

.

From a physical point of view, the functional which is minimized corresponds to the average (over all phases)
of the integral over time of the kinetic energy, namely the global action of all the phases. Without the
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2 TIME-CONVEXITY OF THE ENTROPY IN THE MULTIPHASIC FORMULATION OF THE INCOMPRESSIBLE EULER EQUATION

incompressibility constraint, each phase would evolve independently and follow a geodesic in the Wasserstein
space joining ρα0 to ρα1 .

In Brenier’s original formulation, the space pA,A, θq is the domain Ω endowed with the Lebesgue measure
L. If h : Ω Ñ Ω is a measure-preserving map, "classical" boundary conditions are those where ρα0 is the Dirac
mass located at α and ρα1 is the Dirac mass located at hpαq. In a classical solution, each phase α will be of
the form ραt “ δyαptq, where yα : r0 , 1s Ñ Ω is a curve joining α to hpαq. But, even if one starts with "classical"
boundary conditions, there are cases where the phase α may split and ρα may not be a Dirac mass for any
t P p0 , 1q, leading to a "non-classical" solution (for examples of such cases, the reader can consult [8, Section
6] or the detailed study [7]).

With formal considerations (see for instance [10, Section 4]), one can be convinced that for each phase
α, the optimal velocity field is the gradient of a scalar field ϕα (i.e. v

α
t “ ∇ϕα

t ), and that each ϕα evolves
according to a Hamilton-Jacobi equation

Btϕα
t ` |∇ϕα

t |2
2

“ ´pt,

with a pressure field p that does not depend on α and that arises from the incompressibility constraint. If we
look at the Boltzmann entropy of the phase α, a lengthy formal computation leads to

d2

dt2

ż

Ω

ραt pxq ln ραt pxq dx “
ż

Ω

“

∆ptpxq ` |D2ϕα
t pxq|2

‰

ραt pxq dx,

where |D2ϕα
t |2 “ ř

i,jpBijϕα
t q2 is the square of the Hilbert-Schmidt norm of the Hessian w.r.t. (with respect

to) space of ϕα
t . Thus, if one defines the averaged entropy H as a function of time by

Hptq :“
ż

A

ˆ
ż

Ω

ραt pxq ln ραt pxq dx
˙

dθpαq,

the previous computation leads to

H2ptq “
ż

Ω

∆pt `
ż

A

ż

Ω

|D2ϕα
t pxq|2ραt pxq dx dθpαq ě

ż

BΩ

∇pt ¨ n

where n stands for the outward normal of Ω. At this point, it becomes natural to assume that Ω is convex.
Indeed, if this is the case, the acceleration of a fluid particle located on the boundary will be directed toward
the interior of Ω because the particle is constrained to stay in Ω. As the acceleration of the fluid particles
is – at least heuristically – equal to ´∇p, it is reasonable to expect that ∇p ¨ n ě 0 on BΩ. Therefore, at a
formal level, assuming the convexity of Ω leads to H2 ě 0, i.e. to the property that the averaged entropy H is
a convex function of time. This was remarked and conjectured by Brenier in [10, section 4], but has received
no proof to our knowledge until now. Indeed, the main difficulty lies in the fact that a priori the solutions
are not regular enough to make the above computation rigorous. The goal of this paper is to give a rigorous
statement and to prove this conjecture. The two main statements can informally be stated as follows:

Theorem. Let us assume that Ω is convex. If pρα,vαqαPA is the unique solution of the variational problem

(1.3) whose total entropy
ş1

0
Hptq dt is finite and minimal compared to all other solutions, then H is a convex

function.

Theorem. Let us assume that Ω is convex and that the boundary terms are such that Hp0q and Hp1q are

finite. Then there exists a solution of the variational problem (1.3) such that
ş1

0
Hptq dt is finite and minimal

compared to all other solutions.

More precisely, see Theorem 2.15 and Theorem 2.14 for the exact assumptions and statements, and Section
5 for the translation in Brenier’s parametric setting (see below).

Let us remark that the convexity of the entropy is invisible for classical solutions. Indeed, if ραt is a
Dirac mass for any α, then Hptq “ `8. Thus the convexity of the entropy is non trivial only for "strongly"
non-classical solutions.

The strategy to prove the convexity of the entropy goes as follows. For a fixed α, we see t ÞÑ ραt as a curve
in the space of probability measures on Ω. This space (denoted PpΩq) can be endowed with the 2-Wasserstein
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distance W2p¨, ¨q coming from optimal transport: the squared distance W 2
2 pµ, νq between two measures µ and

ν is just the optimal transport cost among all transport between µ and ν. The interest of this distance is that
the action

ş1

0

ş

Ω
1
2

|vα
t pxq|2ραt pxq dx dt of the curve ρα (or at least, the minimal value of the action among all

velocity field v
α satisfying the continuity equation (1.1)) can be seen as the integral w.r.t. time of the square

of the metric derivative of the curve t ÞÑ ραt in the metric space pPpΩq,W2q. In particular, there appears a
natural time-discretization of the action: if N is large enough and τ :“ 1{N we expect that

inf
vα satisfying (1.1)

ż 1

0

ż

Ω

1

2
|vα

t pxq|2ραt pxq dx dt “
ż 1

0

1

2
| 9ραt |2 dt »

N
ÿ

k“1

τ

2

˜

W2pραpk´1qτ , ρ
α
kτ q

τ

¸2

.

At a discrete level, ρα, which is a curve valued in PpΩq, is approximated by an element of PpΩqN`1. The
incompressibility constraint will be relaxed in order to allow comparison of the optimizer with any other
competitor. If Cq : PpΩq Ñ R penalizes (more and more as q Ñ `8) the probability measures that are
different from the Lebesgue measure, a discretized version of the Euler variational formulation (1.3) might
read

min

$

&

%

ż

A

»

–

N
ÿ

k“1

τ

2

˜

W2pραpk´1qτ , ρ
α
kτ q

τ

¸2
fi

fl dθpαq `
N
ÿ

k“0

Cq

ˆ
ż

A

ραkτ dθpαq
˙

: ρα0 , ρ
α
1 fixed for θ-a.e. α

,

.

-

.

Even though it would be possible, we will not write down the optimality conditions of this discretized problem
as they contain much more information than needed for our goal. Instead, if we take the minimizer of
the discretized problem, we will let the k-th component follow the flow of the heat equation (with no-flux
boundary conditions) and use the result as a competitor. The key point is that the heat equation is strongly
related to the Wasserstein distance: the heat flow is the gradient flow of the functional entropy ρ ÞÑ

ş

Ω
ρ ln ρ

in the metric space pPpΩq,W2q. In particular, and this is called the Evolution Variational Inequality, one can
estimate the derivative of the Wasserstein distance along the heat flow Φs:

d

ds

W 2
2 pΦsµ, νq

2

ˇ

ˇ

ˇ

ˇ

s“0

ď
ż

Ω

ν ln ν ´
ż

Ω

µ lnµ.

This kind of inequality was previously used by Matthes, Mccann and Savaré in [15] under the name of flow

interchange to tackle first order (in time) PDEs (basically discretizations via the JKO scheme of gradient
flows). As far as we know, this kind of technique has never been used for second order PDEs like the Euler
equation1. With this evolution variational inequality, one can show in a very simple way that the averaged
entropy

ş

A

ş

Ω
ραkτ ln ρ

α
kτ dθpαq is a (discrete) convex function of k. Then, one can expect that the solutions of

the discretized problem will converge to those of the original one, and that the convexity of the entropy will
be preserved at the limit.

It happens that all the quantities involved do not really depend on the particular dependence of the ρα

in α. Indeed, if one denotes by Γ the space of continuous curves valued in the probability measures on Ω

endowed with the Wasserstein distance (in short Γ “ Cpr0 , 1s,PpΩqq), everything only depends on the image
measure of θ through the map α ÞÑ ρα. The natural object we are dealing with is therefore a probability
measure on Γ, something that one can call (by analogy with [6]) a W2-traffic plan. In a way, the application
α ÞÑ ρα is a parametrization of a W2-traffic plan: that’s why we will call Brenier’s formulation the parametric
one, while we will work in the non parametric setting, dealing directly with probability measures on Γ. In our
setting, most topological properties are easier to handle, and notations are according to us simplified. Even
though any probability measure on Γ cannot be a priori parametrized, we will show that it is the case for
the solutions of Euler’s variational problem. Therefore, our results can be translated in Brenier’s parametric
setting.

This paper is organized as follows. In Section 2, we introduce the notations that we will use, we briefly
recall some properties of the Wasserstein distance and of the heat equation seen as the gradient flow of the
entropy. We state explicitly the variational problem we are interested in and prove the existence of a solution

1Let us precise that this idea is adapted from an ongoing work [14] with Filippo Santambrogio where the same kind of technique is used
to provide regularity for solutions of quadratic Mean Field Games.
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(a result which is known since [8]). We give a rigorous statement of the theorems that we prove in the next
two sections. Section 3 introduces the discrete problem and proves the convexity of the averaged entropy at
the discrete level. This section contains the key ingredient around which all the proof revolves. In Section 4,
we show that the solutions of the discrete problems converge to the solution of the original one, and that the
convexity of the averaged entropy is preserved when the limit is taken. Though lengthy and technical, this
section does not contain profound ideas. Finally, Section 5 is devoted to the proof of the equivalence between
the parametric and non parametric formulations.

2. NOTATIONS, PRELIMINARY RESULTS AND EXISTENCE OF A SOLUTION TO THE CONTINUOUS PROBLEM

If X is a polish space (complete, metric, separable), the space of Borel probability measures on X will be
denoted by PpXq, and CpXq is the space of continuous and bounded functions on X valued in R. The space
PpXq will be endowed with the topology of the weak convergence of measures (i.e. the topology induced by
the duality with CpXq).

In all the sequel, we will denote by Ω a closed bounded convex subset of Rd with non empty interior. In
particular, Ω is compact. In order to avoid normalization constants, we assume that the Lebesgue measure
of Ω is 1. The Lebesgue measure on Ω, which is therefore a probability measure, will be denoted by L.

2.1. The Wasserstein space. The space PpΩq of probability measures on Ω is endowed with the Wasserstein
distance: if µ and ν are two elements of PpΩq, the 2-Wasserstein distance W2pµ, νq between µ and ν is defined
by

(2.1) W2pµ, νq :“
d

min

"
ż

ΩˆΩ

|x ´ y|2 dγpx, yq : γ P PpΩ ˆ Ωq and π0#γ “ µ, π1#γ “ ν

*

.

