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Introduction: Aging leads to alterations not only within the complex subsystems of the

neuro-musculo-skeletal system, but also in the coupling between them. Here, we studied

how aging affects functional reorganizations that occur both within and between the

behavioral and muscular levels, which must be coordinated to produce goal-directed

movements. Using unimanual reciprocal Fitts’ task, we examined the behavioral and

muscular dynamics of older adults (74.4± 3.7 years) and compared them to those found

for younger adults (23.2 ± 2.0 years).

Methods: To achieve this objective, we manipulated the target size to trigger a phase

transition in the behavioral regime and searched for concomitant signatures of a phase

transition in themuscular coordination. Here, muscular coordination was derived by using

the method of muscular synergy extraction. With this technique, we obtained functional

muscular patterns through non-negative matrix factorization of the muscular signals

followed by clustering the resulting synergies.

Results: Older adults showed a phase transition in behavioral regime, although, in

contrast to young participants, their kinematic profiles did not show a discontinuity. In

parallel, muscular coordination displayed two typical signatures of a phase transition,

that is, increased variability of coordination patterns and a reorganization of muscular

synergies. Both signatures confirmed the existence of muscular reorganization in older

adults, which is coupled with change in dynamical regime at behavioral level. However,

relative to young adults, transition occurred at lower index of difficulty (ID) in older

participants and the reorganization of muscular patterns lasted longer (over multiple IDs).

Discussion: This implies that consistent changes occur in coordination processes

across behavior and muscle. Furthermore, the repertoire of muscular patterns was

reduced and somewhat modified for older adults, relative to young participants. This

suggests that aging is not only related to changes in individual muscles (e.g., caused by

dynapenia) but also in their coordination.
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INTRODUCTION

The neuro-musculo-behavioral system is composed of multiple
interacting subsystems (i.e., cognitive, neural, somatosensory,
and muscular). Accordingly, aging is a dynamic process that
presents itself with both alterations within all subsystems—
though each having their individual timescale—and with changes
in their couplings (e.g., Sleimen-Malkoun et al., 2014). These
changes lie at the origin of an age-related loss of behavioral
adaptability. Thus, understanding how aging affects functional
reorganizations that occur both within and between the
different subsystems that must be coordinated to produce
complex movements is an important challenge for research in
gerontology.

Concerning the functional reorganizations that occur within
the different subsystems, some of these issues have been
addressed in the aging literature. For instance, it has been
shown that, besides structural alterations in the brain with
aging (e.g., lesser corticostriatal white matter connections or a
decrease in gray matter volume) (Babcock and Salthouse, 1990;
Kennedy and Raz, 2009; Forstmann et al., 2011), brain activation
patterns reorganize toward a dedifferentiation of cognitive and
motor areas (Heuninckx et al., 2005, 2008) and links between
brain areas become less flexible (Reuter-Lorenz and Cappell,
2008; Park and Reuter-Lorenz, 2009). This suggests an increased
locking of informational connections. Regarding the age-related
reorganization of the muscular subsystem, a growing body of
research reported modifications of both structure and functional
activation of muscles, captured by dynapenia. Dynapenia refers
to the loss of muscle strength with aging due to mechanisms
including both peripheral changes leading to a decrease in
muscle mass and changes that occur at central and spinal
levels. Together, this results in a diminished maximum voluntary
contraction magnitude (Clark and Manini, 2012; Manini and
Clark, 2012; Mitchell et al., 2012; Russ et al., 2012) and a
decrease in rapid force production capacity (Clark and Manini,
2012; Manini and Clark, 2012; Mitchell et al., 2012; Russ et al.,
2012). In addition, studies also often reported co-activation of
muscles and redistribution of functional activations over the
different muscles involved in the specific action systems (e.g.,
gait). These phenomena are considered at the origin of the loss
of behavioral adaptability observed in older adults. However,
little is known about how the aging neuro-muscular system
accommodates alterations in its muscular components. A main
reason is that, until recently, methods were lacking: (i) to identify
muscular coordination patterns among multiple muscles, and
(ii) how they evolve over time during movement execution and
increase in task constraints. To our knowledge, only one study
explored this issue (Monaco et al., 2010). In this study, the
authors extractedmuscle synergies from young and elderly adults
during locomotion at different cadences with muscle synergies
being described as a modular organization of muscular activation
patterns, as it is classically followed in the studies by the group of
d’Avella and Bizzi (seminal paper: d’Avella et al., 2003). Monaco
found a similar repertoire of synergy patterns for both age groups.
However, whether aging affects reorganizations and/or the nature
and flexibility of muscular coordination (during a controlled

task) in relationship to changes in the behavioral regime has not
been determined. The present study is a step in this direction.
To achieve this objective, we capitalized both on the framework
of dynamical systems theory and on two methods (muscular
synergies and functional connectivity dynamics) during tasks of
variable difficulty.

