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Volumetric expressions of the shape gradient of the compliance in

structural shape optimization

M. Giacomini ∗ ,†, O. Pantz ‡ and K. Trabelsi †

Abstract

In this article, we consider the problem of optimal design of a compliant structure under a
volume constraint, within the framework of linear elasticity. We introduce the pure displacement
and the dual mixed formulations of the linear elasticity problem and we compute the volumetric
expressions of the shape gradient of the compliance by means of the velocity method. A preliminary
qualitative comparison of the two expressions of the shape gradient is performed through some
numerical simulations using the Boundary Variation Algorithm.

Keywords: Shape optimization; Linear elasticity; Volumetric shape gradient; Compliance minimization; Pure

displacement formulation; Dual mixed formulation

1 Introduction

In his seminal work [37], Hadamard proposed a strategy to optimize a given shape-dependent functional
by deforming the domain according to a velocity field. Within this framework, a key aspect is the
choice of an appropriate direction that guarantees the improvement of the value of the functional
under analysis. Gradient-based methods for shape optimization are a well-established approach for
the solution of PDE-constrained optimization problems of shape-dependent functionals. In particular,
they exploit the information of the so-called shape gradient - that is the differential of the objective
functional with respect to perturbations of the boundary of the shape - to compute the aforementioned
descent direction.

Several approaches have been proposed in the literature to compute the shape gradient. We refer
to [35] and references therein for an overview of the existing methods. The most common strategy
relies on an Eulerian approach and provides a surface expression of the shape gradient. Starting
from the boundary representation of the shape gradient, it is straightforward to construct an explicit
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expression for the descent direction. As a matter of fact, let the shape gradient of a functional J(Ω)
be

〈dJ(Ω), θ〉 =

∫
∂Ω
hθ · n ds,

it follows that θ = −hn on ∂Ω is a descent direction for J(Ω), that is θ is such that 〈dJ(Ω), θ〉 < 0.
An alternative approach for the computation of the shape gradient relies on mapping the quantities
defined over the perturbed domain to a reference domain and differentiating the resulting functional.
Following this method, a volumetric expression of the shape gradient may be derived. The resulting
expression of the shape gradient is defined on the whole domain Ω and the solution of an additional
variational equation is required in order to compute the descent direction θ.
Owing to the Hadamard-Zolésio structure theorem (cf. [28]), the restriction of 〈dJ(Ω), θ〉 to the space
D(Rd,Rd) is a vector-valued distribution whose support is included in ∂Ω. Though the two expressions
are equivalent in a continuous framework, the surface representation of the shape gradient may not
exist if the boundary of the domain is not sufficiently smooth and the corresponding descent direction
θ may suffer from poor regularity. The interest of using volumetric formulations of the shape gradient
was first suggested in [17] and later rigorously investigated in [39] for the case of elliptic problems:
in this latter work, the authors proved that the volumetric formulation generally provides better
numerical accuracy when using the Finite Element Method.

In this work, we present a first attempt to derive the volumetric expressions of the shape gradient
of a shape-dependent functional within the framework of linear elasticity. In particular, we consider
a pure displacement formulation and a family of dual mixed variational formulations for the linear
elasticity problem and we analyze the classical problem of minimization of the compliance under a
volume constraint. We derive the volumetric expressions of the shape gradient of the compliance for
both the pure displacement and the dual mixed formulations of the linear elasticity problems and we
provide a preliminary qualitative comparison through some numerical test.

The rest of this article is organized as follows. In section 2, we introduce the pure displacement
formulation of the linear elasticity problem and two dual mixed formulations, namely the Hellinger-
Reissner one and a variant arising from the weak imposition of the symmetry of the stress tensor.
In section 3, we describe the abstract framework of a PDE-constrained optimization problem of a
shape-dependent functional and we specify it for the case of the minimization of the compliance
under a volume constraint. The derivation of the volumetric expressions of the shape gradient of
the compliance starting from the pure displacement and the dual mixed formulations is discussed
respectively in sections 4 and 5. A preliminary comparison of the aforementioned expressions by
means of numerical simulations is presented in section 6, whereas section 7 summarizes our results
and highlights ongoing and future investigations.

2 The linear elasticity problem

In this section, we introduce the governing equations that describe the mechanical behavior of a solid
within the infinitesimal strain theory, that is under the assumption of small deformations and small
displacements. For a complete introduction to this subject, we refer the interested reader to [26,36,42].
Let Ω ⊂ Rd , d = 2, 3 be an open and connected domain representing the body under analysis and
∂Ω = ΓN ∪ Γ ∪ ΓD be such that the three parts of the boundary are disjoint and ΓD has positive
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(d− 1)-dimensional Hausdorff measure. We describe an elastic structure subject to a volume force f ,
a load g on the surface ΓN , a free-boundary condition on Γ and clamped on ΓD:

−∇ · σΩ = f in Ω

σΩ = Ae(uΩ) in Ω

σΩn = g on ΓN

σΩn = 0 on Γ

uΩ = 0 on ΓD

(2.1)

In (2.1), uΩ is the displacement field, σΩ is the stress tensor and e(uΩ) := 1
2

(
∇uΩ +∇uTΩ

)
is the lin-

earized strain tensor. The full set of equations consists of tree conservation laws - i.e. the conservation
of mass, the balance of momentum and of angular momentum - and a material law that describes
the relationship among the variables at play and depends on the type of solid under analysis. In
particular, the balance of angular momentum implies the symmetry of the stress tensor, that is σΩ

belongs to the space Sd of d× d symmetric matrices. Moreover, we consider a linear elastic material
and we prescribe the so-called Hooke’s law which establishes a linear dependency between the stress
tensor and the linearized strain tensor via the fourth-order tensor A : Ω → Sd known as elasticity
tensor. In this work, we restrict to the case of a homogeneous isotropic material, whence the elasticity
tensor A depends neither on x nor on the direction of the main strains.
The mechanical properties of a linear elastic homogeneous isotropic material are determined by the
pair (λ, µ) - known as first and second Lamé constants - or alternatively by the Young’s modulus E
and the Poisson’s ratio ν (cf. e.g. [42]). Within the range of physically admissible values of these
constants, the relationship between stress tensor and strain tensor reads as follows

σΩ = Ae(uΩ) = 2µe(uΩ) + λ tr(e(uΩ)) Id (2.2)

where tr(·) := · : Id is the trace operator and : is the Frobenius product. We remark that the elasticity
tensor exists and is invertible as long as λ <∞. Within this framework, we may introduce the so-called
compliance tensor A−1 whose application to the stress tensor provides the strain tensor:

e(uΩ) = A−1σΩ =
1

2µ
σΩ −

λ

2µ(dλ+ 2µ)
tr(σΩ) Id (2.3)

Remark 2.1. It is straightforward to observe that when λ → ∞ the divergence of the displacement
field in (2.2) has to vanish, that is, the material under analysis is said to be incompressible. Within
this context, the elasticity tensor does not exist and the compliance tensor is singular.