In the formula above, π0 and π1 : Ω ˆ Ω Ñ Ω stand for the projections on respectively the first and second
component of ΩˆΩ. If T : X Ñ Y is a measurable application and µ is a measure on X , then the image mea-
sure of µ by T , denoted by T#µ, is the measure defined on Y by pT#µqpBq “ µpT´1pBqq for any measurable
set B Ă Y . It can also be defined by

ż

Y

apyq dpT#µqpyq :“
ż

X

apT pxqq dµpxq,

this identity being valid as soon as a : Y Ñ R is an integrable function.
For general results about optimal transport, the reader might refer to [19] or [17]. We recall that W2

defines a metric on PpΩq that metrizes the weak convergence of measures. Therefore, thanks to Prokhorov’s
Theorem, the space pPpΩq,W2q is a compact metric space. We also recall that pPpΩq,W2q is a geodesic space
and if γ P PpΩ ˆ Ωq is optimal in formula (2.1), then a constant-speed geodesic ρ : r0 , 1s Ñ PpΩq joining µ

to ν is given by ρptq :“ πt#γ with πt : px, yq P Ω ˆ Ω Ñ p1 ´ tqx ` ty P Ω (remark that the convexity of Ω is
important here). Reciprocally, every constant-speed geodesic is of this form (see [17, prop. 5.32]). We also
recall that W 2

2 : PpΩq ˆ PpΩq Ñ R is a convex function.
We will consider the entropy (w.r.t. the Lebesgue measure) functional H on PpΩq. It is the functional

H : PpΩq Ñ r0 ,`8s defined by, for any µ P PpΩq,

(2.2) Hpµq :“

$

&

%

ż

Ω

µpxq lnpµpxqq dx if µ is absolutely continuous w.r.t. L,

`8 else.

The fact that H ě 0 on PpΩq is a consequence of Jensen’s inequality and of the normalization LpΩq “ 1.
We will also deal with an other functional on PpΩq that we will use to penalize the concentrated measures,
namely the q-th power of the density. More precisely, if q ą 1, we denote by Cq : PpΩq Ñ r0 ,`8s the
congestion functional defined by, for any µ P PpΩq,

(2.3) Cqpµq :“

$

&

%

ż

Ω

µpxqq dx ´ 1 if µ is absolutely continuous w.r.t. L,

`8 else.
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Again, thanks to Jensen’s inequality, we see that Cqpµq ě 0 with equality if and only if µ “ L. We recall that
a functional is geodesically convex on pPpΩq,W2q if for any two given probability measures, there exists a
constant-speed geodesic connecting these two measures along which the functional is convex. A functional
will be called convex if it is so w.r.t. the usual affine structure on PpΩq. Well known facts about H and Cq are
summarized in the following proposition (see [17, chap. 7]).

Proposition 2.1. For any q ą 1, the functionals H and Cq are l.s.c. (lower semi-continuous), strictly convex

and geodesically convex on pPpΩq,W2q.
Let us underline that the convexity of Ω is needed to get the geodesic convexity of H and Cq.

2.2. Absolutely continuous curves in the Wasserstein space. If S is a closed subset of r0 , 1s, ΓS will
denote the set of continuous functions on S valued in PpΩq (in practice, we will only consider subsets S that
have a finite number of points or that are subintervals of r0 , 1s). In the case where the index S is omitted, it
is assumed that S “ r0 , 1s. This space will be equipped with the distance d of the uniform convergence, i.e.

dpρ1, ρ2q :“ max
tPS

W2pρ1ptq, ρ2ptqq.

For any closed subset S1 of S, the application eS1 : ΓS Ñ ΓS1 is the restriction operator. In the case where
S1 “ ttu is a singleton, we will use the notation et :“ ettu and often use the compact writing ρt for etpρq “ ρptq.
One can see that ΓS is a polish space, and that it is compact if S contains a finite number of points.

Following [2, Definition 1.1.1], we give ourselves the following definition.

Definition 2.2. We say that a curve ρ P Γ is 2-absolutely continuous if there exists a function f P L2pr0 , 1sq
such that, for every 0 ď t ď s ď 1,

W2pρt, ρsq ď
ż s

t

fprq dr.

The main interest of this notion lies in the two following theorems that we recall.

Theorem 2.3. If ρ P Γ is a 2-absolutely continuous curve, then the quantity

| 9ρt| :“ lim
hÑ0

W2pρt`h, ρtq
h

exists and is finite for a.e. t. Moreover,

(2.4)
ż 1

0

| 9ρt|2 dt “ sup
Ně2

sup
0ďt1ăt2ă...ătNď1

N
ÿ

k“2

W 2
2 pρtk´1

, ρtkq
tk ´ tk´1

.

Proof. The first part is just [2, Theorem 1.1.2]. The proof of the representation formula (2.4) can easily be
obtained by adapting the proof of [3, Theorem 4.1.6]. �

The quantity | 9ρt| is called the metric derivative of the curve ρ and heuristically corresponds to the norm of
the derivative of ρ at time t in the metric space pPpΩq,W2q. The link between this metric derivative and the
continuity equation is the following (and difficult) theorem, whose proof can be found in [2, Theorem 8.3.1]
(see also [17, Theorem 5.14]).

Theorem 2.4. Let ρ P Γ be a 2-absolutely continuous curve. Then

(2.5)
1

2

ż 1

0

| 9ρt|2 dt “ min

"
ż 1

0

ˆ
ż

Ω

1

2
|vt|2 dρt

˙

dt

*

,

where the minimum is taken over all families pvtqtPr0,1s such that vt P L2pΩ,Rd, ρtq for a.e. t and such that the

continuity equation Btρt ` ∇ ¨ pρtvtq “ 0 with no-flux boundary conditions is satisfied in a weak sense.

This result shows that if we are only interested in the minimal value taken by the action of the curve (the
r.h.s. (right hand side) of (2.5)), we only need to consider the metric derivative of the curve ρ and we can
forget the velocity field v. Therefore we define the action A : Γ Ñ r0 ,`8s by, for any ρ P Γ,

(2.6) Apρq :“

$

&

%

1

2

ż 1

0

| 9ρt|2 dt if ρ is 2 ´ absolutely continuous,

`8 else.
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Some standard but useful properties of this functional are the following.

Proposition 2.5. The functional A is convex, l.s.c. and its sublevel sets are compact in Γ.

Proof. To prove that A is convex and l.s.c., we rely on the representation formula (2.4) which shows that A

is the supremum of convex continuous functions. Moreover if ρ P Γ is a curve with finite action and s ă t,
then, again with (2.4), one can see that W2pρs, ρtq ď

a

2Apρq
?
t ´ s. This shows that the sublevel sets of A

are uniformly equicontinuous, therefore they are relatively compact thanks to Ascoli-Arzela’s theorem. �

2.3. The heat equation and the Wasserstein space. Let us denote by Φ : r0 ,`8qˆPpΩq Ñ PpΩq the flow
of the heat equation with Neumann boundary conditions. In other words, for any s ě 0 and any µ P PpΩq,
Φspµq “ upsq where u is the solution (in the sense of distributions) of the Cauchy problem

$

’

’

&

’

’

%

Bu
Bt “ ∆u in p0 ,`8q ˆ Ω̊

∇u ¨ n “ 0 on p0 ,`8q ˆ BΩ
lim
tÑ0

uptq “ µ in PpΩq
.

In the equation above, n stands for the outward normal vector to the boundary BΩ. As Ω is convex, it has
a Lipschitz boundary, a regularity which is known to be sufficient for this Cauchy problem to be well posed
and to admit a unique solution (see for instance [4, Section 7] and [16]). Moreover (see [4, Section 7]), a
regularizing effect of the heat flow is encoded in the following estimate (with C a constant that depends only
on Ω):

@µ P PpΩq, @s ą 0, }Φsµ}L8 ď C
´

s´d{2 ` 1
¯

.

In particular, for any s ą 0 there exists a constant Cs such that for any µ P PpΩq, we have HpΦsµq ď Cs.
The key point in what follows is that the heat flow can be seen as the gradient flow of the entropy functional

H in the metric space pPpΩq,W2q. That is (and this was remarked first by [13]), in a very informal way, Φ
flows in the direction where the entropy H decreases the most. The standard reference about gradient flows
in metric spaces is [2], one can also look at the survey [18]. In any case, this seminal point of view explains
the three following identities involving the heat flow, the Wasserstein distance, and the entropy.

Proposition 2.6. The Wasserstein distance decreases along the heat flow: if µ and ν P PpΩq, and s ě 0,

(2.7) W2pΦsµ,Φsνq ď W2pµ, νq.
Moreover, let µ P PpΩq with Hpµq ă `8. Then the curve s ÞÑ Φsµ is 2-absolutely continuous and the Energy

Identity holds: for any s ě 0,

(EI)
ż s

0

| 9Φrµ|2 dr “ Hpµq ´ HpΦspµqq.

In addition, for any µ, ν P PpΩq with Hpµq ă `8 and any s ě 0, the Evolution Variational Inequality holds:

(EVI) lim sup
hÑ0, hą0

W 2
2 pΦs`hµ, νq ´ W 2

2 pΦsµ, νq
2h

ď Hpνq ´ HpΦsµq.

One can look at [2, Theorem 11.2.1] to see the generalization of these identities to more general functionals
than H along their gradient flow, provided that assumptions of λ-convexity along generalized geodesics are
satisfied by the functional (and this is the case for H with λ “ 0 because of our assumption of convexity of
Ω). All this properties are also summarized in [15, Theorem 2.4].

2.4. Statement of the continuous problem. As explained in the introduction, the object on which we will
work, a "W2-traffic plan", is a probability measure on the set of curves valued in PpΩq, i.e. an element of
PpΓq. Recall that the space PpΓq is equipped with the topology of weak convergence of measures. If Q P PpΓq,
we need to translate the constraints, namely the fact that the values of the curves at t “ 0 and t “ 1 are
fixed, and the incompressibility at each time t.

Incompressibility means that at each time t, the measure et#Q (which is an element of PpPpΩqq) when
averaged (its mean value is an element of PpΩq), is equal to L. We therefore need to define what the mean
value of et#Q is.
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Definition 2.7. Let S be a closed subset of r0 , 1s and t P S. If Q P PpΓSq, we denote by mtpQq the probability

measure on Ω defined by

(2.8) @a P CpΩq,
ż

Ω

apxq drmtpQqspxq :“
ż

ΓS

ˆ
ż

Ω

apxq dρtpxq
˙

dQpρq.