To address this issue, a possible strategy consists of forcing the
system to reorganize to accommodate a progressive increase in
task constraints (Haken et al., 1985; Kelso and Jeka, 1992; Kelso,
2009; Sleimen-Malkoun et al., 2014). In the present experiment,
we adopted a similar strategy to study reorganizations in
muscular dynamics in parallel to (before, around, and after)
transitions between dynamics regimes in Fitts’ task. This strategy
has been used in a previous study on the relationship between
muscles and behavior in young subjects (Vernooij et al., 2016).
Using Fitts’ task, by increasing task difficulty via themanipulation
of target width, behavior was guided through a phase transition
between two dynamical regimes. In parallel, the corresponding
muscular coordination of 12 muscles was tracked to assess
both functional coordination patterns and the variability of
their functional connectivity (De Marchis et al., 2013; Hansen
et al., 2015). Note that in our previous study, we do not
calculate muscle synergies (“building blocks”) along the line of
d’Avella and Bizzi, but solely use the methodology of muscle
synergy extraction as part of our analysis to calculate flexibly
assembled coordination patterns. Our results have shown parallel
reorganizations at muscular and behavioral levels when switching
between dynamical regimes. More importantly, we detected
typical signatures of a transition at the muscular level; (i) a
reorganization of muscular coordination; and (ii) a peak in the
variability of muscular coordination patterns. These signatures
lend credence to our hypothesis that consistent changes occur
between muscle and behavioral subsystems. However, the effects
of aging onmuscular and behavioral dynamics are unknown. The
present study addresses this issue.

A first objective of the present experiment is to determine:
(i) whether the two dynamical regimes observed in cyclical
Fitts’ task persist in older adults and (ii) whether a transition
between them occurs (whether at lower or similar difficulty
level). Despite the scarce amount of studies available on aging
using this approach, several predictions can be made regarding
the effect of aging on phase transitions at behavioral and
muscular levels. For the behavioral level, two contradictory
hypotheses can be put forward based on previous studies in
Fitts’ and bimanual coordination tasks. First, we could expect to
observe a reduced repertoire of dynamical regimes, as observed
in a discrete Fitts’ task by Sleimen-Malkoun et al. (2013).
Specifically, by increasing task difficulty via the manipulation of
target width, they found a decrease in the number of patterns
in the behavioral repertoire used by elderly. An alternative
hypothesis is to observe a comparable dynamics—i.e., similar
patterns and a phase transition between them—in young and
older adults, though differently modulated by task difficulty.
As an illustration, Temprado et al. have studied the effect
of aging on bimanual coordination dynamics, that is, on the
phase transition between in-phase and anti-phase coordination
patterns (Temprado et al., 2010). They found similar dynamics
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in young and older adults. However, in older adults a phase
transition occurred at a lower level of difficulty (i.e., lower
movement frequency).

A second objective of this study is to examine the effect of
aging on muscular coordination and how muscular dynamics
are coupled to behavioral dynamics. Our general prediction
is that both dynamics should be closely related in older
adults, as in young participants. Accordingly, regarding the
first typical signature of a phase transition at the muscular
system—reorganization of muscular coordination—in line with
the behavioral hypothesis we expected to find either a reduced
repertoire of muscular coordination (a smaller number of
muscular coordination patterns) and/or a different assembly of
the same patterns around any behavioral transition. To test this
hypothesis, we will apply a non-negative matrix factorization
(NNMF; Tresch et al., 2006) to small time-bins of EMG activity
of multiple muscles (comparable to De Marchis et al., 2013)
and track the repertoire of the resulting synergies. In this
context, according to the framework of dynamical systems
theory, muscular synergies extracted through the NNMF are
considered as temporarily assembled functional units (Turvey,
2007). Regarding the second signature of a phase transition
(i.e., a peak in the coordinative variability), we will use
functional connectivity dynamics analysis (FCD;Hutchison et al.,
2013; Hansen et al., 2015). This metric has been recently
developed to track variability in BOLD connectivity amongst
brain areas. Here we will apply this method to EMG signals
to track the variability in connectivity amongst muscles. The
variability amongst muscles derived from the FCD analysis
can be interpreted as the inversed strength of the temporary
structural organization between individual muscles, and this
variability increases when the muscular organization undergoes
a modification. The dynamical systems theory prescribes a peak
in the variability of the connectivity of its functional units,
one expects to observe a peak in the muscular coordination
variability around the transition between behavioral dynamical
regimes, in both young and older participants. Concerning the
difference of muscular coordination variability between young
and older adults, one could predict that older adults will
be more variable than young participants. Indeed, classically
elderly adults show increased levels of performance variability
in both motor and cognitive tasks (Hultsch et al., 2008;
MacDonald et al., 2009). This is not to say however that
coordination variability observed at muscular level in older
adults automatically is expected to be higher than those
observed in young adults. For instance, McIntosh and colleagues
(McIntosh et al., 2014) showed for their task that while
behavioral variability increased with aging, variability observed
in brain connectivity decreased. Thus, it might be that variability
of coordination patterns measured by FCD reveals similar
results.

MATERIALS AND METHODS

Participants
Fourteen right-handed older adults [age: 74.4 ± 3.7 years (mean
± std), 6 males] volunteered to take part in the experiment.