2.1 The pure displacement variational formulation

A classical formulation of the linear elasticity problem is the so-called pure displacement formulation
in which we express the stress tensor σΩ in terms of uΩ using (2.2) and we seek the displacement field
within the Sobolev space H1(Ω;Rd). Let f ∈ H1(Rd;Rd) and g ∈ H2(Rd;Rd). We define the following
space VΩ

VΩ := H1
0,ΓD(Ω;Rd) = {v ∈ H1(Ω;Rd) : v = 0 on ΓD} (2.4)
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and we seek a function uΩ ∈ VΩ such that

aΩ(uΩ, δu) = FΩ(δu) ∀δu ∈ VΩ (2.5)

where the bilinear form aΩ(·, ·) : VΩ × VΩ → R and the linear form FΩ(·) : VΩ → R read as follows

aΩ(uΩ, δu) :=

∫
Ω
Ae(uΩ) : e(δu) dx , FΩ(δu) :=

∫
Ω
f · δu dx+

∫
ΓN

g · δu ds. (2.6)

The coercivity of the bilinear form aΩ(·, ·) may be proved using Korn’s inequality (cf. [40]) and existence
and uniqueness of the solution of problem (2.5) follow from the classical Lax-Milgram theorem.

Remark 2.2. The elasticity tensor A acts as a coefficient in the pure displacement formulation (2.5) of
the linear elasticity problem. As previously stated, A deteriorates for nearly incompressible materials
and does not exist in the incompressible limit (cf. remark 2.1). Hence, stability issues may arise
in the nearly incompressible case, whereas in the incompressible limit the stress tensor cannot be
expressed in terms of the displacement field and the pure displacement variational formulation cannot
be posed. Nevertheless, outside these configurations the formulation (2.5) accurately describes the
mechanical phenomena under analysis and the corresponding approximation via Lagrangian Finite
Element functions provides optimal convergence rate of the discretized solution to the continuous one
(cf. e.g. [20, 21]).

2.2 Mixed variational formulations via the Hellinger-Reissner principle

Besides the aforementioned stability issues, a major drawback of the pure displacement variational
formulation is the indirect evaluation of the stress tensor which is not computed as part of the solution
of the linear elasticity problem but may only be derived from (2.2) via a post-processing of the
displacement field uΩ. A possible workaround for both these issues is represented by mixed variational
formulations in which the target solution is the pair (σΩ, uΩ) representing respectively the stress and
displacement fields. This family of approaches was first proposed by Reissner in his seminal work [47]
and has known a great success in the scientific community since. We refer to [9] for additional
information on dual mixed variational formulations of the linear elasticity problem whereas a detailed
introduction to mixed Finite Element methods may be found in [19].

Let us introduce the space H(div,Ω; Sd) := {τ ∈ L2(Ω;Sd) : ∇ · τ ∈ L2(Ω;Rd)} of the symmetric
square-integrable tensors whose row-wise divergence is square-integrable. Thus, we define the spaces
VΩ := L2(Ω;Rd), ΣΩ := {τ ∈ H(div,Ω; Sd) : τn = g on ΓN and τn = 0 on Γ} and ΣΩ,0 := {τ ∈
H(div,Ω; Sd) : τn = 0 on ΓN ∪ Γ} and we seek (σΩ, uΩ) ∈ ΣΩ × VΩ such that

aΩ(σΩ, δσ)+bΩ(δσ, uΩ) = 0 ∀δσ ∈ ΣΩ,0

bΩ(σΩ, δu) = FΩ(δu) ∀δu ∈ VΩ
(2.7)

where the bilinear forms aΩ(·, ·) : ΣΩ × ΣΩ → R and bΩ(·, ·) : ΣΩ × VΩ → R and the linear form
FΩ(·) : VΩ → R read as

aΩ(σΩ, δσ) :=

∫
Ω
A−1σΩ : δσ dx , bΩ(σΩ, δu) :=

∫
Ω

(∇ · σΩ) · δu dx, (2.8)

FΩ(δu) := −
∫

Ω
f · δu dx. (2.9)
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Existence and uniqueness of the solution of the dual mixed variational formulation (2.7) follow from
Brezzi’s theory on mixed methods [19,22]. Moreover, in [12] the authors proved that stability estimates
for the dual mixed variational formulation do not deteriorate, be it in the case of nearly incompressible
materials or in the incompressible limit making this approach feasible for the whole range of values of
the Lamé constants.

Remark 2.3. A major drawback of the previously introduced dual mixed variational formulation lies
in the difficulty of constructing a pair of Finite Element spaces that fulfill the requirements of Brezzi’s
theory in order to guarantee the stability of the method. Several authors have been dealing with this
issue in the last forty years. In [16], Arnold and Winther proposed the first stable pair of Finite Element
spaces for the discretization of the linear elasticity problem in two space dimensions. The corresponding
three-dimensional case was later discussed in [1,10]. Owing to the large number of Degrees of Freedom
and to the high order of the involved polynomials, the construction of the basis functions described in
the aforementioned works and their implementation in existing Finite Element libraries is extremely
complex. Despite this class of Finite Element functions is the most straightforward way to handle the
aforementioned problem and some recent works [24, 25] have shown their efficiency from a numerical
point of view, the Arnold-Winther Finite Element spaces are currently far from being a widely spread
standard in the community. To the best of our knowledge, among the most common Finite Element
libraries, only the FEniCS Project (cf. [7], http://www.fenics.org) provides partial support for the
Arnold-Winther functions.

2.3 A dual mixed variational formulation with weakly enforced symmetry of the
stress tensor

As stated in the previous subsection, the stress tensor is sought in a subspace of H(div,Ω;Sd). In [19],
the authors highlight that the choice of this space is strictly connected with the will of strongly im-
posing conservation laws. In particular, σΩ belonging to the space of square-integrable tensors whose
row-wise divergence is square-integrable strongly enforces the conservation of momentum. Moreover,
the symmetry of the stress tensor is a simplified way of expressing the conservation of angular mo-
mentum for the system under analysis. It is well-known that imposing exactly a conservation law is
not trivial. Hence, strongly enforcing a second conservation law by requiring the stress tensor to be
symmetric is likely to be difficult.
In order to circumvent this issue and before the work [16] by Arnold and Winther appeared, several
alternative formulations have been proposed in the literature to weakly enforce the symmetry of the
stress tensor via a Lagrange multiplier. Starting from the pioneering work of Brezzi [22] and Fraejis
de Veubeke [31], several authors have proposed mixed formulations in which the symmetry of the
stress tensor is either weakly enforced or dropped (cf. e.g. [8, 13, 49]). One of the simplest solutions
was developed by Arnold, Brezzi and Douglas Jr. in [11] via the so-called PEERS element: within
this framework, the stress tensor is discretized by means of an augmented cartesian product of the
Raviart-Thomas Finite Element space, the displacement field using piecewise constant functions and
the Lagrange multiplier via a P1 Finite Element function. Stemming from the idea of the PEERS
element, several other approaches have been proposed in the literature, e.g. [23, 30, 43, 50–52]. For a
complete discussion on this topic, we refer to [18].