We can easily see that, for a fixed t, Q ÞÑ mtpQq is continuous. It is an easy application of Fubini’s theorem
to show that, if Q-a.e. ρt is absolutely continuous w.r.t. to L, then mtpQq is also absolutely continuous w.r.t.
L, and its density is the mean density of the ρt w.r.t. Q. Incompressibility is then expressed by the fact that
mtpQq “ L for any t.

To encode the boundary conditions, we just consider a coupling γ P PpΓt0,1uq “ PpPpΩq ˆ PpΩqq between
the initial and final values, compatible with the incompressibilty constraint (i.e. m0pγq “ m1pγq “ L), and
we impose that pe0, e1q#Q “ γ.

Definition 2.8. Let γ P PpΓt0,1uq be a coupling compatible with the incompressibility constraint (i.e. m0pγq “
m1pγq “ L) and S be a closed subset of r0 , 1s containing 0 and 1. The space of incompressible W2-traffic plans

is

PinpΓSq :“ tQ P PpΓSq : @t P S, mtpQq “ Lu .
The space of W2-traffic plans satisfying the boundary conditions is

PbcpΓSq :“ tQ P PpΓSq : pe0, e1q#Q “ γu .
The space of admissible W2-traffic plans is

PadmpΓSq :“ PinpΓSq X PbcpΓSq.

The following proposition derives directly from the definition.

Proposition 2.9. If S is a closed subset of r0 , 1s containing 0 and 1, the spaces PinpΓSq, PbcpΓSq and PadmpΓSq
are closed in PpΓSq.

We have now enough vocabulary to state the minimization problem we are interested in, namely to min-
imize the averaged action over the set of admissible W2-traffic plans. We denote by A : PpΓq Ñ r0 ,`8s the
functional defined by, for any Q P PpΓq,

ApQq :“
ż

Γ

Apρq dQpρq,

where we recall that Apρq is the action of the curve ρ, see (2.6).

Definition 2.10. The continuous problem is defined as

(CP) mintApQq : Q P PadmpΓqu.
Any Q P PadmpΓq with ApQq ă `8 realizing the minimum will be referred as a solution of the continuous

problem.

In order to prove the existence of a solution to (CP), we rely on the classical following lemma which is valid
if ΓS is replaced by any metric space (see for instance [17, Proposition 7.1] and [2, Remark 5.15]).

Lemma 2.11. Let S be a closed subset of r0 , 1s and F : ΓS Ñ r0 ,`8s a l.s.c. positive function. Then the

function F : PpΓSq Ñ r0 ,`8s defined by

FpQq “
ż

ΓS

F pρq dQpρq

is convex and l.s.c. Moreover, if the sublevel sets of F are compact, so are those of F .

The existence of a solution to (CP) is then a straightforward application of the direct method of calculus of
variations.

Theorem 2.12. There exists at least one solution to (CP).
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Proof. The functional A is l.s.c. and has compact sublevel sets thanks to Proposition 2.5 and Lemma 2.11.
Moreover the set PadmpΓq is closed. To use the direct method of calculus of variations, we only need to prove
that there exists Q P PadmpΓq such that ApQq ă `8.

Notice that as Ω is convex, it is the image of the unit cube of Rd by a Lipschitz and measure-preserving
map (see [12, Theorem 5.4]2). It is known (see [1, Theorem 3.3] and Proposition 5.1 to translate the result
in our setting) that the fact that Ω is the image of the unit cube by a Lipschitz and measure-preserving map
ensures the existence of an admissible W2-traffic plan with finite action. �

Let us mention here some already known results about the continuous problem (the existence of a solution
being one of them). In some cases there is no uniqueness in (CP), we refer the reader to [7] for a compre-
hensive study of one of such cases. In [1], it is shown how, from a pair of measure-preserving plans (i.e. a
pair of elements of tµ P PpΩ ˆ Ωq : π0#µ “ L and π1#µ “ Lu), one can build an incompressible coupling
γ P PinpΓt0,1uq which is, in some sense, a concatenation of them. Indeed, if µ, ν P PpΩ ˆ Ωq are two measure-
preserving plans, one can consider pµxqxPΩ and pνxqxPΩ the disintegration of µ and ν w.r.t. π1, and then define
γ P PinpΓt0,1uq by its action on continuous functions a P CpΓt0,1uq “ CpPpΩq2q:

ż

Γt0,1u

apρ0, ρ1q dγpρ0, ρ1q :“
ż

Ω

apµx, νxq dLpxq.

(To understand this construction and check that it is incompressible, one can look at [1] and Section 5 for the
translation in the non parametric case, as [1] corresponds to the parametric case with pA, θq “ pΩ,Lq). Using
this construction, then [1, Proposition 3.4] states that the minimal cost (or more precisely the square root of
the minimal value of (CP)) defines a distance on the space of measure-preserving plans.

In this article we are interested in the temporal behavior of the entropy when averaged over all phases.

Definition 2.13. Let S be a closed subset of r0 , 1s. For any Q P PpΓSq, we define the averaged entropy

HQ : S Ñ r0 ,`8s by, for any t P S,

HQptq :“
ż

ΓS

Hpρtq dQpρq.

If Q P PpΓq, the quantity

ż 1

0

HQptq dt will be called the total entropy of Q.

We recall that H is the entropy of a probability measure w.r.t. L, see (2.2). By lower semi-continuity of H and
Lemma 2.11, we can see that the function (of the variable t) HQ is l.s.c. In the sequel, we will concentrate
on the cases where the averaged entropy belongs to L1pr0 , 1sq, i.e. where the total entropy is finite. By doing
so, we exclude classical solutions: indeed, for a classical solution Q P PadmpΓq, for any t the measure et#Q is
concentrated on Dirac masses, for which the entropy is infinite. We denote by PH

admpΓq the set of admissible
W2-traffic plans for which the total entropy is finite:

P
H
admpΓq :“ PadmpΓq X

"

Q P PpΓq :

ż 1

0

HQptq dt ă `8
*

The main (and restrictive) assumption that we will consider is that there exists a solution of the continuous
problem (CP) in PH

admpΓq:

Assumption 1. There exists Q P PH
admpΓq such that ApQq “ mintApQ1q : Q1 P PadmpΓqu.

We will also work with a second assumption which will turn out to be more restrictive than Assumption 1,
but which has the advantage of involving only the boundary terms, namely the fact that the initial and final
values have finite averaged entropy.

Assumption 2. The coupling γ is such that Hγp0q and Hγp1q are finite.

2Strictly speaking, in [12], it is required that Ω has a piecewise C1 boundary, but this assumption is only used to prove that the
Minkowski functional of Ω is Lipschitz. If Ω is convex, then its Minkowski functional is convex, hence Lipschitz. Thus, one can drop the
assumption of a piecewise C1 boundary if Ω is convex.
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In other words, we impose that
ż

γ

ˆ
ż

Ω

ρ0 ln ρ0

˙

dγpρq ă `8 and
ż

γ

ˆ
ż

Ω

ρ1 ln ρ1

˙

dγpρq ă `8.

In particular, Assumption 2 implies that e0#γ and e1#γ are concentrated on measures that are absolutely
continuous w.r.t. L: it excludes any classical boundary data.

The two main results of this paper can be stated as follows. Recall that Ω is assumed to be convex.

Theorem 2.14. Suppose that Assumption 2 holds. Then there exists a solution Q P PadmpΓq of the continuous

problem (CP) such that HQptq ď maxpHγp0q, Hγp1qq for any t P r0 , 1s.

In other words, if the initial and final averaged entropy are finite, then there exists a solution of the contin-
uous problem with a uniformly bounded averaged entropy. In particular, Assumption 2 implies Assumption
1.

Theorem 2.15. Suppose that Assumption 1 holds. Then, among all the solutions of the continuous problem

(CP), the unique Q P PH
admpΓq which minimizes the total entropy

ş1

0
HQptq dt is such that HQ is convex.

In other words, we are able to prove the convexity of the averaged entropy for the solution which is "the
most mixed", i.e. the one for which the total entropy is minimal. This statement contains the fact that the
criterion of minimization of the total entropy selects a unique solution among the – potentially infinitely
many – solutions of (CP). Let us mention that our proof could be easily adapted to show that the convexity
also holds for the solution Q which minimizes

ş1

0
HQptqaptq dt, where a : r0 , 1s Ñ p0 ,`8q is any continuous

and strictly positive function.
The next two sections are devoted to the proof of these two theorems. As explained in the introduction,

we will introduce a discrete (in time) problem (DP) which approximates the continuous one. Without any
assumption, we will be able to prove the convexity of the averaged entropy at the discrete level (Theorem
3.2). Then we will show that, under Assumption 1 or Assumption 2, the solutions of the discrete problems
converge to a solution of the continuous one (Proposition 4.6). Under Assumption 2, this solution will happen
to have a uniformly bounded entropy (Corollary 4.8). Then we will show that, under Assumption 1, this
solution will be the one with minimal total entropy (Corollary 4.9) and that its averaged entropy is a convex
function of time (Corollary 4.13).

Finally, the uniqueness of such a Q P PH
admpΓq with minimal total entropy has nothing to do with the

discrete problem, it is a simple consequence of the strict convexity of H. We will therefore prove it here to
end this section. Indeed, it is a consequence of the following proposition.

Proposition 2.16. Let Q1 and Q2 P PH
admpΓq be two distinct admissible W2-traffic plans. Then there exists

Q P PH
admpQq with

ApQq ď 1

2

`

ApQ1q ` ApQ2q
˘

and
ż 1

0

HQptq dt ă 1

2

ˆ
ż 1

0

HQ1ptq dt `
ż 1

0

HQ2ptq dt
˙

.