All declared to be in good health and to have a full range of
motion with their right upper limb. Throughout this paper,
their results will be compared to previously published results
of 14 right-handed younger adults [Vernooij et al., 2016; age:
23.2 ± 2.0 years (mean ± std), 8 males]. Volunteers did not
exercise or consume more than one glass of alcohol within the
12 h preceding participation (confirmed by questionnaire). An
informed consent form was obtained from all participants. A
local ethics committee approved the study, which was carried out
in accordance with the Declaration of Helsinki.

Experimental Details
Experimental design, setup and analysis methods were identical
to those reported in Vernooij et al. (2016) to enable direct
comparison with young subjects. In short, participants slid a
stylus rhythmically over a graphical tablet placed in front and on
the right side of the subject between two horizontal bar-targets.
The resulting movement was in the sagittal plane to enforce a
multi-joint muscular activation. The goal of the task was to move
as quickly and accurately as possible between the two bar-targets
(i.e., managing the speed-accuracy trade-off). The bar targets
were 20 cm apart (A) and could have five different widths (W;
0.33, 0.63, 1.17, 2.18, and 4.06 cm). The index of difficulty (ID)
for the five conditions can be calculated as ID = log2( 2AW ). Each
of these five IDs were repeated four times, which made 20 trials
per subject in total, and each of these trials consisted out of 40
back and forth movement cycles. As the task of the subjects was
to move as quickly as possible while staying precise, any trial
where subjects made errors in more than 10% of the aiming
movements (>8 out of 80 aiming movements per trial) had to
be repeated. This forced the subjects to stay focused. After a
successful completion of four trials of a certain ID, the width of
the bar was altered to change ID. The order of presentation of IDs
to the subjects was randomized per block of four trials.

Surface electromyography (EMG) was registered at 1925Hz
(Trigno wireless EMG, Delsys Inc, USA) from the muscle
belly of brachioradialis (BR), pronator teres (Pron), biceps
brachii short head (BicSho), biceps brachii long head (BicLo),
brachialis (Brach), triceps lateral head (TriLat), triceps long
head (TriLo), pectoralis (Pect), deltoid anterior (DeltA), deltoid
medialis (DeltM), deltoid posterior (DeltP), and teres major
(TerM) muscles. To support the electrodes, cohesive bandages
(Lastopress 7 cm × 1.5m, Hartmann Group, Germany) were
wrapped around the upper limb. As is classically done when
experiments involve EMG data, three maximum voluntary
contractions lasting∼5 s each were measured for a pushing and a
pulling movement to normalize the EMG signals per subject and
to control for muscular fatigue.

Kinematic Data Analysis
Further analysis was carried out offline using custom written
MATLAB scripts (Mathworks MATLAB 2012b, USA). Positional
data, acquired at 250Hz, were resampled to 100Hz, cut in cycles
based on reversal points of the position and the data of each
trial’s first two and last three cycles were removed. Themovement
time (MT), acceleration time (AT) and deceleration time (DT)
were calculated per half-cycle and pooled over subjects. The
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effect of ID on MT, AT, and DT were analyzed using a repeated
measures ANOVAwith ID as within-subject factor, group (old vs.
young) as between-subjects factor and α= 0.05.Where sphericity
was violated, the Greenhouse-Geisser adjustment was applied.
A Student t-test with Bonferroni corrections tested differences
between IDs where the main effect of ID was significant.

We studied the AT/DT ratio for breakpoints to uncover any
discontinuity in the kinematics.

A vector field reconstruction for position and velocity was
calculated for each trial in order to examine the deterministic
components of the system dynamics in 2 dimensions. Concisely,
a probability matrix P(x, y, t | xo, yo, to) is calculated, which
represents the probability of the system to be at state (x, y) at
time t when knowing the current state (xo, yo) at time step to
(for details, see (van Mourik et al., 2006)). We calculated this
probability matrix of the time-series of our position x(t) and
velocity y (t) over a 99 × 99 equally bin-sized grid for each trial.
The deterministic components per bin were calculated as:

Dx

(

x, y
)

= lim
τ → 0

1

τ

∫∫

(

x′ − x
)

P (x′, y′, t + τ | x, y, t) dx′dy′

and

Dy

(

x, y
)

= lim
τ → 0

1

τ

∫∫

(

y′ − y
)

P (x′, y′, t + τ | x, y, t) dx′dy′

These components identify the system’s vector field in the phase
space per bin in mathematical terms. Thus, they reconstruct the
phase flow, thereby unequivocally determining the dynamical
regime of the system. For each bin, we calculated the angle
θ between neighboring velocity vectors for the first two
deterministic components (i.e., position and velocity). Per
reconstruction, the maximum angle (θmax) was computed at
reversal points of the movement, indicating whether a fixed point
existed (θmax ∼180◦) or not (θmax << 180◦) in which case the
dynamical regime is described as a limit cycle.We fitted a sigmoid
curve through the θmax as a function of ID as θmax =

1
1 + ea(b+ID) .

The transition between dynamical regimes was identified as the
point of inflection of the sigmoid.