In this subsection, we rely on a more recent mixed Finite Element method to approximate the
problem of linear elasticity with weakly imposed symmetry of the stress tensor. In particular, we
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refer to [14] for the construction of the stable pair of Finite Element spaces in two space dimensions,
whereas the corresponding three-dimensional case is treated in [15]. The choice of this new approach by
Arnold and co-workers, instead of the widely used PEERS, is mainly due to the simpler discretization
arising from the novel method and to the possibility of extending it to the three-dimensional case in a
straightforward way. Let Md be the space of d×d matrices and Kd be the space of d×d skew-symmetric
matrices. We define the spaces VΩ := L2(Ω;Rd), QΩ := L2(Ω;Kd), ΣΩ := {τ ∈ H(div,Ω;Md) : τn =
g on ΓN and τn = 0 on Γ} and ΣΩ,0 := {τ ∈ H(div,Ω;Md) : τn = 0 on ΓN ∪ Γ}. Moreover,
we introduce the space WΩ := VΩ × QΩ. The extended system obtained from (2.7) by relaxing the
symmetry condition on the stress tensor through the introduction of a Lagrange multiplier reads as
follows: we seek (σΩ, (uΩ, ηΩ)) ∈ ΣΩ ×WΩ such that

aΩ(σΩ, δσ)+bΩ(δσ, (uΩ, ηΩ)) = 0 ∀δσ ∈ ΣΩ,0

bΩ(σΩ, (δu, δη)) = FΩ(δu) ∀(δu, δη) ∈WΩ
(2.10)

where the bilinear and linear forms have the following expressions:

aΩ(σΩ, δσ) :=

∫
Ω
A−1σΩ : δσ dx , bΩ(σΩ, (δu, δη)) :=

∫
Ω

(∇ · σΩ) · δu dx+
1

2µ

∫
Ω
σΩ : δη dx,

(2.11)

FΩ(δu) := −
∫

Ω
f · δu dx. (2.12)

Existence and uniqueness of the solution for this variant of the dual mixed variational formulation
of the linear elasticity problem with weakly imposed symmetry of the stress tensor follow again from
Brezzi’s theory (cf. [11]).

Remark 2.4. We highlight that if (σΩ, (uΩ, ηΩ)) is solution of (2.10), then σΩ is symmetric and
(σΩ, uΩ) ∈ H(div,Ω;Sd) × L2(Ω;Rd) is solution of the original dual mixed formulation of the lin-
ear elasticity problem with strongly enforced symmetry of the stress tensor discussed in the previous
subsection. Though the infinite-dimensional formulation of the problem featuring weak symmetry is
equivalent to the one in which the symmetry of the stress tensor is imposed in a strong way, the former
allows for novel discretization techniques in which the approximation σhΩ of the stress tensor σΩ is not
guaranteed to be symmetric, that is σhΩ solely fulfills the following condition∫

Ω
σhΩ : δηh dx = 0 ∀δηh ∈ QhΩ

where QhΩ is an appropriate discrete space approximating L2(Ω;Kd).

As stated at the beginning of this subsection, several choices are possible for the discrete spaces
Σh

Ω, V h
Ω and QhΩ respectively approximating H(div,Ω;Sd), L2(Ω;Rd) and L2(Ω;Kd). In the rest of this

article, we consider the approach discussed in [14], in which the stress tensor is approximated by the
cartesian product of two pairs of Brezzi-Douglas-Marini Finite Element spaces while the displacement
field and the Lagrange multiplier are both discretized using piecewise constant functions.

3 Minimization of the compliance under a volume constraint

In this section, we introduce the problem of optimal design of compliant structures within the frame-
work of linear elasticity, that is the construction of the shape that minimizes the compliance under
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a volume constraint. Let us consider a vector field θ ∈ W 1,∞(Rd;Rd). We introduce a transforma-
tion Xθ : Rd → Rd and we define the open subset Ωθ ⊂ Rd as Ωθ = Xθ(Ω). Moreover, we set that
ΓNθ = Xθ(Γ

N ), Γθ = Xθ(Γ) and ΓDθ = Xθ(Γ
D). The displacement of an initial point x ∈ Ω is governed

by the following differential equation: 
dxθ
dt

(t) = θ(xθ(t))

xθ(0) = x
(3.1)

which admits a unique solution t 7→ xθ(t, x) in C1(R;Rd). Owing to (3.1), the initial point x ∈ Ω
is transported by the field θ to the point xθ = Xθ(x) which belongs to the deformed domain Ωθ.
Moreover, we denote by Dθ the Jacobian matrix of the transformation Xθ and by Iθ = detDθ its
determinant.
Within the framework of shape optimization, a common choice for the transformation Xθ is a pertur-
bation of the identity map, that is

Xθ = Id +θ + o(θ) , θ ∈W 1,∞(Rd;Rd). (3.2)

Hence, Ωθ = Xθ(Ω) = {x+ θ(x) : x ∈ Ω} and under the assumption of a small perturbation θ, Xθ is
a diffeomorphism and belongs to the following space (cf. [2]):

X :=
{
Xθ : (Xθ − Id) ∈W 1,∞(Rd;Rd) and (X−1

θ − Id) ∈W 1,∞(Rd;Rd)
}
.

By exploiting the notation above, we introduce the set of shapes that may be obtained as result of a
deformation of the reference domain Ω:

Udef := {Ωθ : ∃Xθ ∈ X , Ωθ = Xθ(Ω)}. (3.3)

Let us define the compliance on a deformed domain Ωθ as

J(Ωθ) =

∫
Ωθ

A−1σΩθ : σΩθ dxθ. (3.4)

The shape optimization problem of the compliance under a volume constraint may be written as the
following PDE-constrained optimization problem of a shape-dependent functional:

min
Ωθ∈Uad

J(Ωθ) (3.5)

where the set of admissible domains Uad ⊂ Rd is the set of shapes in (3.3) such that σΩθ is the stress
tensor fulfilling the linear elasticity problem (2.1) on Ωθ and the volume V (Ωθ) := |Ωθ| is equal to the
initial volume |Ω|.

In real-life problems, the optimal design of compliant structures is usually subject to additional
constraints, either imposed by the end-user (e.g. volume/perimeter [2] or stress [29] constraints) or by
the manufacturing process (e.g. maximum/minimum thickness [5] or molding direction [4] constraints).
Several sophisticated strategies (e.g. quadratic penalty and augmented Lagrangian methods) may be
considered to handle the constraints involved in optimization problems and we refer to [44] for a
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thorough introduction to this subject. Within the field of shape optimization, an algorithm based on
a Lagrangian functional featuring an efficient update strategy for the Lagrange multiplier has been
proposed in [6]. Several other approaches have known a great success in the literature, e.g. the
Method of Moving Asymptotes [53] and the Method of Feasible Directions [55]. In this article, we
restrict ourselves to the classical volume constraint and we enforce it through a penalty method using
a fixed Lagrange multiplier γ. Thus the resulting unconstrained shape optimization problem reads as
follows:

min
Ωθ∈Uad

L(Ωθ) , L(Ωθ) := J(Ωθ) + γV (Ωθ) (3.6)

where J(Ωθ) is the compliance (3.4), V (Ωθ) is the volume of the domain and Uad is the previously
defined set of admissible shapes.