Proof. As Q ÞÑ HQ is linear, it is not sufficient to consider the mean of Q1 and Q2. Instead, we will need to
take means in Γ. In order to do so, we disintegrate Q1 and Q2 w.r.t. et0,1u “ pe0, e1q. We obtain two families
Q1

ρ0,ρ1
and Q2

ρ0,ρ1
of W2-traffic plans indexed by pρ0, ρ1q P Γt0,1u “ PpΩq2. We define Q by its disintegration

w.r.t. et0,1u: we set Q :“ Qρ0,ρ1
bγ where Qρ0,ρ1

is taken to be the image measure of Q1
ρ0,ρ1

bQ2
ρ0,ρ1

by the map
pρ1, ρ2q ÞÑ pρ1 ` ρ2q{2 (where the ` refers to the usual affine structure on Γ). In other words, for any a P CpΓq,

ż

Γ

apρq dQpρq :“
ż

Γt0,1u

ˆ
ż

Γ

a

„

ρ1 ` ρ2

2



dQ1
ρ0,ρ1

pρ1q dQ2
ρ0,ρ1

pρ2q
˙

dγpρ0, ρ1q.
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As pe0, e1q#Q1
ρ0,ρ1

and pe0, e1q#Q2
ρ0,ρ1

are Dirac masses concentrated on pρ0, ρ1q, we can easily see that Q P
PbcpΓq. The incompressibility constraint is straightforward to obtain: for any a P CpΩq and any t P r0 , 1s,
ż

Ω

apxq drmtpQqspxq “
ż

Γt0,1u

ˆ
ż

Γ

„
ż

Ω

apxq dρ1t pxq ` dρ2t pxq
2



dQ1
ρ0,ρ1

pρ1q dQ2
ρ0,ρ1

pρ2q
˙

dγpρ0, ρ1q

“
ż

Γt0,1u

ˆ
ż

Γ

„
ż

Ω

apxq dρ1t pxq
2



dQ1
ρ0,ρ1

pρ1q `
ż

Γ

„
ż

Ω

apxq dρ2t pxq
2



dQ2
ρ0,ρ1

pρ2q
˙

dγpρ0, ρ1q

“ 1

2

ż

Ω

apxq dx ` 1

2

ż

Ω

apxq dx

“
ż

Ω

apxq dx.

Thus, we have Q P PadmpΓq. To handle the action, let us just remark that for any ρ1 and ρ2 in Γ, by convexity
of A,

A

ˆ

ρ1 ` ρ2

2

˙

ď 1

2

`

Apρ1q ` Apρ2q
˘

.

Integrating this inequality w.r.t. to Q1
ρ0,ρ1

bQ2
ρ0,ρ1

and then w.r.t. γ gives the result. We use the same kind of
reasoning for the entropy, but this functional is strictly convex. Hence, for any t P r0 , 1s,

H

ˆ

ρ1t ` ρ2t
2

˙

ď 1

2

`

Hpρ1t q ` Hpρ2t q
˘

with a strict inequality if ρ1t ‰ ρ2t and if the r.h.s. is finite. Integrating w.r.t. t and w.r.t. Q1
ρ0,ρ1

bQ2
ρ0,ρ1

we get,

ż

Γ

ˆ
ż 1

0

H

„

ρ1t ` ρ2t
2



dt

˙

dQ1
ρ0,ρ1

pρ1q dQ2
ρ0,ρ1

pρ2q ď

1

2

ˆ
ż

Γ

ˆ
ż 1

0

Hrρ1t s dt
˙

dQ1
ρ0,ρ1

pρ1q `
ż

Γ

ˆ
ż 1

0

Hrρ2t s dt
˙

dQ2
ρ0,ρ1

pρ2q
˙

,

with a strict inequality if Q1
ρ0,ρ1

‰ Q2
ρ0,ρ1

and if the r.h.s. is finite. Then, we integrate w.r.t. γ and notice
that, as Q1 ‰ Q2, then Q1

ρ0,ρ1
‰ Q2

ρ0,ρ1
for a γ-non negligible sets of pρ0, ρ1q, and as Q1 and Q2 P PH

admpΓq, the
r.h.s. of the equation above is finite for γ-a.e. pρ0, ρ1q. Using Fubini’s theorem, we are led to the announced
conclusion. �

3. ANALYSIS OF THE DISCRETE PROBLEM

As we explained before, to tackle the continuous problem (CP), we will introduce a discretized (in time)
variational problem that approximates the continuous one. In this section, we give a brief heuristic justifi-
cation of it, prove its well-posedness, and show that the discrete averaged entropy is convex. In the proof of
the latter property, we use the flow interchange technique that was previously introduced in [15].

The discrete problem is obtained by performing three different approximations:
• We consider a number of discrete times N ` 1 ě 2. We will use τ :“ 1{N as a notation for the time

step. The set TN Ă r0 , 1s will stand for the set of all discrete times, namely

TN :“ tkτ : k “ 0, 1, . . . , Nu .
In particular, ΓTN “ PpΩqN`1. We will work with W2-traffic plans on ΓTN , i.e. elements of PpΓTN q.
According to the representation of the action (2.4), we expect that for a curve ρ P Γ,

Apρq »
N
ÿ

k“1

W 2
2 pρpk´1qτ , ρkτ q

2τ
.

• The incompressibility constraint will be relaxed. For any k P t1, 2, . . . , N´1u, we penalize the densities
mkτ pQq which are away from the Lebesgue measure by adding a term Cqpmkτ pQqq, where Cq is defined
in (2.3). As explained in Section 2, this term is positive and vanishes if and only if mkτ pQq “ L,
moreover it goes to `8 as q Ñ `8 if mkτ pQq ‰ L.
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• We will also add an entropic penalization, i.e. a discretized version of

λ

ż 1

0

HQptq dt,

with λ a small parameter. This term explains why we select, at the limit λ Ñ 0, the minimizers whose
total entropy is minimal. It is crucial because it enables us to show that the averaged entropy of the
discrete problem converges pointwisely to the averaged entropy of the continuous problem. This
pointwise convergence is necessary to ensure that the averaged entropy of the continuous problem is
convex. In particular, the limit λ Ñ 0 must be taken after N Ñ `8 and q Ñ `8.

Let us state formally our discrete minimization problem. We fix N ě 1 (τ :“ 1{N ), q ą 1 and λ ą 0 and
define TN “ tkτ : k “ 0, 1, . . . , Nu. We denote by AN,q,λ : PpΓTN q Ñ r0 ,`8s the functional defined by, for
any Q P PpΓTN q,

A
N,q,λpQq :“

N
ÿ

k“1

ż

Γ
TN

W 2
2 pρpk´1qτ , ρkτ q

2τ
dQpρq `

N´1
ÿ

k“1

Cqpmkτ pQqq ` λ

N´1
ÿ

k“1

τHQ pkτq .

The Discrete Problem consists in minimizing this functional under the only constraint that the initial and
final values are coupled through γ, the set of such W2-traffic plans being PbcpΓTN q (cf. Definition 2.8):

(DP) min
 

A
N,q,λpQq : Q P PbcpΓTN q

(

.

A solution of the discrete problem is a Q P PbcpΓTN q with AN,q,λpQq ă `8 which minimizes AN,q,λ.

Proposition 3.1. The discrete problem (DP) admits a solution.

Proof. We can see that AN,q,λ is a positive l.s.c. functional. Lower semi-continuity of the discretized action
and of the entropic penalization are not difficult to see thanks to Lemma 2.11. Moreover, Q ÞÑ CqpmtpQqq is
the composition of the linear and continuous map Q ÞÑ mtpQq and of the l.s.c. map Cq, hence is l.s.c.

As the space PpΓTN q “ PpPpΩqN`1q is compact, PbcpΓTN q is also a compact space, thus it is enough to show
that there exists one Q P PbcpΓTN q such that AN,q,λpQq ă `8. We take Q to be equal to γ on the endpoints,
and such that ekτ#Q is a Dirac mass concentrated on the Lebesgue measure L for any k P t1, 2, . . . , N ´ 1u.
As HpLq “ 0 and as the incompressibility constraint mkτ pQq “ L is satisfied for every k P t0, 1, . . . , Nu, we
can see that for this Q we have

A
N,q,λpQq “

ż

Γt0,1u

W 2
2 pρ0,Lq ` W 2

2 pL, ρ1q
2τ

dγpρq.

As the Wasserstein distance is uniformly bounded by the diameter of Ω, the r.h.s. of the above equation is
finite. The conclusion derives from a straightforward application of the direct method of calculus of varia-
tions. �

One could show that the discrete problem (DP) admits a unique solution (it is basically the same proof as
Proposition 2.16), but we will not need it. The key result of this section is the following:

Theorem 3.2. Let Q P PbcpΓTN q be a solution of the discrete problem (DP). Then the function k P t0, 1, . . . , Nu ÞÑ
HQpkτq is convex, i.e. for every k P t1, 2, . . . , N ´ 1u,

(3.1) HQ pkτq ď 1

2
HQ ppk ´ 1qτq ` 1

2
HQ ppk ` 1qτq .

Proof. As AN,q,λpQq is finite we know that for every k P t1, 2, . . . , N ´ 1u, HQpkτq ă `8 and mkτ pQq P LqpΩq.
Let us remark that if HQp0q “ `8 then there is nothing to prove in equality (3.1) for k “ 1 (the r.h.s. being
infinite); and, equivalently, if HQp1q “ `8 there is nothing to prove for k “ N ´ 1. So from now on, we fix
k P t1, 2, . . . , N ´ 1u such that HQ ppk ´ 1qτq, HQ pkτq and HQ ppk ` 1qτq are finite, and it is enough to show
(3.1) for such a k.

We recall that Φ : r0 ,`8q ˆ PpΩq Ñ PpΩq denotes the heat flow, let us call Φk : r0 ,`8q ˆ ΓTN Ñ ΓTN the
heat flow acting only on the k-th component: for any s ě 0, ρ P ΓTN and l P t0, 1, . . . , Nu,

Φk
spρqplτq :“

#

Φspρlτ q if l “ k,

ρlτ if l ‰ k.
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If s ě 0, it is clear that Φk
s leaves unchanged the boundary values, thus Φk

s#Q P PbcpΓTN q, and therefore by
optimality of Q we have that

(3.2) A
N,q,λpQq ď A

N,q,λpΦk
s#Qq.

Let us expand this formula. We can see (by definition of HQ) that

HΦk
s#Q plτq “

$

&

%

ż

Γ
TN

HpΦsrρlτ sq dQpρq if l “ k,

HQ plτq if l ‰ k.

Concerning the term mlτ pQq, the linearity of the flow enables us to write

mlτ pΦk
s#Qq “

#

Φs pmlτ rQsq if l “ k,

mlτ pQq if l ‰ k.

Let us underline that the linearity of the heat flow is crucial to handle the congestion term. Our proof
would not have worked if we would have wanted to show the convexity (w.r.t. time) of a functional (different
from the entropy) whose gradient flow in the Wasserstein space were not linear. We can rewrite (3.2) in the
following form (all the terms that do not involve the time kτ cancel):

ż

Γ
TN

W 2
2 pρpk´1qτ , ρkτ q ` W 2

2 pρkτ , ρpk`1qτ q
2τ

dQpρq ` Cqpmkτ pQqq ` λτ

ż

Γ
TN

Hpρkτ q dQpρq

ď
ż

Γ
TN

W 2
2 pρpk´1qτ ,Φsρkτ q ` W 2

2 pΦsρkτ , ρpk`1qτ q
2τ

dQpρq ` CqpΦs pmlτ rQsqq ` λτ

ż

Γ
TN

HpΦsρkτ q dQpρq.