Muscular Variability Calculation
We employed functional connectivity dynamics (FCD; Hansen
et al., 2015) to study the within-trial variability in muscular
control. For each trial, we correlated each of the 12 EMG signals
over a two cycle sliding window (Np = 200 time points; MATLAB
function corr with option “coef,” full overlap between windows)
and subsequently correlated these Nm ×Nm (muscle-by-muscle)
matrices to obtain an Nt × Nt (time-by-time, Nt = 3300) FCD
matrix showing correlational variability over the course of the
trial (see Figure 2A for an example of an FCD matrix). We then
converted the FCD to a “jump length” matrix as JL = 1 − FCD.
This JL signified correlation distance between consecutive time
windows. JLs were concatenated over the four repetitions. We
estimated the jump length distribution using the 204th diagonal
of the FCDmatrices (first diagonal which did not include overlap
between windows) by calculating the median jump length on

this diagonal. This jump length distribution (JLD) captures the
statistics of the fluctuations in muscular coordination, therefore
representing a measure of variability. An extended explanation of
the procedure can be found in Vernooij et al. (2016). The effect
of ID on the peak of the distribution was tested with a repeated
measures ANOVAwith ID as within-subject factor, group (young
vs. old) as between-subjects factor and α = 0.05. We used
the Greenhouse-Geisser adjustment whenever the assumption of
sphericity was violated. Significant effects were subjected to a
Student t-test with Bonferroni corrections to test for differences
between IDs.

Muscular Coordination Pattern Calculation
Each EMG signal was cut per cycle based on positional data,
band-pass filtered (Butterworth zero-time lag, 2nd order, cut-
off band: 10–450 Hz), full-wave rectified, and low-pass filtered
at 5 Hz (Butterworth zero-time lag, 2nd order) to obtain the
envelope per cycle. Then, each envelope was normalized in size
in reference to the peak MVC (which was processed the same
way) and normalized in time to Np/c = 100 time points. To
track changes in the repertoire or use of muscular coordination
patterns in detail, we extracted temporarily assembled functional
units of coordination (comparable to the previously termed
“muscle synergies,” see d’Avella et al., 2003) over small time bins.
For each participant and ID, muscle synergies were extracted
per 2 cycle bin by applying nonnegative matrix factorization
algorithm (NNMF; Lee and Seung, 1999; Tresch et al., 2006; De
Marchis et al., 2013) to the EMG matrix M of size Nm × Np

where Nm = 12 muscles and Np = 200 time points. NNMF is
an iterative optimization method that minimizes the normative
error-matrix of ||M − WH||, where W is an Nm × Ns matrix
containing the relative activations of each of the muscles with
Ns being the number of synergies selected for extraction, and H
is an Ns × Np.c matrix containing the time-varying activity of
each synergy. We extracted 1–12 synergies per NNMF and each
NNMFwas repeated 100 times (total 1200 NNMFs). The number
of W chosen for further analysis was defined as the minimum
that could explain at least 90% of variance accounted for (VAF)
(comparable to i.e., Ivanenko et al., 2004; Torres-Oviedo et al.,
2006; De Marchis et al., 2013), where

VAF = 100 ∗ (1−
norm(M −WH)2

norm(M −mean[M])2
)

W from all bins and participants were normalized in height and
pooled. To discover the number and constitution of the synergies
that were used for the task, similar synergies were grouped
and group-averaged according to the following procedure. W
from all bins and all participants were pooled per ID and
mapped by performing a 2-dimensional Sammon’s mapping
(Sammon, 1969). In short, Sammon’s mapping plots the set
of W belonging to a Nm -dimensional space to a set of 2-
dimensional vectors while keeping the structure of the W intact.
This is done by an error minimization function which uses the
Euclidean distance between theW. Then, the resulting Sammon’s
map values are subjected to a clustering algorithm (MATLAB
function clusterdata with ward’s minimum variance method),
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which quantifies the number of clusters (i.e., groups of similar
synergies) that underlie the complete set of W per ID. Three
to fifteen clusters were calculated for each ID. The minimum
number of clusters where the correlation coefficient within each
cluster had a median value above 0.5 was selected. W were
then averaged within each cluster to calculate the representative
synergies (Wcluster

′s) per ID.
As it turned out that the Wcluster(ID)

′s were relatively similar
between IDs, we averaged theWcluster

′s over IDs (Wbasis).
We used two methods to discover a reorganization of

muscular coordination patterns, i.e., a change in the use of the
Wbasis: (1) the number of times each Wbasis was extracted was
identified per ID; (2) a principal component analysis (PCAsyn)
was applied on the concatenated matrix of H per ID. This gave
us insight in the use of the synergy-repertoire and the variability
in the amplitude of each Wbasis over time. Additionally, we
calculated Pearson’s correlations betweenWbasis found for young
subjects with those found in elderly subjects to determine how
any age-related change in coordination is expressed in type of
muscular assembly.