3.1 A gradient-based method for shape optimization

We consider an Optimize-then-Discretize strategy which relies on the analytical computation of the
gradient of the cost functional which is then discretized to run the optimization loop. In particular, we
exploit the so-called Boundary Variation Algorithm (BVA) described in [6]: this method requires the
computation of the so-called shape gradient which arises from the differentiation of the functional with
respect to the shape. A detailed computation of the volumetric expression of the shape gradient for
the pure displacement and the dual mixed formulations of the linear elasticity problem is discussed in
sections 4 and 5. Here, we briefly sketch the aforementioned BVA inspired by Hadamard’s boundary
variation method. After solving the linear elasticity equation, we compute the expression of the shape
gradient. Then, a descent direction is identified solving the following variational problem: we seek
θ ∈ X, X being an appropriate Hilbert space such that

(θ, δθ)X + 〈dL(Ω), δθ〉 = 0 ∀δθ ∈ X. (3.7)

The resulting information is used to deform the domain via a perturbation of the identity map Id +θ.

Algorithm 1: The Boundary Variation Algorithm

Given the domain Ω0, set j = 0 and iterate:

1. Compute the solution of the state equation;

2. Compute a descent direction θj ∈ X solving

(θj , δθ)X + 〈dL(Ωj), δθ〉 = 0 ∀δθ ∈ X ;

3. Identify an admissible step µj;
4. Update the domain Ωj+1 = (Id +µjθj)Ωj;

5. Until a stopping criterion is not fulfilled , j = j + 1 and repeat.

We recall that a direction θ is said to be a genuine descent direction for the functional L(Ω) if
〈dL(Ω), θ〉 < 0 . It is straightforward to observe that a direction fulfilling this condition is such that
L(Ω) decreases along θ, that is L((Id +θ)Ω) < L(Ω).
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3.1.1 Shape gradient of the volume

In order to apply algorithm 1 to solve problem (3.6), the analytical expression of the shape gradient
of L(Ωθ) is required. We remark that the volume V (Ωθ) is a purely geometrical quantity and does
not depend on the solution of the state problem. Hence, its shape gradient may be easily computed
by mapping the integral over the deformed domain Ωθ to the integral over the fixed domain Ω and by
differentiating the resulting quantity with respect to θ in θ = 0 (cf. e.g [28]):

〈dV (Ω), θ〉 =

∫
Ω
∇ · θ dx. (3.8)

Moreover, owing to (3.8) and to the fact that ΓN and ΓD are fixed - that is θ · n = 0 on ΓN ∪ ΓD -
the surface expression of the shape gradient of the volume reads as

〈dV (Ω), θ〉 =

∫
Γ
θ · n ds. (3.9)

In the rest of this article, we will focus on the shape gradient of the compliance. In particular,
in subsection 3.1.2 we will recall the expression of the surface shape gradient of the compliance (3.4),
whereas in sections 4 and 5 we will derive the volumetric expressions respectively for the pure dis-
placement formulation (cf. subsection 2.1) and for the mixed formulations (cf. subsections 2.2 and
2.3) of the linear elasticity problem.

3.1.2 Surface expression of the shape gradient of the compliance

In this subsection we recall the surface expression of the shape gradient of the compliance which will
be later used in section 6 to perform a preliminary numerical comparison with the corresponding
volumetric formulations. In particular, for the compliance we get

〈dJ(Ω), θ〉 = −
∫

Γ

(
2µe(uΩ) : e(uΩ) + λ(tr(e(uΩ)))2

)
θ · n ds (3.10)

whereas for the augmented functional L(Ωθ) it follows

〈dL(Ω), θ〉 =

∫
Γ

(
γ − 2µe(uΩ) : e(uΩ) + λ(tr(e(uΩ)))2

)
θ · n ds. (3.11)

We refer to [2] for a detailed discussion on the derivation of the above expression.

4 Volumetric shape gradient of the compliance via the pure dis-
placement formulation

In the pure displacement formulation (cf. subsection 2.1), the stress tensor can be expressed in terms
of the displacement field through the relationship σΩθ = Ae(uΩθ). Hence, (3.4) may be rewritten as

J(Ωθ) =

∫
Ωθ

Ae(uΩθ) : e(uΩθ) dxθ =

∫
Ωθ

f · uΩθ dxθ +

∫
ΓNθ

g · uΩθ dsθ, (4.1)
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that is we can equivalently reinterpret the compliance as the work of the external forces applied to
the domain Ωθ. Owing to the principle of minimum potential energy for the problem (2.5)-(2.6) on
the domain Ωθ and to (4.1), we may write the compliance as follows:

J1(Ωθ) := − min
uΩθ
∈VΩθ

∫
Ωθ

Ae(uΩθ) : e(uΩθ) dxθ − 2

∫
Ωθ

f · uΩθ dxθ − 2

∫
ΓNθ

g · uΩθ dsθ, (4.2)

where VΩθ := H1
0,ΓDθ

(Ωθ;Rd) = {v ∈ H1(Ωθ;Rd) : v = 0 on ΓDθ }.
Let j1(θ) := J1(Ωθ). We are interested in computing the shape gradient of J1(Ω), that is

〈dJ1(Ω), θ〉 := lim
θ↘0

J1(Ωθ)− J1(Ω)

θ
= lim

θ↘0

j1(θ)− j1(0)

θ
=: j′1(0). (4.3)

We refer to [28] for a result on the differentiability of a minimum with respect to a parameter.
Moreover, we remark that the space VΩθ in (4.2) depends on the parameter θ. We use the function
space parameterization technique described in [28] to transport the quantities defined on the deformed
domain Ωθ back to the reference domain Ω. Thus, we are able to rewrite (4.2) using solely functions of
the space VΩ which no longer depends on θ and we apply elementary differential calculus techniques
to compute the derivative of the objective functional with respect to the parameter θ.

Let us introduce the following transformation to parameterize the functions in H1
0,ΓDθ

(Ωθ;Rd) in

terms of the elements of H1
0,ΓD

(Ω;Rd):

Pθ : H1
0,ΓD(Ω;Rd)→ H1

0,ΓDθ
(Ωθ;Rd) , vΩθ = Pθ(vΩ) = vΩ ◦X−1

θ . (4.4)

Lemma 4.1. Let uΩ ∈ H1
0,ΓD

(Ω;Rd). We consider uΩθ = Pθ(uΩ) according to the transformation

(4.4). It follows that

1

2

(
∇xθuΩθ +∇xθu

T
Ωθ

)
=: exθ(uΩθ) =

1

2

(
∇xuΩD

−1
θ +D−Tθ ∇xu

T
Ω

)
(4.5)

where ∇xθ (respectively ∇x) represents the gradient with respect to the coordinate of the deformed
(respectively reference) domain.