It is a well known fact that the heat flows decreases the Lq norm, thus CqpΦs pmkτ rQsqq ď Cqpmkτ pQqq. It is
also a well known fact the the heat flow decreases the entropy (it is for example encoded in (EI)), thus

ż

Γ
TN

HpΦsρkτ q dQpρq ď
ż

Γ
TN

Hpρkτ q dQpρq.

Therefore, multiplying by τ and dividing by s, we are left with the following inequality, valid for any s ą 0:
ż

Γ
TN

W 2
2 pρpk´1qτ ,Φsρkτ q ´ W 2

2 pρpk´1qτ , ρkτ q
2s

dQpρq `
ż

Γ
TN

W 2
2 pΦsρkτ , ρpk`1qτ q ´ W 2

2 pρkτ , ρpk`1qτ q
2s

dQpρq ě 0.

The integrand of the first integral is exactly the rate of increase of the function s ÞÑ W 2
2 pρpk´1qτ ,Φsρkτ q{2

whose lim sup is bounded, when s Ñ 0, by Hpρpk´1qτ q ´Hpρkτ q according to (EVI). Moreover, as the entropy is
positive, the same inequality (EVI) shows that this rate of increase is uniformly (in s) bounded from above by
Hpρpk´1qτ q, and the latter is integrable w.r.t. to Q. Hence by applying a reverse Fatou’s lemma, we see that

ż

Γ
TN

rHpρpk´1qτ q ´ Hpρkτ qs dQpρq ě lim sup
sÑ0

ż

Γ
TN

W 2
2 pρpk´1qτ ,Φsρkτ q ´ W 2

2 pρpk´1qτ , ρkτ q
2s

dQpρq.

We have a symmetric minoration for
ż

Γ
TN

rHpρpk`1qτ q ´ Hpρkτ qs dQpρq, hence we end up with

0 ď
ż

Γ
TN

rHpρpk´1qτ q ´ Hpρkτ qs dQpρq `
ż

Γ
TN

rHpρpk`1qτ q ´ Hpρkτ qs dQpρq

“
ż

Γ
TN

rHpρpk´1qτ q ` Hpρpk`1qτ q ´ 2Hpρkτ qs dQpρq

“ HQ ppk ´ 1qτq ` HQ ppk ` 1qτq ´ 2HQ pkτq . �
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4. LIMIT OF THE DISCRETE PROBLEMS TO THE CONTINUOUS ONE

In all this section, let us denote by Q̄N,q,λ a solution (in fact there exists only one but this is not important)
of the discrete problem (DP) with parameters N , q and λ. We want to pass to the limit in the following way:

• By sending q Ñ `8, the incompressibility constraint mtpQq “ L will be strictly enforced at the
discrete times t P TN .

• Then, we will interpolate geodesically between discrete instants and show that this builds a sequence
of W2-traffic plans which converges to a limit Q̄λ P PadmpΓq when N Ñ `8. This Q̄λ is expected to be
a solution

min

"

ApQq ` λ

ż 1

0

HQptq dt : Q P P
H
admpΓq

*

.

• In the end, when λ Ñ 0, the W2-traffic plans Q̄λ will converge to the solution Q̄ of the original problem
with minimal total entropy and

ş1

0
HQ̄λptq dt will converge to

ş1

0
HQ̄ptq dt. This is the convergence of

the total entropy that enables us to get a pointwise convergence of the averaged entropy.

Basically, we are performing three successive Γ-limits. Let us stress out that the order in which the limits
are taken is important, though this importance may be hard to see under the various technical details. In
particular taking the limit λ Ñ 0 at the end is needed to show that at the limit the selected minimizer of the
continuous problem is the one with minimal total entropy (cf. the proof of Proposition 4.9). It may be possible
to take the limit N Ñ `8 first (instead of sending q Ñ `8 first), but then the incompressibility constraint
must be handled differently from us.

This section is organized as follows. First we show some kind of Γ´ lim sup, i.e. given continuous curves we
build discrete ones whose discrete action and total entropy are close to their continuous counterparts. Then,
and thanks to these constructions, we show a uniform bound on Q̄N,q,λ that allows us to extract converging
subsequences toward a limit Q̄, and we show that Q̄ is a solution of the continuous problem. Finally, we show
that Q̄ is the minimizer of A with minimal total entropy and that its averaged entropy is convex.

4.1. Building discrete curves from continuous ones. Let us first show a result that will be crucial to
handle Assumption 2, namely a procedure to regularize curves in order for the total entropy to be finite.

Proposition 4.1. Under Assumption 2, for any Q P PadmpΓq and for any ε ą 0, there exists Q1 P PH
admpΓq such

that ApQ1q ď ApQq ` ε and HQ1 P L8pr0 , 1sq.

Proof. Let us fix Q P PadmpΓq. The idea is to use the heat flow Φ to regularize the curves: indeed, we know
that if s ą 0 is fixed, then for any ρ P Γ, HpΦsρtq is bounded independently on t and ρ. Moreover, applying
uniformly the heat flow decreases the action. Indeed, we recall that at a discrete level the Wasserstein
distance decreases along the heat flow: it is Inequality (4.1). Using the representation formula (2.4) for the
action, one concludes that for a fixed s ě 0,

(4.1)
ż 1

0

1

2
| 9Φsρt|2 dt ď

ż 1

0

1

2
| 9ρt|2 dt.

However, by doing this, we lose the boundary values. To recover them, we squeeze the curve Φsρ into the
subinterval rs , 1 ´ ss, and then use the heat flow (acting on ρ0) to join ρ0 to Φspρ0q on r0 , ss and Φspρ1q to ρ1
on r1 ´ s , 1s. Formally, for 0 ă s ď 1{2, let us define the regularizing operator Rs : Γ Ñ Γ by

@ρ P Γ,@t P r0 , 1s, Rspρqptq :“

$

’

’

&

’

’

%

Φtpρ0q if 0 ď t ď s,

Φs

´

ρ
”

t´s
1´2s

ı¯

if s ď t ď 1 ´ s,

Φ1´tpρ1q if 1 ´ s ď t ď 1.

The continuity of the heat flow allows us to assert that Rspρq is a continuous curve. As the entropy decreases
along the heat flow (cf. (EI)), and as HpRsrρsq is uniformly bounded on rs , 1´ ss (independently on ρ), we can
see that there exists a constant Cs depending only on s such that

(4.2) @ρ P Γ, @t P r0 , 1s, HrRspρqptqs ď maxpHpρ0q,Hpρ1q, Csq.
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To estimate the action of Rspρq, we use the estimate (4.1) on rs , 1 ´ ss and the identity (EI) to hold the
boundary terms:

ApRspρqq ď
ż s

0

1

2
| 9Φtρ0|2 dt `

ż 1´s

s

1

2
| 9ρpt´sq{p1´2sq|2 dt `

ż 1

1´s

1

2
| 9Φ1´tρ1|2 dt

“ Hpρ0q ´ HpΦsrρ0sq
2

` 1

1 ´ 2s

ż 1

0

1

2
| 9ρt|2 dt ` Hpρ1q ´ HpΦsrρ1sq

2

“ 1

1 ´ 2s
Apρq ` 1

2
pHpρ0q ´ HpΦsrρ0sq ` Hpρ1q ´ HpΦsrρ1sqq .

In particular, using the lower semi-continuity of the entropy H and the continuity w.r.t. s of the heat flow, we
see that if Hpρ0q and Hpρ1q are finite,

(4.3) lim sup
sÑ0

ApRspρqq ď Apρq.

We are now ready to use the regularization operator on the W2-traffic plan Q. For a fixed 0 ă s ď 1{2, we
define Qs :“ Rs#Q. As Rs does not change the boundary points, we still have pe0, e1q#Qs “ γ. Integrating
(4.2) w.r.t. Q, we get that

@t P r0 , 1s, HQs
ptq ď HQs

p0q ` HQs
p1q ` Cs “ Hγp0q ` Hγp1q ` Cs,

and we know that the r.h.s. is finite because of Assumption 2. Concerning the action, since Hpρ0q and Hpρ1q
are finite for Q-a.e. ρ P Γ, we can integrate (4.3) w.r.t. Q by using a reverse Fatou’s lemma to get

lim sup
sÑ0

ApQsq ď ApQq.

It remains to check the incompressibility. For a fixed t P r0 , 1s, we notice that et#Qs is of the form pΦr˝et1 q#Q

for a some r ě 0 and t1 P r0 , 1s (for example, r “ t and t1 “ 0 if t P r0 , ss, and r “ s and t1 “ pt ´ sq{p1 ´ 2sq
if t P rs , 1 ´ ss). Thus, by linearity of the heat flow, mtpQsq “ Φrpmt1 rQsq. But mt1 pQq “ L for any t1 and the
Lebesgue measure is preserved by the heat flow, hence mtpQsq “ L.

Therefore, the Q1 that we take is just Qs for s ą 0 small enough. �

It is then possible to show how one can build a discrete curve from a continuous one in such a way that
the action and the total entropy do not increase too much. This is a standard procedure which would be valid
for probability on curves valued in arbitrary geodesic spaces.

Proposition 4.2. Let Q P PH
admpΓq be an admissible W2-traffic plan with finite total entropy. For any N ě 1,

we can build a W2-traffic plan QN P PinpΓTN q in such a way that

lim sup
NÑ`8

A
N,q,λpQN q ď ApQq ` λ

ż 1

0

HQptq dt.

Proof. We can assume that ApQq ă `8. The idea is to sample each curve on a uniform grid, but not neces-
sarily on TN . Indeed, the key point in this sampling is to ensure that the discrete entropic penalization of
the functional AN,q,λ is bounded by λ

ş1

0
HQptq dt. Let us fix N ě 1 and recall that τ “ 1{N . We can see that

ż τ

0

N´1
ÿ

k“1

HQ pkτ ` sq ds “
ż 1

τ

HQptq dt ď
ż 1

0

HQptq dt.

Therefore, there exists sN P p0 , τq such that

τ

N´1
ÿ

k“1

HQ pkτ ` sN q ď
ż 1

0

HQptq dt.