RESULTS

Qualification of Behavioral Dynamical
Regimes and Kinematics
The repeated measures ANOVA on the kinematic data showed a
significant Age∗ID interaction [F(2.42, 266.20) = 9.61, η2 = 0.08, p
< 0.000; F(2.76, 303.65) = 3.24, η2 = 0.029, p = 0.026; F(2.21, 242.90)
= 12.96, η2 = 0.11, p < 0.000 forMT, AT, and DT respectively].
We thus looked at the effect of ID separately for the elderly adults.
For elderly adults, as was the case for young adults, MT, AT,
and DT increased monotonically with ID [F(2.24, 123.19) = 435.56,
η2 = 0.89; F(2.84, 156.03) = 285.70, η2 = 0.84; F(2.10, 115.70) =

351.09, η2 = 0.87; respectively, All p < 0.001]. Post-hoc analyses
showed that all IDs were significantly different from each other
for all three variables (all p < 0.001). All movement times were
significantly higher for elderly adults compared to young adults;
the repeated measures ANOVA showed a main effect of age
[F(1, 110) = 103.66, η2 = 0.49; F(1, 110) = 55.76, η2 = 0.34; F(1, 110)
= 102.41, η2 = 0.48 for MT, AT, and DT respectively, All p
< 0.001]. Post-hoc analyses showed that elderly subjects were
significantly slower for all IDs (all p < 0.001). In contrast to what
was found in young adults, for elderly adults we did not find a
breakpoint in the AT/DT ratio.

Figure 1A depicts the average angles (θ) between flows of the
vector field reconstruction for elderly adults, where a fixed point
can be assumed wherever θ ∼180◦ and a limit cycle wherever θ

<< 180◦. Figure 1B shows that θmax at reversal points is close
to 0◦For lower IDs and ∼180◦For higher IDs. The results for
young adults, calculated in a previous study, are superimposed.
The repeated measures showed a main effect of Age [F(1, 110)
= 6.10, η2 = 0.053, p = 0.015] and an Age∗ID interaction
[F(1.79, 196.72) = 3.33, η2 = 0.029, p = 0.043]. Post-hoc analysis
revealed that elderly show a significantly higher θmax in general,
with a significantly higher θmax for ID 4.2 (p < 0.000). The
inflection point of the fitted sigmoidal curve for elderly is located

on average at 5.11 ± 0.42 bits. The repeated measures ANOVA
confirms this finding by separating the IDs in three groups; ID
3.3 & ID 4.2 < ID 5.1 < ID 6.0 & ID 6.9 (all p < 0.000). This
inflection point was not significantly different between the two
age groups.

Variability of Muscular Coordination
We applied the FCD analysis to the measured EMG signals to
study variability in muscular activations (see Figure 2A for an
example of an FCDmatrix). Themedian jump length (JLD) of the
FCD showed that there were larger fluctuations in correlational
patterns among muscles at the ID where behavior showed
a transition between limit cycle and fixed-point regimes (see
Figure 2B). The repeated measures ANOVA showed a main
effect of ID on the size of the jumps in muscular coordination
[F(3.32, 182.52) = 15.18, η2 = 0.22, p < 0.001]. Post-hoc analyses
showed that the median JLD for IDs 4.2, 5.1, and 6.0 were
significantly larger than for IDs 3.3 and 6.9 (all p < 0.001).

Although there was no main effect of age (p = 0.36), the
repeated measures ANOVA showed a trend toward an Age∗ID
interaction [F(3.487, 383.62) = 2.38, η2 = 0.02, p = 0.060].
Interestingly, for older adults the variability was the highest
at ID 4.2. For younger subjects, the variability of ID 5.1 was
significantly larger than those of all other IDs. Compared to
younger adults (tested in an earlier study—results superimposed
in Figure 2B) the current results for elderly adults thus show less
levels of variability (2 levels vs. 3 levels), and a larger and earlier
period of reorganization.

Muscular Coordination Patterns
We extracted two to seven muscle synergies (W) per set of EMG
signals recorded during two cyclic behavioral episodes of the
elderly subjects to explain at least 90% of the total variance in
the EMG data of the 12 muscles. In general, more synergies
were extracted for higher IDs (mean ± std: 3.49 ± 0.81, 3.68
± 0.88, 3.53 ± 1.00, 3.71 ± 1.01, 3.77 ± 1.05, respectively). Per
ID, Sammon’s mapping and the cluster procedure identified five
main synergies. These were relatively similar between IDs, and
arranged accordingly in Figure 3 to form fiveWcluster ’s.

As theseWcluster were similar over IDs, they were averaged per
cluster, giving Wbasis (see Figure 4). Most muscles are activated
in multipleWbasis and mostWbasis activate multiple muscles (see
Figure 4A). The relative activation of each muscle is different
in each Wbasis. Wbasis1 mainly activates Pron, TriLat, DeltM,
and DeltP; Wbasis2 mainly activates Pron, biceps and triceps,
DeltM, and DeltP; Wbasis3 mainly activates DeltM; Wbasis4
mainly activates DeltA, DeltM, and Pect; and Wbasis5 mainly
activates TriLat and TriLo. The results for the use of the Wbasis

repertoire (Figure 4B) show that elderly subjects recruit Wbasis2
most around ID 4.2 and ID 5.1, whereas Wbasis4 and Wbasis5
are least recruited around ID 4.2 and ID 5.1. Interestingly, the
differences in recruitment are much less pronounced for elderly
subjects compared to young subjects (Vernooij et al., 2016).
PCAsyn analyses on the temporal activation profiles H of the
elderly subjects (Figure 4C) showed that the score of the first
component explained most of the variance between IDs: 74.3,
71.4, 84.7, 84.9, and 90.5%, for increasing IDs respectively. Scores
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FIGURE 1 | (A) Reconstructed angle diagrams as a function of ID averaged across participants. The horizontal axes represent normalized position (x); the vertical

axes normalized velocity (y). The color coding (right side of the panel) represents the maximum angle in degrees between adjacent vectors. Red areas indicate the

existence of locally opposing angles and imply the presence of a fixed point. Its absence implies the existence of a limit cycle. (B) The maximum angle in degrees

between adjacent vectors as a function of ID averaged across participants (θmax) for both young (light gray and dotted line) and older (dark gray and solid line) adults.