Proof. Owing to (4.4), uΩθ = uΩ ◦X−1
θ . Thus,

∂ (uΩθ)i
∂ (xθ)j

=
∂ (uΩ)i
∂ (x)m

∂
(
X−1
θ

)
m

∂ (xθ)j
=
∂ (uΩ)i
∂ (x)m

(
D−1
θ

)
mj
.

Hence, the result follows directly:

(exθ(uΩθ))ij =
1

2

(
∂ (uΩθ)i
∂ (xθ)j

+
∂ (uΩθ)j
∂ (xθ)i

)
=

1

2

(
∂ (uΩ)i
∂ (x)m

(
D−1
θ

)
mj

+
∂ (uΩ)j
∂ (x)m

(
D−1
θ

)
mi

)
,

that is

exθ(uΩθ) =
1

2

(
∇xuΩD

−1
θ +D−Tθ ∇xu

T
Ω

)
.
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For the sake of readability and except in the case of ambiguity, henceforth we will omit the subscript
specifying the spatial coordinate with respect to which the gradient is computed, that is with an abuse
of notation we consider ∇uΩ = ∇xuΩ and ∇uΩθ = ∇xθuΩθ .

Now, we use the transformation (4.4) and the property (4.5) to map the first term in (4.2) to the
reference domain Ω:∫

Ωθ

Ae(uΩθ) : e(uΩθ) dxθ =

∫
Ω
Ae (uΩθ ◦Xθ) : e (uΩθ ◦Xθ) Iθ dx

=

∫
Ω
A

(
1

2

(
∇uΩD

−1
θ +D−Tθ ∇uTΩ

))
:

(
1

2

(
∇uΩD

−1
θ +D−Tθ ∇u

T
Ω

))
Iθ dx.

(4.6)

The remaining terms in (4.2) may be transported to the reference domain as follows:

−2

∫
Ωθ

f · uΩθ dxθ = −2

∫
Ω
f ◦Xθ · (uΩθ ◦Xθ) Iθ dx = −2

∫
Ω
f ◦Xθ · uΩ Iθ dx, (4.7)

−2

∫
ΓNθ

g · uΩθ dsθ = −2

∫
ΓN

g ◦Xθ · (uΩθ ◦Xθ) Cof Dθ ds = −2

∫
ΓN

g ◦Xθ · uΩ Cof Dθ ds, (4.8)

where Cof Dθ is the cofactor matrix of the jacobian of Xθ. By combining (4.6), (4.7) and (4.8), we
obtain the following function j1(θ) which solely depends on the reference domain Ω:

j1(θ) = − min
uΩ∈VΩ

∫
Ω
A

(
1

2

(
∇uΩD

−1
θ +D−Tθ ∇u

T
Ω

))
:

(
1

2

(
∇uΩD

−1
θ +D−Tθ ∇u

T
Ω

))
Iθ dx

− 2

∫
Ω
f ◦Xθ · uΩ Iθ dx− 2

∫
ΓN

g ◦Xθ · uΩ Cof Dθ ds.

(4.9)

Owing to (3.2), the Jacobian of the transformations Xθ, X
T
θ and X−1

θ read as

Dθ = Id +∇θ + o(∇θ), (4.10)

DT
θ = Id +∇θT + o(∇θ), (4.11)

D−1
θ = Id−∇θ + o(∇θ). (4.12)

Moreover, we recall that

det(Id +C) = 1 + tr(C) + o(C), (4.13)

Cof(Id +C) = Id + tr(C) Id−C + o(C). (4.14)

We may now differentiate (4.9) with respect to θ in θ = 0 by exploiting (4.11), (4.12), (4.13) and
(4.14). The shape gradient of the compliance using the pure displacement formulation for the linear
elasticity problem reads as

〈dJ1(Ω), θ〉 =

∫
Ω
Ae(uΩ) :

(
∇uΩ∇θ +∇θT∇uTΩ

)
dx−

∫
Ω
Ae(uΩ) : e(uΩ)(∇ · θ) dx

+ 2

∫
Ω

(∇fθ · uΩ + f · uΩ(∇ · θ)) dx+ 2

∫
ΓN

(∇gθ · uΩ + g · uΩ (∇ · θ −∇θn · n)) ds.

(4.15)
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5 Volumetric shape gradient of the compliance via the dual mixed
formulation

Let us consider the notation introduced in section 3 for the transformation Xθ. Following the same
procedure as above, we may rewrite the compliance coupled with the constraint that the stress tensor
is solution of the linear elasticity equation in the Hellinger-Reissner dual mixed variational formulation
(2.7)-(2.8)-(2.9) on Ωθ by introducing the following objective functional:

J2(Ωθ) := inf
σΩθ
∈ΣΩθ

sup
uΩθ
∈VΩθ

∫
Ωθ

A−1σΩθ : σΩθ dxθ +

∫
Ωθ

(∇ · σΩθ + f) · uΩθ dxθ (5.1)

where ΣΩθ := {τ ∈ H(div,Ωθ;Sd) : τnθ = g on ΓNθ and τn = 0 on Γθ} and VΩθ := L2(Ωθ;Rd).
In a similar fashion, starting from the dual mixed variational formulation with weakly enforced sym-
metry of the stress tensor (2.10)-(2.11)-(2.12), we obtain:

J3(Ωθ) := inf
σΩθ
∈ΣΩθ

sup
(uΩθ

,ηΩθ
)∈WΩθ

∫
Ωθ

A−1σΩθ : σΩθ dxθ +

∫
Ωθ

(∇ · σΩθ + f) · uΩθ dxθ

+
1

2µ

∫
Ωθ

σΩθ : ηΩθ dxθ

(5.2)

where ΣΩθ := {τ ∈ H(div,Ωθ;Md) : τnθ = g on ΓNθ and τn = 0 on Γθ} and WΩθ := VΩθ × QΩθ :=
L2(Ωθ;Rd)× L2(Ωθ;Kd).
Let ji(θ) := Ji(Ωθ) i = 2, 3. We are interested in computing the shape gradient of the functionals
Ji(Ω)’s, that is

〈dJi(Ω), θ〉 := lim
θ↘0

Ji(Ωθ)− Ji(Ω)

θ
= lim

θ↘0

ji(θ)− ji(0)

θ
=: j′i(0). (5.3)

We refer to [27] for a general result on the differentiability of a min-max function, whereas in [28, 32]
some examples of shape differentiability of min-max functions are provided.
As in section 4, we apply the function space parameterization technique to transport the quantities
defined on Ωθ back to Ω. A key aspect of this procedure is the construction of a transformation that
preserves the normal traces of the tensors in (5.1) and (5.2). For this purpose, we rely on a special
isomorphism known as contravariant Piola transform and we define the following mappings:

Qθ : H(div,Ω;Md)→ H(div,Ωθ;Md) , τΩθ = Qθ(τΩ) =
1

Iθ
DθτΩ ◦X−1

θ DT
θ (5.4)

Rθ : L2(Ω;Rd)→ L2(Ωθ;Rd) , vΩθ = Rθ(vΩ) = D−Tθ vΩ ◦X−1
θ . (5.5)

We refer to [26, 42] for a discussion on the Piola transform and its role in the mathematical theory
of elasticity, to [46, 54] for its application to mixed Finite Element methods for elliptic problems and
to [48] for some technical details on its use to efficiently evaluate variational forms in H(div) and
H(curl), that is the Sobolev space of square-integrable vectorfields whose rotation curl is square-
integrable.
Before moving to the derivation of the shape gradient via the function space parameterization tech-
nique, we prove the following property:
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Lemma 5.1. Let σΩ ∈ H(div,Ω;Md). We consider σΩθ = Qθ(σΩ) according to the transformation
(5.4). It follows that

∇xθ · σΩθ =
1

Iθ
Dθ∇x · σΩ (5.6)

where ∇xθ · (respectively ∇x·) represents the divergence with respect to the coordinate of the deformed
(respectively reference) domain.

Proof. First, we recall that for a given invertible matrix C ∈Md, we get that

C−1 =
1

detC
(Cof C)T . (5.7)

Owing to this property, we may rewrite (5.4) as

σΩθ = DθσΩ ◦X−1
θ

(
Cof D−1

θ

)
. (5.8)

We are interested in computing the divergence of (5.8) with respect to the coordinate xθ of the deformed
domain. Within this framework, we observe that being Dθ the Jacobian of the transformation (3.1)
such that Ωθ 3 xθ = Xθ(x) , x ∈ Ω, it is independent on the variable xθ. Let us now prove the
following Piola identity:

∇xθ ·
(
Cof D−1

θ

)
= 0. (5.9)

Using the Levi-Civita symbol εijk and the Einstein summation convention, the cofactor matrix of the
inverse of the Jacobian Dθ has the form

(
Cof D−1

θ

)
ij

=
1

2
εimnεjpq

∂(X−1
θ )m

∂(xθ)p

∂(X−1
θ )n

∂(xθ)q
.

Its divergence reads

∂
(
Cof D−1

θ

)
ij

∂ (xθ)j
=

1

2
εimnεjpq

(
∂2
(
X−1
θ

)
m

∂ (xθ)j ∂ (xθ)p

∂
(
X−1
θ

)
n

∂ (xθ)q
+
∂
(
X−1
θ

)
m

∂ (xθ)p

∂2
(
X−1
θ

)
n

∂ (xθ)j ∂ (xθ)q

)

=
1

2
εimn

(
εpjq

∂2
(
X−1
θ

)
m

∂ (xθ)p ∂ (xθ)j

∂
(
X−1
θ

)
n

∂ (xθ)q
+ εqpj

∂
(
X−1
θ

)
m

∂ (xθ)p

∂2
(
X−1
θ

)
n

∂ (xθ)q ∂ (xθ)j

)

= −1

2
εimnεjpq

(
∂2
(
X−1
θ

)
m

∂ (xθ)j ∂ (xθ)p

∂
(
X−1
θ

)
n

∂ (xθ)q
+
∂
(
X−1
θ

)
m

∂ (xθ)p

∂2
(
X−1
θ

)
n

∂ (xθ)j ∂ (xθ)q

)

= −
∂
(
Cof D−1

θ

)
ij

∂ (xθ)j
,

where the third equality follows from the definition of the Levi-Civita symbol. Hence, we can conclude
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that (5.9) stands. We may now compute the divergence of (5.8):

∇xθ · σΩθ =
∂ (σΩθ)ij
∂ (xθ)j

ei =
∂

∂ (xθ)j

(
(Dθ)im

(
σΩ ◦X−1

θ

)
mq

(
Cof D−1

θ

)
qj

)
ei

= (Dθ)im
∂ (σΩ)mn
∂ (x)n

∂
(
X−1
θ

)
n

∂ (xθ)j

(
Cof D−1

θ

)
qj
ei

= (Dθ)im
∂ (σΩ)mn
∂ (x)n

(
D−1
θ

)
nj

(
Cof D−1

θ

)
qj
ei

=
1

detDθ
(Dθ)im

∂ (σΩ)mn
∂ (x)n

δnqei

where the last equality follows from (5.7). Hence, it is straightforward to retrieve the result (5.6):

∇xθ · σΩθ =
1

Iθ
(Dθ)im

∂ (σΩ)mq
∂ (x)q

ei =
1

Iθ
Dθ∇x · σΩ

From now on, if there is no ambiguity we will assume that the differential operators act on the space
to which the functions belong and we will omit the subscript associated with the spatial coordinate
used to compute the derivatives (e.g. ∇ · σΩθ = ∇xθ · σΩθ and ∇ · σΩ = ∇x · σΩ).

As stated at the beginning of this section, in order to compute the shape gradients (5.3), we have
to express the functionals J2(Ωθ) and J3(Ωθ) in terms of the reference domain Ω and of functions
defined solely on it. Thus, in the following subsections we use the transformations (5.4) and (5.5) to
map (5.1) and (5.2) back to the reference domain and differentiate them with respect to θ.

5.1 The case of strongly enforced symmetry of the stress tensor

We consider the Hellinger-Reissner mixed variational formulation of the linear elasticity problem and
the corresponding objective functional (5.1). We remark that the symmetry of the stress tensor σΩθ is
strongly enforced using the space ΣΩθ := {τ ∈ H(div,Ωθ;Sd) : τnθ = g on ΓNθ and τn = 0 on Γθ}. It
is straightforward to observe that the transformation (5.4) holds true for the space of d×d symmetric
matrices Sd, that is Qθ : H(div,Ω;Sd)→ H(div,Ωθ;Sd). As a matter of fact, being τΩ ∈ H(div,Ω;Sd),
it follows that

(τΩθ)
T =

(
1

Iθ
DθτΩ ◦X−1

θ DT
θ

)T
=

1

Iθ
DθτΩ ◦X−1

θ DT
θ = τΩθ .