We define the sampling operator SN : Γ Ñ ΓTN (which samples on the grid tkτ ` sN : k “ 1, 2, . . . , N ´ 1u)
by

@ρ P Γ,@k P t0, 1, . . . , Nu, SN pρq pkτq “

$

’

&

’

%

ρ0 if k “ 0,

ρ1 if k “ N,

ρkτ`sN if 1 ď k ď N ´ 1.
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Then we simply define QN :“ SN#Q. As the initial and final values are left unchanged, it is clear that
pe0, e1q#QN “ pe0, e1q#Q “ γ, i.e. QN P PbcpΓTN q. By construction, we have that

λ

N´1
ÿ

k“1

τHQN
pkτq “ λτ

N´1
ÿ

k“1

HQ pkτ ` sN q ď λ

ż 1

0

HQptq dt.

Moreover, as Q P PadmpΓq is incompressible, it is clear that QN is incompressible too, hence
N´1
ÿ

k“1

Cqpmkτ rQN sq “ 0.

The last term to handle is the action. Indeed, we have to take care of the fact that we use a translated grid
which is not uniform close to the boundaries. After a standard computation (which would be valid in any
geodesic space) that we do not detail here, one finds that

N
ÿ

k“1

ż

Γ
TN

W 2
2 pρpk´1qτ , ρkτ q

2τ
dQNpρq ď ApQq `

ż

Γ

ˆ
ż 2τ

0

1

2
| 9ρs|2 ds

˙

dQpρq.

For every 2-absolutely continuous curve, it is clear that the quantity
ş2τ

0
1
2

| 9ρs|2 ds goes to 0 as N Ñ `8 and it
is dominated by Apρq which is integrable w.r.t. Q. Therefore, by dominated convergence,

lim sup
NÑ`8

˜

N
ÿ

k“1

ż

Γ
TN

W 2
2 pρpk´1qτ , ρkτ q

2τ
dQN pρq

¸

ď ApQq.

Gluing all the inequalities we have collected on QN , we see that AN,q,λpQNq satisfies the desired asymptotic
bound. �

Corollary 4.3. Under Assumption 1 or Assumption 2, there exists C ă `8, such that, uniformly in N ě 1,

λ P p0 , 1s and q ą 1, we have

A
N,q,λpQ̄N,q,λq ď C.

Proof. Indeed, it is enough to take Q any element of PH
admpΓq with finite action (it exists by definition under

Assumption 1 and we use Proposition 4.1 under Assumption 2), to construct QN as in Proposition 4.2, to
define C :“ supNě1 A

N,q,λpQN q, and to use the fact that AN,q,λpQ̄N,q,λq ď AN,q,λpQN q ď C. �

4.2. Solution of the continuous problem as a limit of discrete solutions. To go from W2-traffic plans
on discrete curves to W2-traffic plans on continuous ones, we will need an extension operator EN : ΓTN Ñ Γ

that interpolates a discrete curve along geodesics in pPpΩq,W2q. More precisely,

Definition 4.4. Let N ě 1. If ρ P ΓTN , the curve EN pρq P Γ is defined as the one that coincides with ρ on

TN and such that for any k P t0, 1, . . . , N ´ 1u, the restriction of EN pρq to rkτ , pk ` 1qτ s is a3 constant-speed

geodesic joining ρkτ to ρpk`1qτ .

In particular, for any k P t0, 1, 2, . . . , N´1u, | 9EN pρq| is constant on rkτ , pk`1qτ s and equal to W2pρkτ , ρpk`1qτ q{τ .
Thus, we have the identity

ż pk`1qτ

kτ

1

2
| 9EN pρqt|2 dt “ W 2

2 pρkτ , ρpk`1qτ q
2τ

,

summed over k P t0, 1, . . . , N ´ 1u, these identities led to

(4.4) ApEN rρsq “
N
ÿ

k“1

W 2
2 pρpk´1qτ , ρkτ q

2τ
.

In other words, the action of the extended curve EN pρq is equal to the discrete one of ρ.

3One may worry about the non uniqueness of the geodesic and hence of the fact that the extension operator EN is ill-defined. However,
it is a classical result of optimal transport that the constant-speed geodesic joining two measures is unique as soon as one of the
two measures is absolutely continuous w.r.t. L. Moreover, for a traffic plan Q P PpΓTN q, if HQptq ă `8 for t P TN , then Q-a.e.
ρ is absolutely continuous w.r.t. L at time t. Thus as long as we work with W2-traffic pans Q such that HQpkτq ă `8 for any
k P t1, 2, . . . , N ´ 1u (and we leave it to the reader to check that it is the case), the operator EN is well defined.
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We are now ready to show the convergence of Q̄N,q,λ to some limit Q̄ P PadmpΓq. We take three sequences
pNnqnPN, pqmqmPN and pλrqrPN that converge respectively to `8, `8 and 0. We will not relabel the sequences
when extracting subsequences. Moreover, to avoid heavy notations, we will drop the indexes n,m and r, and
limnÑ`8, limmÑ`8, limrÑ`8 will be denoted respectively by limNÑ`8, limqÑ`8 and limλÑ0.

Proposition 4.5. Under Assumption 1 or Assumption 2, there exists Q̄ P PadmpΓq, and families pQ̄N,λqN,λ P
PadmpΓTN q, pQ̄λqλ P PadmpΓq such that (up to extraction)

lim
qÑ`8

Q̄N,q,λ “ Q̄N,λ in PpΓTN q,

lim
NÑ`8

pEN#Q̄N,λq “ Q̄λ in PpΓq,

lim
λÑ0

Q̄λ “ Q̄ in PpΓq.

Proof. We denote by C the constant given by Corollary 4.3.
To prove the existence of pQ̄N,λqN,λ, it is enough to notice that for any N ě 1 the space PpΓTN q is compact

and therefore every sequence admits a converging subsequence. By continuity of the Wasserstein distance,
we know that

N
ÿ

k“1

ż

Γ
TN

W 2
2 pρpk´1qτ , ρkτ q

2τ
dQ̄N,λpρq “ lim

qÑ`8

˜

N
ÿ

k“1

ż

Γ
TN

W 2
2 pρpk´1qτ , ρkτ q

2τ
dQ̄N,q,λpρq

¸

ď C.

To go on, we use (4.4), namely the fact that EN transforms the discrete action into the continuous one:

ApEN#Q̄N,λq “
ż

Γ
TN

ApEN pρqq dQ̄N,λpρq “
N
ÿ

k“1

ż

Γ
TN

W 2
2 pρpk´1qτ , ρkτ q

2τ
dQ̄N,λpρq ď C.

We know that the functional A is l.s.c. and that its sublevel sets are compact. Hence, we get the existence of
pQ̄λqλ such that

lim
NÑ`8

pEN#Q̄N,λq “ Q̄λ

in PpΓq and ApQ̄λq ď C. Applying exactly the same argument, we can conclude at the existence of Q̄ P PpΓq
with

lim
λÑ0

Q̄λ “ Q̄

in PpΓq together with ApQ̄q ď C.
It is easy to show that pe0, e1q#Q̄ “ γ as we have that pe0, e1q#Q̄N,q,λ “ γ: this condition passes to the

limit and is preserved by EN .
It is slightly more difficult to show the incompressibility. Let us first show that Q̄N,λ P PinpΓTN q. We fix

N, k and λ. As AN,q,λpQ̄N,q,λq ď C, we see that
ˆ
ż

Ω

|mkτ pQ̄N,q,λq|q
˙1{q

ď pC ` 1q1{q.

As LpΩq “ 1, the Lq norms are increasing with q. Thus, for any q0 ď q, we have
ˆ
ż

Ω

|mkτ pQ̄N,q,λq|q0
˙1{q0

ď pC ` 1q1{q.

Let us take the limit q Ñ `8. We have that mkτ pQ̄N,q,λq converges in PpΩq to mkτ pQ̄N,λq. As the Lq0 norm is
l.s.c. w.r.t. the weak convergence of measures, we can see that

ˆ
ż

Ω

|mkτ pQ̄N,λq|q0
˙1{q0

ď 1.

But now q0 is arbitrary, thus the L8 norm of mkτ pQ̄N,λq is bounded by 1. As we know that mkτ pQ̄N,λq is a
probability measure and that LpΩq “ 1, we deduce that mkτ pQ̄N,λq is equal to 1 L-a.e. on Ω: it exactly means
that mkτ pQ̄N,λq “ L. As Q̄N,λ also satisfies the boundary conditions, Q̄N,λ P PadmpΓTN q.

To show that the incompressibility constraint is satisfied by Q̄λ for every t, we proceed as follows: let us
consider t P r0 , 1s and N ě 1. Let k P t0, 1, . . . , N ´ 1u such that kτ ď t ď pk ` 1qτ . We denote by s P r0 , 1s the
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real such that t “ pk ` sqτ . By definition of EN , if ρ P ΓTN , there exists γ̄ an optimal transport plan between
ρkτ and ρpk`1qτ (i.e. an optimal γ in formula (2.1) with µ “ ρkτ and ν “ ρpk`1qτ ) such that EN pρqptq “ πs#γ̄

with πs : px, yq ÞÑ p1 ´ sqx ` sy. For any a P C1pΩq, we can see that
ˇ

ˇ

ˇ

ˇ

ż

Ω

a drEN pρqptqs ´
ż

Ω

a dρkτ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

ż

ΩˆΩ

parp1 ´ sqx ` sys ´ arxsq dγ̄px, yq
ˇ

ˇ

ˇ

ˇ

ď
ż

ΩˆΩ

s|∇apxq||x ´ y| dγ̄px, yq

ď
d

ż

ΩˆΩ

|∇apxq|2 dγ̄px, yq
d

ż

ΩˆΩ

|x ´ y|2 dγ̄px, yq

ď }∇a}L8W2pρkτ , ρpk`1qτ q.
Therefore, if we estimate the action of mtpEN#Q̄N,λq on a C1 function a, we find that

ˇ

ˇ

ˇ

ˇ

ż

Ω

a drmtpEN#Q̄N,λqs ´
ż

Ω

apxq dx
ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

ż

Ω

a drmtpEN#Q̄N,λqs ´
ż

Ω

a drmkτ pQ̄N,λqs
ˇ

ˇ

ˇ

ˇ

ď
ż

Γ
TN

ˇ

ˇ

ˇ

ˇ

ż

Ω

a drEN pρqptqs ´
ż

Ω

a dρkτ

ˇ

ˇ

ˇ

ˇ

dQ̄N,λpρq

ď }∇a}L8

ż

Γ
TN

W2pρkτ , ρpk`1qτ q dQ̄N,λpρq

ď
?
2τ}∇a}L8

d

ż

Γ
TN

W 2
2 pρkτ , ρpk`1qτ q

2τ
dQ̄N,λpρq

ď
?
2Cτ}∇a}L8 .