The horizontal axis represents ID; the vertical θmax (degrees). Error bars denote 1 standard deviation.

FIGURE 2 | (A) Example of an FCD matrix, including the 204th diagonal over which the data was analyzed. (B) Median Jump length distribution (JLD) curve of the

FCD per ID across young (dotted line) and older (solid line) participants P < 0.05. Error bars denote 1 standard deviation.

of PCAsyn components two to seven explained less than 20%
of variance and were similar per ID (see Figure 4D for PCAsyn

scores of the first and second components). This first component
differed for ID 3.3, especially around the target approach (40–50
and 90–100% of cycle). Pearson’s correlation of scores of the first
PCAsyn components showed that the scores for ID 3.3 and ID
4.2 were significantly correlated (r > 0.60, p << 0.001) and the
scores for ID 4.2, ID 5.1, ID 6.0, and ID 6.9 were significantly
correlated (all r > 0.60, all p << 0.001). The score of ID 3.3 was
not significantly correlated to those of ID 5.1, ID 6.0, and ID 6.9
(average r= 0.17, average p= 0.17). Accordingly, the first PCAsyn

scores differentiated two types of temporal activation (indicated
by letters A and B in Figure 4D), where the switch between the
types is at ID 4.2. Pearson’s correlations of scores of the second
PCAsyn components were all significant (p << 0.001), except
for ID 3.3 and ID 6.9 which were not significantly correlated
(r = 0.51, p = 0.13). This indicates its lack in explaining much
difference between H over IDs.

Compared to young adults, elderly have a reduced and slightly
modified repertoire of muscular activation patterns. Figure 5

depicts the Wbasis of elderly adults (Wbasis1 − 5 copied from
Figure 4) partly matched with the Wbasis of young adults.
Additionally, the additional Wbasis calculated for young adults
which were not correlated to aWbasis calculated for elderly adults
are shown in Figure 5 (WbasisA−C). The sevenWbasis calculated
for young adults seem to comprise four of theWbasis of the elderly
adults (all r > 0.77, all p < 0.003). In other words, four out of
seven Wbasis identified from the data of young adults match to
four out of five Wbasis for the elderly. There are however some
modifications visible. Where in Wbasis2 elderly seem to show
more activation for DeltM, they appear to activate TriLat much
less. Moreover, Wbasis5 was not significantly correlated to any of
theWbasis of the young subjects (all r < 0.48, all p > 0.12).

In terms of temporal activation of the Wbasis, the first
component of PCAsyn seems to be able to capture the main
patterns per ID in both age groups. For both young and older
adults, there are two types of main temporal activation patterns
distinguishable. These types of temporal activation are similar
between the two age groups, but with aging, the switch between
the two types occurs at a lower ID (ID 4.2 vs. ID 5.1).
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FIGURE 3 | Synergy weights extracted by NNMF as a function of ID averaged per cluster. Per synergy, the normalized weight of each of the 12 muscles is

represented. Each muscle is activated in multiple synergies. Higher bars indicate increased weight.

DISCUSSION

This study aimed at identifying the effect of aging on the
muscular dynamics and its relationship to behavioral dynamics.
Themain issues addressed in this respect were: (1) Are behavioral
dynamics observed in Fitts’ task in young and older adults
comparable? (2) Does aging affect the muscular coordination
dynamics associated with behavioral dynamics? To answer these
questions, we manipulated task difficulty via target width in a
unimanual, cyclical Fitts’ task performed by older adults in order
to provoke a change in their behavioral regime. In addition
to behavioral data, we measured the surface EMG of 12 arm-
and shoulder muscles to identify muscular coordination patterns
(synergies) and variability in muscular coordination. Results
were compared with those previously observed in young adults
(Vernooij et al., 2016).

Qualification of Behavioral Dynamical
Regimes and Endpoint Kinematics
At kinematic level, MT, AT, and DT significantly increase with
higher ID and older adults in general had larger movement
times than younger adults. These results are consistent with

those reported in previous studies using discrete Fitts’ tasks (e.g.,
Temprado et al., 2013; Sleimen-Malkoun et al., 2013). In contrast
to results observed for young adults (Huys et al., 2010, 2015;
Vernooij et al., 2016), we did not find a breakpoint in the AT/DT
ratio for elderly adults. A similar result was previously observed
in discrete Fitts’ task (Sleimen-Malkoun et al., 2013). The absence
of a breakpoint suggests that older adults used a similar kinematic
organization whatever the accuracy constraints. This is consistent
with the dedifferentiation hypothesis (Baltes et al., 1980; Baltes
and Lindenberger, 1997) at kinematic level, which conjectures
that with aging there is a loss of the specialization, and systems
become simplified, less distinct or common to different functions.