We use the definition of the compliance tensor in (2.3) and we map the first term in (5.1) to the
reference domain Ω by means of the transformation (5.4):∫

Ωθ

σΩθ : σΩθ dxθ =

∫
Ω

(σΩθ ◦Xθ) : (σΩθ ◦Xθ) Iθ dx

=

∫
Ω

1

I2
θ

(
DθσΩD

T
θ

)
:
(
DθσΩD

T
θ

)
Iθ dx

=

∫
Ω

1

Iθ
DT
θ DθσΩD

T
θ Dθ : σΩ dx,

(5.10)
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where the last equality follows from the definition of the Frobenius product and the cyclic property of
the trace. In a similar fashion, we obtain∫

Ωθ

tr(σΩθ) tr(σΩθ) dxθ =

∫
Ω

tr (σΩθ ◦Xθ) tr (σΩθ ◦Xθ) Iθ dx

=

∫
Ω

1

I2
θ

tr
(
DθσΩD

T
θ

)
tr
(
DθσΩD

T
θ

)
Iθ dx

=

∫
Ω

1

Iθ
tr
(
DT
θ DθσΩ

)
tr
(
DT
θ DθσΩ

)
dx.

(5.11)

We consider now the second term in (5.1). Owing to (5.6) and (5.5) it follows∫
Ωθ

(∇ · σΩθ) · uΩθ dxθ =

∫
Ω

(∇ · (σΩθ ◦Xθ)) · (uΩθ ◦Xθ) Iθ dx

=

∫
Ω

1

Iθ
(Dθ∇ · σΩ) ·

(
D−Tθ uΩ

)
Iθ dx =

∫
Ω

(∇ · σΩ) · uΩ dx,

(5.12)

∫
Ωθ

f · uΩθ dxθ =

∫
Ω
f ◦Xθ · (uΩθ ◦Xθ) Iθ dx =

∫
Ω
f ◦Xθ ·

(
D−Tθ uΩ

)
Iθ dx. (5.13)

By combining the above information, we obtain the following min-max function which no longer
depends on the space Ωθ:

j2(θ) = inf
σΩ∈ΣΩ

sup
uΩ∈VΩ

1

2µ

∫
Ω

1

Iθ
DT
θ DθσΩD

T
θ Dθ : σΩ dx

− λ

2µ(dλ+ 2µ)

∫
Ω

1

Iθ
tr
(
DT
θ DθσΩ

)
tr
(
DT
θ DθσΩ

)
dx

+

∫
Ω

(∇ · σΩ) · uΩ dx+

∫
Ω
f ◦Xθ ·

(
D−Tθ uΩ

)
Iθ dx.

(5.14)

We may now exploit (4.10), (4.11) and (4.13) to differentiate (5.14) with respect to θ and evaluate the
resulting quantity in θ = 0. Thus, the shape gradient of the compliance using the Hellinger-Reissner
dual mixed variational formulation for the linear elasticity problem reads as

〈dJ2(Ω), θ〉 =
1

µ

∫
Ω
N(θ)σΩ : σΩ dx− λ

µ(dλ+ 2µ)

∫
Ω

tr (N(θ)σΩ) tr (σΩ) dx

+

∫
Ω

(
∇fθ · uΩ + f · uΩ(∇ · θ)− f · (∇θTuΩ)

)
dx

(5.15)

where N(θ) := ∇θ +∇θT − 1
2(∇ · θ) Id.

5.2 The case of weakly enforced symmetry of the stress tensor

The dual mixed formulation of the linear elasticity problem discussed in subsection 2.3 is characterized
by the weak imposition of the symmetry of the stress tensor through a Lagrange multiplier ηΩθ .
Thus, besides the spaces VΩθ and ΣΩθ , the functional (5.2) associated with the minimization of the
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compliance using the aforementioned framework introduces the additional space QΩθ := L2(Ωθ;Kd)
of the d × d skew-symmetric square-integrable tensors. In order to map the space L2(Ω;Kd) to
L2(Ωθ;Kd), we use the previously introduced transformation (5.4): it is straightforward to observe
that given ηΩ ∈ L2(Ω;Kd), the transported ηΩθ = Qθ(ηΩ) is skew-symmetric:

(ηΩθ)
T =

(
1

Iθ
DθηΩ ◦X−1

θ DT
θ

)T
=

1

Iθ
Dθ

(
ηΩ ◦X−1

θ

)T
DT
θ = − 1

Iθ
DθηΩ ◦X−1

θ DT
θ = −ηΩθ .

The first two integrals in (5.2) may be treated as in the previous subsection and the manipulations
that lead to (5.10), (5.11), (5.12) and (5.13) stand. Let us now map the remaining term in (5.2) back
to the reference domain Ω:∫

Ωθ

σΩθ : ηΩθ dxθ =

∫
Ω

(σΩθ ◦Xθ) : (ηΩθ ◦Xθ) Iθ dx

=

∫
Ω

1

I2
θ

(
DθσΩD

T
θ

)
:
(
DθηΩD

T
θ

)
Iθ dx

=

∫
Ω

1

Iθ
DT
θ DθσΩD

T
θ Dθ : ηΩ dx.

(5.16)

We combine (5.10), (5.11), (5.12), (5.13) and (5.16) to obtain the min-max function associated with
J3(Ωθ) and defined on a space that does not depend on θ:

j3(θ) = inf
σΩ∈ΣΩ

sup
(uΩ,ηΩ)∈WΩ

1

2µ

∫
Ω

1

Iθ
DT
θ DθσΩD

T
θ Dθ : σΩ dx

− λ

2µ(dλ+ 2µ)

∫
Ω

1

Iθ
tr
(
DT
θ DθσΩ

)
tr
(
DT
θ DθσΩ

)
dx

+
1

2µ

∫
Ω

1

Iθ
DT
θ DθσΩD

T
θ Dθ : ηΩ dx

+

∫
Ω

(∇ · σΩ) · uΩ dx+

∫
Ω
f ◦Xθ ·

(
D−Tθ uΩ

)
Iθ dx.

(5.17)

Let us consider the matrix N(θ) introduced in the previous subsection. By differentiating (5.17) with
respect to θ in θ = 0, we obtain the following expression of the shape gradient of the compliance using
the dual mixed variational formulation for the linear elasticity with weakly imposed symmetry of the
stress tensor:

〈dJ3(Ω), θ〉 =
1

2µ

∫
Ω

(N(θ)σΩ : σΩ + σΩN(θ) : σΩ) dx

− λ

µ(dλ+ 2µ)

∫
Ω

tr (N(θ)σΩ) tr (σΩ) dx

+
1

2µ

∫
Ω

(N(θ)σΩ : ηΩ + σΩN(θ) : ηΩ) dx

+

∫
Ω

(
∇fθ · uΩ + f · uΩ(∇ · θ)− f · (∇θTuΩ)

)
dx.

(5.18)

We remark that the two expressions of the shape gradient obtained using the dual mixed variational
formulations in subsections 5.1 and 5.2 are equivalent:
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Lemma 5.2. Let us consider a symmetric stress tensor σΩ ∈ H(div,Ω; Sd). Then (5.15) and (5.18)
are equal.