Taking the limit N Ñ `8 (hence τ Ñ 0), we know that mtpEN#Q̄N,λq converges to mtpQ̄λq, thus we get
ż

Ω

a drmtpQ̄λqs “
ż

Ω

apxq dx.

As a is an arbitrary C1 function, we have the equality mtpQ̄λq “ L for any t, in other words, Q̄λ P PinpΓq.
As we already know that Q̄λ P PbcpΓq, we conclude that Q̄λ P PadmpΓq for any λ ą 0. But PadmpΓq is closed,
therefore Q̄ P PadmpΓq. �

With all the previous work, it is easy to conclude that Q̄ is a minimizer of A: we just copy a standard proof
of Γ-convergence.

Proposition 4.6. Under Assumption 1 or Assumption 2, Q̄ is a solution of the continuous problem (CP).

Proof. We have already seen that ApEN#Q̄N,λq ď lim inf
qÑ`8

A
N,q,λpQ̄N,q,λq. By lower semi-continuity of A, we

deduce that

ApQ̄q ď lim inf
λÑ0

ˆ

lim inf
NÑ`8

ˆ

lim inf
qÑ`8

A
N,q,λpQ̄N,q,λq

˙˙

.

By contradiction, let us assume that there exists Q P PadmpΓq such that ApQq ă ApQ̄q. If we are under
Assumption 2, we can regularize it thanks to Proposition 4.1, and under Assumption 1 we know that we can
assume that Q1 P PH

admpΓq and ApQ1q ď ApQq. In any of these two cases, we can assume that there exists
Q P PH

admpΓq such that ApQq ă ApQ̄q. Thanks to Proposition 4.2, we know that we can construct a sequence
QN with

lim sup
NÑ`8

A
N,q,λpQN q ď ApQq ` λ

ż 1

0

HQptq dt

Taking the limit λ Ñ 0 and using ApQq ă ApQ̄q, we get

lim sup
λÑ0

ˆ

lim sup
NÑ`8

A
N,q,λpQN q

˙

ă lim inf
λÑ0

ˆ

lim inf
NÑ`8

ˆ

lim inf
qÑ`8

A
N,q,λpQ̄N,q,λq

˙˙

.
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Taking N and q large enough and λ small enough, one has AN,q,λpQN q ă AN,q,λpQ̄N,q,λq, which contradicts
the optimality of Q̄N,q,λ. �

4.3. Behavior of the averaged entropy of Q̄. Now, we will show that HQ̄ P L1pr0 , 1sq and that Q̄ is the
minimizer of A with minimal total entropy. If Q P PpΓTN q, let us denote by H int

Q : r0 , 1s Ñ r0 ,`8s the
piecewise affine interpolation of HQ. More precisely, if k P t0, 1, . . . , N ´ 1u and s P r0 , 1s, we define

H int
Q ppk ` sqτq :“ p1 ´ sqHQ pkτq ` sHQ ppk ` 1qτq .

We show the following estimate, which relies on the lower semi-continuity of the entropy:

Proposition 4.7. For any t P r0 , 1s, we have the following upper bound for HQ̄ptq:

HQ̄ptq ď lim inf
λÑ0

ˆ

lim inf
NÑ`8

ˆ

lim inf
qÑ`8

H int
Q̄N,q,λptq

˙˙

.

Proof. For a fixed t, Q ÞÑ HQptq is l.s.c. (Lemma 2.11). Thus, for any k P t0, 1, 2, . . . , Nu, we have

HQ̄N,λ pkτq ď lim inf
qÑ`8

HQ̄N,q,λ pkτq .

Then, to pass to the limit N Ñ `8, we will use the fact that the entropy is geodesically convex, i.e. convex
along the constant-speed geodesics. Recall that EN : ΓTN Ñ Γ is the extension operator that interpolates
along constant-speed geodesics. Let us take ρ P ΓTN . By geodesic convexity, we have for any k P t0, 1, . . . , N ´
1u and s P r0 , 1s

H rEN pρq ppk ` sqτqs ď p1 ´ sqHpρkτ q ` sHpρpk`1qτ q.
Integrating this inequality over ΓTN w.r.t. Q̄N,λ, we get

HEN#Q̄N,λ ppk ` sqτq ď p1 ´ sqHQ̄N,λ pkτq ` sHQ̄N,λ ppk ` 1qτq
ď lim inf

qÑ`8

“

p1 ´ sqHQ̄N,q,λ pkτq ` sHQ̄N,q,λ ppk ` 1qτq
‰

“ lim inf
qÑ`8

”

H int
Q̄N,q,λ ppk ` sqτq

ı

We take the limit N Ñ `8, followed by λ Ñ 0 to get (thanks to the lower semi-continuity of the averaged
entropy) the announced inequality. �

We derive a useful consequence, which implies Theorem 2.14.

Corollary 4.8. Under Assumption 2, the function HQ̄ is bounded by maxpHγp0q, Hγp1qq.

Proof. This is where we use the work of Section 3: thanks to Theorem 3.2, we know that HQ̄N,q,λ is convex
and therefore bounded by the values at its endpoints which happen to be finite (independently of N, q or λ):

@k P t0, 1, 2, . . . , Nu, HQ̄N,q,λ pkτq ď maxpHγp0q, Hγp1qq.

Thus the function H int
Q̄N,q,λ is also bounded uniformly on r0 , 1s by maxpHγp0q, Hγp1qq. Proposition 4.7 allows us

to conclude that the same bound holds for HQ̄. �

As we have now proved Theorem 2.14, we will work only under Assumption 1. It remains to show that
the Q̄ we constructed is the one with minimal total entropy. This is done thanks to the entropic penalization,
and is standard in Γ-convergence theory, the specific structure of the Wasserstein space does not play any
role.

Proposition 4.9. For any Q P PH
admpΓq solution of the continuous problem (CP), we have

ż 1

0

HQ̄ptq dt ď
ż 1

0

HQptq dt
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Proof. Let us start with an exact quadrature formula for H int
Q̄N,q,λ :

ż 1´τ

τ

H int
Q̄N,q,λptq dt “ τ

2
HQ̄N,q,λ pτq ` τ

N´2
ÿ

k“2

HQ̄N,q,λ pkτq ` τ

2
HQ̄N,q,λ p1 ´ τq ď τ

N´1
ÿ

k“1

HQ̄N,q,λ pkτq

Then we take successively the limits q Ñ `8, N Ñ `8 and λ Ñ 0, applying Fatou’s lemma and using
Proposition 4.7 to get

(4.5)
ż 1

0

HQ̄ptq dt ď lim inf
λÑ0

˜

lim inf
NÑ`8

˜

lim inf
qÑ`8

˜

τ

N´1
ÿ

k“1

HQ̄N,q,λ rkτ s
¸¸¸

.

On the other hand, let us show that the r.h.s. of (4.5) is smaller than the total entropy of any minimizer of
(CP). Indeed, assume that this is not the case for some Q P PadmpΓq solution of (CP). In particular, for some
λ ą 0 small enough, we have the strict inequality

ż 1

0

HQptq dt ă lim inf
NÑ`8

˜

lim inf
qÑ`8

˜

τ

N´1
ÿ

k“1

HQ̄N,q,λ rkτ s
¸¸

.

Using the fact that ApQq ď ApQ̄λq by optimality of Q, and thanks to the lower semi-continuity of the action,

ApQq ď ApQ̄λq ď lim inf
NÑ`8

˜

lim inf
qÑ`8

˜

N
ÿ

k“1

ż

Γ
TN

W 2
2 pρpk´1qτ , ρkτ q

2τ
dQ̄N,q,λpρq

¸¸

.

Therefore, gluing these two estimates together, we obtain

ApQq ` λ

ż 1

0

HQptq dt ă lim inf
NÑ`8

˜

lim inf
qÑ`8

˜

N
ÿ

k“1

ż

Γ
TN

W 2
2 pρpk´1qτ , ρkτ q

2τ
dQ̄N,q,λpρq ` λ

N´1
ÿ

k“1

τHQ̄N,q,λ rkτ s
¸¸

.

But if we build the QN from Q as in Proposition 4.2, we get, for N and q large enough,

A
N,q,λpQN q ă

N
ÿ

k“1

ż

Γ
TN

W 2
2 pρpk´1qτ , ρkτ q

2τ
dQ̄N,q,λpρq ` λ

N´1
ÿ

k“1

τHQ̄N,q,λpkτq ď A
N,q,λpQ̄N,q,λq,

which is a contradiction with the optimality of Q̄N,q,λ. Hence, we have proved that for any Q P PadmpΓq
solution of the continuous problem,

�(4.6)
ż 1

0

HQ̄ptq dt ď lim inf
λÑ0

˜

lim inf
NÑ`8

˜

lim inf
qÑ`8

˜

τ

N´1
ÿ

k“1

HQ̄N,q,λ rkτ s
¸¸¸

ď
ż 1

0

HQptq dt.

Now it remains to show that HQ̄ is a convex function of time. This will be done by proving that HQ̄ is the
limit of H int

Q̄N,q,λ .

Proposition 4.10. Under Assumption 1, for a.e. t P r0 , 1s,

HQ̄ptq “ lim
λÑ0

ˆ

lim
NÑ`8

ˆ

lim
qÑ`8

´

H int
Q̄N,q,λptq

¯

˙˙

.

Proof. Taking Q “ Q̄ in (4.6), we see that, up to extraction,
ż 1

0

HQ̄ptq dt “ lim
λÑ0

˜

lim
NÑ`8

˜

lim
qÑ`8

˜

τ

N´1
ÿ

k“1

HQ̄N,q,λ rkτ s
¸¸¸

.

In other words, the integral over time of the discrete averaged entropy converges to the integral of the contin-
uous one. As we know moreover that the discrete averaged entropy is an upper bound for the continuous one
(Proposition 4.7), it is not difficult to show that the discrete averaged entropy converges (up to extraction)
a.e. to the continuous one. �
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4.4. From convexity a.e. to true convexity. Proposition 4.10 is slightly weaker than the result we
claimed, as we get information about HQ̄ only for a.e. time. The first step toward true convexity is to
show that, under Assumption 2, the averaged entropy is everywhere below the line joining the endpoints.