Our results also showed that older adults presented a
transition in behavioral dynamics with increasing ID. Indeed,
phase flow analyses on the reversal points of the movement
displayed a switch in difference in flow angle from∼0◦ to∼180◦

with higher IDs, which is associated with a transition from
limit-cycle to fixed-point. As for younger adults, this transition
occurred on average at an ID ∼5.1. However, as supported
by the significant Age∗ID interaction, older adults seemingly
“started” the reorganization at a lower ID. That is, in older
adults a percentage of movements performed at ID 4.2 might
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FIGURE 4 | (A) Synergy weights from Figure 3 averaged per cluster (Wbasis). Per basis synergy, the normalized weight of each of the 12 muscles is represented.

Higher bars indicate increased weight. (B) Normalized frequency of use of the basis synergies per ID. (C) Average temporal activation components over a movement

cycle per basis synergy per ID. Darker colors represent lower IDs. (D) First and second PCAsyn scores on the temporal activations H of (B). The first PCAsyn score

shows a clear difference between the activations of the IDs, activations with significant correlations (p << 0.001) are grouped by letters (A,B), whereas the second

PCAsyn score does not (all activations are correlated with all others).

already show a fixed-point regime, whereas this was not the
case for younger adults. To verify this hypothesis, one should
calculate the distribution of movements performed as limit-
cycle and fixed-point for each ID. Unfortunately, there is no
technique currently available to scientifically test changes in the
distribution of dynamical regimes per trial in Fitts’ task. Phase
flow analyses require many repeats of the same movement to
reliably determine the flow of the movement, and thus do not
allow identification of dynamical regime per cycle. Overall, the
present results observed in Fitts’ task are comparable to those
observed by Temprado et al. (2010) in a bimanual coordination
task. They have shown comparable behavioral dynamics between
young and older adults with a phase transition occurring at a
slightly lower ID in older adults.

In the present context, the absence of a breakpoint in AT/DT
ratio in combination with the transition in behavioral dynamics
(as indicated by phase flow analyses) is surprising since in
previous studies changes in kinematic patterns and in dynamical
regimes were considered to be closely related (Huys et al., 2010,
2015; Sleimen-Malkoun et al., 2013; Vernooij et al., 2016). The
comparison between kinematic patterns and dynamical regimes

in young and older adults suggest that these two levels of
description of behavior are not systematically related, at least
in older adults. Consequently, one should be careful with the
interpretation of kinematic data in the context of coordination
dynamics in the absence of knowledge about behavioral dynamics
by means of the use of specific tools (e.g., phase flow analyses).

Change in Variability of Muscular
Coordination
Our main interest in this study was to track how aging affects
muscular dynamics in relationship to a transition in behavioral
dynamics. Accordingly, we calculated a measure of muscular
coordination variability, obtained from Functional Connectivity
Dynamics analyses (FCD; Hansen et al., 2015), to examine the
presence of increased variability around the behavioral transition
and we compared this profile to variability found in young adults.

Consistent with results obtained for younger adults for Fitts’
task (Vernooij et al., 2016), muscular coordination of older
adults show increased levels of variability around the behavioral
transition in dynamical regime. Specifically, the FCD carried
out on the EMG data showed increased muscular variability
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FIGURE 5 | Averaged synergy activation coefficients (Wbasis), replotted from Figure 4 (older adults, gray bars) and replotted from Vernooij et al. (2016)

(young adults, black bars). Per basis synergy, the normalized activity of each of the 12 muscles is represented. Higher bars indicate increased strength of activity.

Synergies are grouped based on correlation. Those synergies which were not significantly correlated to a synergy from the other age group are plotted separately

(Wbasis 5 and Wbasis A,B, & C).

for ID 4.2, ID 5.1, and ID 6.0 compared to ID 3.3 and ID
6.9. This suggests that phase transition in behavioral dynamics
is accompanied by larger switches between assemblies of the
functional components of the muscular system (i.e. the muscles).
Interestingly, for older adults muscular variability is highest at ID
4.2. This is in line with the behavioral results, which suggest that
the change in dynamical regime starts at a lower ID than in young
adults. Taken together with the similar level of variability for ID
4.2, ID 5.1, and ID 6.0, this also suggests that the reorganization
of the muscular system is plateaued in older adults compared to
young participants.

Compared to younger adults, variability in muscular
coordination does not change as much for elderly. For younger
adults, muscular coordination showed a significantly increased
variability between ID 3.3 and ID 4.2 and between ID 4.2 and
ID 5.2, after which the variability decreased again significantly
with each higher ID. In contrast, variability of older adults

in the intermediate three IDs was similar, and they were
together significantly more variable than the extreme high
and low IDs. The effect of age on variability over IDs was
nearly significant (Age∗ID interaction p = 0.06). This could
suggest that older adults tend to less flexibly coordinate their
muscular system to accommodate the transition in behavioral
dynamics.

Here the question is whether the FCD results for older adults
reflect less switching across a comparable number of states in
the repertoire or whether it reflects less switching due to a
decrease in the number of available states in the repertoire
of muscular coordination patterns. In other words, the results
might suggest that the set of dynamical repertoires used is the
same between age groups but elderly do not switch between
them as often or alternatively that a smaller set of dynamical
repertoires is available. Only the latter case would be consistent
with the dedifferentiation hypotheses (Sleimen-Malkoun et al.,
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2014) which was also found for the kinematic data presented
here. The analyses of muscular synergies allowed answering this
question.

Reorganization of Muscular Coordination
Patterns
In line with results observed for young participants, the NNMF
analysis (Lee and Seung, 1999; Tresch et al., 2006; De Marchis
et al., 2013) showed that the 12 recorded muscles were not
activated randomly across IDs. Instead, they were assembled
based on a limited repertoire of synergies which captured
muscular coordination used to perform the task. Specifically,
the NNMF analysis indicated (i) that the muscular coordination
of elderly subjects could be explained by only five synergy
patterns, and (ii) that these synergy patterns were similar between
IDs. In other words, five muscular synergies are sufficient to
describe muscular coordination in Fitts’ task, thereby suggesting
a significant dimensional reduction of the muscular system
independent of the ID. This result is consistent with those
observed in previous studies examining different tasks (e.g.,
walking: Cappellini et al., 2006; reaching: d’Avella et al., 2008; gait
transitions: Hagio et al., 2015; cycling: De Marchis et al., 2013).
However, here we showed that (i) a change in the behavioral
dynamics resulting from increasing accuracy constraints is
associated with muscular reorganization, based on PCA analyses
of the temporal activation patterns, and (ii) the repertoire of
muscular activation patterns is modified and reduced over aging.

Whatever the repertoire of muscular patterns used to perform
Fitts’ task across ID, we predicted to observe a different
assembly of (the same) muscular patterns around any behavioral
transition. The results confirmed this prediction. We observed
a reorganization of the temporal activations H for elderly with
higher ID. PCA analyses on H showed that the first component
of PCAsyn, explaining 70–90% of the temporal activation profiles,
is significantly altered at ID 4.2. As H for high IDs were not
similar to the profiles for low IDs, it strongly suggests there
is a distinction in temporal activation of the synergies between
high and low IDs. The switch between the PCAsyn at ID 4.2
can be interpreted as a reorganization of the muscular system.
This reorganization coincides with the peak variability calculated
by the FCD analyses. The reorganization, again, indicates that
older adults start their reorganization at a lower ID than young
adults do (old adults at ID 4.2, and young adults at ID 5.1).
The appearance of alterations in temporal activation profiles
only has been shown during phase transitions in gait (Ivanenko
et al., 2004; Cappellini et al., 2006; Hagio et al., 2015). It can
therefore be suggested that a phase transition in behavioral
dynamics is initiated by a reorganization of the muscular system
by means of altered phasing of muscular coordination patterns.
Note that a mere parametrization of the synergies or its temporal
activation does not constitute a true reorganization; only a change
in the structure or number of synergies or their activation
profiles would signify a reorganized muscular coordination. As
we normalized our data in time and amplitude, we abolished any
parametrization effect and any change presented thus represent
some degree of reorganization.

The subsequent comparison of the repertoire of muscular
patterns observed in young and older adults showed a decrease
in the number of synergy required to capture the organization of
the muscular system in older adults (from 7 in young to 5 in older
participants). This reduction of the repertoire of patterns seems
to be a general principle of aging. Indeed, it has already been
observed in previous studies for kinematic patterns (Sleimen-
Malkoun et al., 2013). Our findings suggest that this principle
also applies at muscular level, although they are not consistent
with those reported by Monaco et al. (2010). These authors
presented no reduction in the number of synergies used by
older adults during locomotion. However, since they preset the
number of synergies to extract, any conclusion on reduction of
repertoire based on their study is misleading. It must also be
noticed that the reduction of the synergy repertoire we reported
for elderly adults is unlikely to be due to the lower movement
velocity recorded in elderly adults seeing that there is a large
overlap in movement velocities between young and older adults.
Additionally, previous studies on different aiming velocities have
not found a reduction in synergy repertoire (d’Avella et al.,
2008).

Our analyses also indicated that the muscular synergies used
by young and older adults were only partly similar. Among
the seven synergies used by young participants, four of them
were common to the ones used by older adults, but the
three others were specific to young subjects (see Figure 5).
Interestingly, two Wbasis (main synergy weight structures)
calculated for young adults, but not for elderly adults, were
those that showed a clear peak or a clear valley in the
recruitment around the behavioral phase transition of young
adults. Together, this may indicate that older adults lose those
coordination patterns that are associated with a change in
organization, which would be related to a decreased flexibility in
coordination of the muscular system. Additionally, the variation
in recruitment of synergies over IDs seems to be much less
pronounced for older adults compared to younger adults. These
results suggest that the dimensional reduction in muscular
coordination is constrained by the task (external constraint)
and by changes in the neuro-musculo-skeletal system (internal
constraint).
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