Proposition 4.11. Under Assumption 2, for any t P r0 , 1s, we have

HQ̄ptq ď p1 ´ tqHQ̄p0q ` tHQ̄p1q.

Proof. From Proposition 4.10, we know that HQ̄ is a.e. the limit of the functions H int
Q̄N,q,λ . Thanks to Theorem

3.2, we can assert that for any t P r0 , 1s, one has H int
Q̄N,q,λptq ď p1 ´ tqH int

Q̄N,q,λp0q ` tH int
Q̄N,q,λp1q. We also know

that HQ̄ and H int
Q̄N,q,λ coincide for t “ 0 and t “ 1. Therefore, for a.e. t P r0 , 1s,

HQ̄ptq “ lim
λÑ0

ˆ

lim
NÑ`8

ˆ

lim
qÑ`8

´

H int
Q̄N,q,λptq

¯

˙˙

ď lim
λÑ0

ˆ

lim
NÑ`8

ˆ

lim
qÑ`8

´

p1 ´ tqH int
Q̄N,q,λ r0s ` tH int

Q̄N,q,λr1s
¯

˙˙

“ p1 ´ tqHQ̄p0q ` tHQ̄p1q.

As HQ̄ is l.s.c., we see that the above inequality is valid for any t P r0 , 1s. �

Now, if Q̄ is the solution of the continuous problem (CP) with minimal total entropy, then its restriction to
any subinterval of r0 , 1s is also optimal: for any 0 ď t1 ă t2 ď 1, ert1,t2s#Q̄ is also the solution of the continuous
problem (on rt1 , t2s) with boundary conditions ett1,t2u#Q̄ with minimal total entropy. This is already known
[1, Remark 3.2 and below] and comes from the fact that we can concatenate traffic plans.

Proposition 4.12. Let 0 ď t1 ă t2 ď 1. Then for any Q P PadmpΓrt1,t2sq such that ett1,t2u#Q “ ett1,t2u#Q̄, we

have
ż

Γ

ˆ
ż t2

t1

1

2
| 9ρt|2 dt

˙

dQ̄pρq ď
ż

Γrt1,t2s

ˆ
ż t2

t1

1

2
| 9ρt|2 dt

˙

dQpρq.

Moreover, if the inequality above is an equality, then

ż t2

t1

HQ̄ptq dt ď
ż t2

t1

HQptq dt.

Proof. This property relies on the fact that if Q P PadmpΓrt1,t2sq with ett1,t2u#Q “ ett1,t2u#Q̄, we can concate-
nate Q and Q̄ together to build a W2-traffic plan Q1 P PpΓq such that er0,1szrt1,t2s#Q1 “ er0,1szrt1,t2s#Q̄ and
ert1,t2s#Q1 “ ert1,t2s#Q. To do that, it is enough to disintegrate the measures Q̄ and Q w.r.t. ett1,t2u and
then to concatenate elements of Γr0,1szrt1,t2s and Γrt1,t2s which coincides on tt1, t2u: we leave the details to the
reader. �

Combining the two above propositions, we recover the convexity of HQ̄. Let us remark that we rely on the
fact that the minimizer of A with minimal total entropy is unique.

Corollary 4.13. Under Assumption 1 or Assumption 2, for any 0 ď t1 ă t2 ď 1 and any s P p0 , 1q,

HQ̄pp1 ´ sqt1 ` st2q ď p1 ´ sqHQ̄pt1q ` sHQ̄pt2q.

Proof. If the r.h.s. is infinite, there is nothing to prove. Therefore, we can assume that HQ̄pt1q and HQ̄pt2q are
finite. By uniqueness of the solution with minimal total entropy (Proposition 2.16), we know that ert1,t2s#Q̄

coincides with the solution of the continuous problem (CP) with minimal total entropy on rt1 , t2s with bound-
ary conditions ett1,t2u#Q̄ (Proposition 4.12). As HQ̄pt1q and HQ̄pt2q are finite, Assumption 2 is satisfied for
the continuous problem on rt1 , t2s and therefore we can apply Proposition 4.11 to get

HQ̄pp1 ´ sqt1 ` st2q ď p1 ´ sqHQ̄pt1q ` sHQ̄pt2q. �
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5. EQUIVALENCE WITH THE PARAMETRIC FORMULATION OF THE EULER EQUATION

In this section we will explain why our non-parametric formulation is equivalent to Brenier’s parametric
one. From the way we build it, it is clear that our formulation admits more potential solutions than Brenier’s
one, so the only technical point will be to show that, if the boundary data are in a parametric form, it is
possible to parametrize the a priori non-parametric solution of the continuous problem.

Let us take A a polish space and consider θ P PpAq a Borel probability measure on A. We will assume
that we have two families (the initial and the final) pραi qαPA and pραf qαPA of probabilities measures on Ω

indexed by A. We denote by Pbc : A Ñ Γt0,1u “ PpΩq2 the parametrization of the boundary conditions, simply
defined by Pbcpαq “ pραi , ραf q and assume that it is measurable. We assume that the boundary data satisfy
the incompressibility condition, i.e.

ż

A

ραi dθpαq “ L and
ż

A

ραf dθpαq “ L.

Translated in our language, if we set γ :“ Pbc#θ, we simply impose that m0pγq “ m1pγq “ L.
A measurable family pραt ,vα

t qpα,tqPAˆr0,1s indexed by α and t such that, for θ-a.e. α, pt ÞÑ ραt q P Γ and
v
α
t P L2pΩ,Rd, ραt q for a.e. t, is said to be admissible if

$

’

’

&

’

’

%

ρα0 “ ραi and ρα1 “ ραf for θ-a.e. α,
Btραt ` ∇ ¨ pραt vα

t q “ 0 in a weak sense with no-flux boundary conditions for θ-a.e. α,
ż

A

ραt dθpαq “ L for all t P r0 , 1s.

The first equation corresponds to the temporal boundary conditions, the second one is the continuity equation
while the last one is the coding of the incompressibility. If pραt ,vα

t qpα,tqPAˆr0,1s is an admissible family, we
define its (parametrized) action AP by

AP pρ,vq :“
ż

A

ż 1

0

ż

Ω

1

2
|vα

t pxq|2 dραt pxq dt dθpαq

and its parametrized averaged entropy HP pρ,vq : r0 , 1s Ñ R by, for any t P r0 , 1s,

HP pρ,vqptq :“
ż

A

Hpραt q dθpαq.

The first proposition is very simple: it asserts that every parametric family can be seen as an non parametric
one. In the sequel, we define the boundary conditions γ P PinpΓt0,1uq for the non-parametric problem by
γ :“ Pbc#θ.

Proposition 5.1. Let pραt ,vα
t qpα,tqPAˆr0,1s be an admissible family. Then there exists Q P PadmpΓq such that

ApQq ď AP pρ,vq and HQptq “ HP pρ,vqptq for any t P r0 , 1s.
Proof. Let P : A Ñ Γ, defined by P pαq “ pt ÞÑ ραt q be the parametrization. We set Q :“ P#θ and leave it to
the reader to check that this choice works (Theorem 2.4 might be useful). �

The reverse proposition is slightly more difficult to prove: it asserts that one can always build a parametric
family from a non-parametric W2-traffic plan in such a way that the global action and the total entropy
decrease. In particular, it implies together with Proposition 5.1 that (provided that the boundary conditions
are in a parametric form) the solution of the continuous problem (CP) with minimal total entropy can be
parametrized.

Proposition 5.2. Let Q P PadmpΓq. Then there exists an admissible family pραt ,vα
t qpα,tqPAˆr0,1s such that

AP pρ,vq ď ApQq and HP pρ,vqptq ď HQptq for any t P r0 , 1s.
Proof. Let us disintegrate Q w.r.t. to et0,1u “ pe0, e1q. We obtain a family pQρ0,ρ1

qρ0,ρ1
of W2-traffic plans

indexed by pρ0, ρ1q P Γt0,1u “ PpΩq2. We define the curve ραt as the average of all the curves in Γ w.r.t. to
Qρα

i
,ρα

f
: for any t P r0 , 1s and any α for which Qρα

i
,ρα

f
is defined (and this property holds for θ-a.e. α), we set

ραt :“ mt

´

Qρα
i
,ρα

f

¯

.
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By definition of disintegration, et0,1u#Qρα
i
,ρα

f
is a Dirac mass at the point pραi , ραf q, thus the boundary condi-

tions are satisfied. The incompressibility condition is just a consequence of the incompressibility of Q: for
any a P CpΩq,

ż

A

ˆ
ż

Ω

apxq dραt pxq
˙

dθpαq “
ż

A

ˆ
ż

Γ

„
ż

Ω

apxq dρtpxq


dQρα
i
,ρα

f
pρq

˙

dθpαq

“
ż

Γt0,1u

ˆ
ż

Γ

„
ż

Ω

apxq dρtpxq


dQρ0,ρ1
pρq

˙

dγpρ0, ρ1q

“
ż

Γ

ˆ
ż

Ω

apxq dρtpxq
˙

dQpρq

“
ż

Ω

apxq dx.

To handle the action, we use the fact that A is convex and l.s.c. Thus, thanks to Jensen’s inequality, for θ-a.e.
α,

Apραq ď
ż

Γ

Apρq dQρα
i
,ρα

f
pρq.

Integrating w.r.t. θ, we end up with
ż

A

Apραq dθpαq ď ApQq.

We consider only the case ApQq ă `8 (else there is nothing to prove). Thus, for θ-a.e. α the quantity Apραq is
finite. By Theorem 2.4, we can find for each α a family pvα

t qtPr0,1s of functions Ω Ñ R
d such that the continuity

equation is satisfied, vα
t P L2pΩ,Rd, ραt q for a.e. t and such that the following identity holds

ż 1

0

ż

Ω

1

2
|vα

t pxq|2 dραt pxq dt “
ż

A

ż 1

0

1

2
| 9ραt |2 dt.

Therefore, we see that the family pραt ,vα
t qpα,tqPAˆr0,1s is admissible and, integrating the last equality w.r.t. θ,

that AP pρ,vq ď ApQq.
To get the inequality involving the entropy, we use the fact that the functional H is convex and l.s.c. on

PpΩq, thus by Jensen’s inequality,

H

´

mt

´

Qρα
i
,ρα

f

¯¯

ď
ż

Γ

Hpρtq dQρα
i
,ρα

f
pρq.

Integrating w.r.t. θ leads to the announced inequality. �
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