Proof. It is straightforward to observe that the second and the fourth integrals in (5.18) correspond
to the last two terms in (5.15). Moreover, owing to the symmetry of N(θ) and σΩ, we get:∫

Ω
(N(θ)σΩ : σΩ + σΩN(θ) : σΩ) dx =

∫
Ω

(
tr
(
N(θ)σΩσ

T
Ω

)
+ tr

(
N(θ)TσTΩσΩ

))
dx

=

∫
Ω

2 tr
(
N(θ)σΩσ

T
Ω

)
dx =

∫
Ω

2N(θ)σΩ : σΩ dx.

In order to prove the equality 〈dJ2(Ω), θ〉 = 〈dJ3(Ω), θ〉, we have to show that the following quantity
is equal to zero:∫

Ω
(N(θ)σΩ : ηΩ + σΩN(θ) : ηΩ) dx =

∫
Ω

(
tr
(
N(θ)σΩη

T
Ω

)
+ tr

(
N(θ)TσTΩηΩ

))
dx.

The result follows directly from the symmetry of the matrix N(θ), the symmetry of σΩ and the
skew-symmetry of ηΩ.

6 Qualitative assessment of the discretized shape gradients via nu-
merical simulations

In this section, we provide some numerical simulations to present a preliminary comparison of the
expressions of the shape gradient of the compliance derived using different formulations of the linear
elasticity problem. As mentioned in subsection 2.2, a major drawback of the Hellinger-Reissner vari-
ational formulation for the linear elasticity equation is the complexity of the stable Arnold-Winther
pair of Finite Element spaces associated with this discretization (cf. [16]). Hence, for the scope of this
section, we restrict ourselves to the expression of the shape gradient obtained by the pure displace-
ment formulation (cf. sections 2.1 and 4) and to the one arising from the dual mixed formulation with
weakly imposed symmetry of the stress tensor (cf. sections 2.3 and 5.2).
We consider the optimal design of the classical cantilever beam described in figure 1. In particular, we
assume a zero body forces configuration, a structure clamped on ΓD, with a load g = (0,−1) applied
on ΓN and a free boundary Γ.

6.1 Experimental analysis of the convergence of the error in the shape gradient

In order to establish an experimental convergence rate for the discretization error associated with
the approximation of the pure displacement and the dual mixed formulations of the linear elasticity
problem, we consider the cantilever beam described in figure 1. In particular, we consider the domain
featuring six holes depicted in figure 2b. Owing to the fact that the analytical solution of the linear
elasticity problem on the aforementioned domain Ω is not known, we solve the linear elasticity problem
on an extremely fine mesh and we consider the resulting solution as the exact solution of the problem
under analysis. The discretization of the pure displacement formulation of the state problem is per-
formed using P1 × P1 Finite Element functions to approximate the displacement field. For the dual
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Figure 1: Scheme of a 2D cantilever beam clamped on ΓD, with a load g applied on the boundary ΓN and
free boundaries Γ.

(a) Bulky structure. (b) Structure with six holes.

Figure 2: Initial shape and computational mesh for (a) a bulky cantilever and (b) a structure featuring six
holes. Density distribution of the elastic energy within the range (a) (0, 1.5 · 10−3) and (b) (0, 3 · 10−3), the
lower values being in blue and the higher ones in red.
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Figure 3: Experimental convergence rate of the error in the shape gradient computed using the surface
expression based on the pure displacement formulation (black squares), the corresponding volumetric expression
(red diamond) and the dual mixed formulation (blue circle) with respect to the number of Degrees of Freedom.

mixed formulation, we consider the scheme described in subsection 2.3 and we approximate the stress
tensor using BDM1 × BDM1 Finite Elements, the displacement field via P0 × P0 and the Lagrange
multiplier by means of a P0 function.
In figure 3, we present the convergence history of the discretization error in the shape gradient with
respect to the number of Degrees of Freedom using the surface expression based on the pure displace-
ment formulation and the volumetric expressions previously derived. In particular, we observe that
under uniform mesh refinements the surface expression based on the pure displacement formulation
is less accurate and presents a slower convergence rate than the corresponding volumetric one. More-
over, using the dual mixed formulation the numerical error in the shape gradient is furtherly lowered
and the blue curve seems slightly steeper than the red one. Thus, from the numerical experiments it
seems that the volumetric shape gradient obtained from the dual mixed formulation of the problem
may provide better convergence rate than the corresponding expression based on the pure displace-
ment formulation. Nevertheless, this conjecture remains to be proved and a rigorous analysis of the
convergence rate by means of a priori estimates of the error in the shape gradient is necessary.

6.2 Boundary Variation Algorithm using the pure displacement and the dual
mixed formulations

In this subsection, we apply the Boundary Variation Algorithm described in subsection 3.1 to minimize
the compliance of the cantilever in figure 1 under a volume constraint. In particular, the volume of
the structure under analysis is set to its initial value V0 and we aim to construct an optimal shape
that minimizes the compliance while preserving as much as possible the value V0 of the volume. As
discussed in section 3, the volume constraint is handled through a Lagrange multiplier γ. From a
theoretical point of view, the value of the Lagrange multiplier should be updated at each iteration in
order for the optimal shape to fulfill the volume constraint when the algorithm converges. Nevertheless,
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enforcing the volume constraint at each iteration would highly increase the complexity of the algorithm
and consequently its computational cost. Thus we consider a constant Lagrange multiplier at each
iteration of the strategy and starting from the previously computed value γ, we increase it if the
current volume V is greater than the target V0 and we decrease it otherwise.

As extensively discussed in [33–35], a key aspect of shape optimization procedures is the choice of
the criterion to stop the evolution of the optimization strategy. In order to compare the expressions
(4.15) and (5.18) of the shape gradient of the compliance, we consider an a priori fixed number of
iterations for the BVA under analysis. Moreover, the number of connected regions inside the domain
is set at the beginning of the procedure and the deformation of the shape is performed via a moving
mesh approach. In the rest of this subsection, we present two test cases for the optimal design of the
cantilever in figure 1, that is a bulky structure (Fig. 2a) and a porous one featuring six internal holes
(Fig. 2b). All the numerical simulations are obtained using FreeFem++ [38].

Bulky cantilever beam

We consider the initial configuration in figure 2a. The volume of the structure under analysis is
V0 = 45 and we set the initial value of the Lagrange multiplier to γ0 = 0.1. In figure 4, we present
the shapes obtained using the Boundary Variation Algorithm based on the expressions (4.15) and
(5.18) of the shape gradient of the compliance. In particular, we remark that the variant of the BVA
which exploits the shape gradient computed via the dual mixed variational formulation of the linear
elasticity problem is able to construct configurations in which the total elastic energy is lower than
in the corresponding cases obtained starting from the pure displacement formulation of the problem.
This remark is confirmed by the comparison plots in figure 5 where the BVA based on the dual mixed
formulation is depicted by blue curves whereas the red ones represent the results obtained starting
from the pure displacement formulation. As a matter of fact, the former approach appears more robust
than the latter one: the BVA based on the dual mixed formulation improves both the compliance and
the functional L(Ω) during several iterations, whereas at the beginning of the evolution, the variant
exploiting the pure displacement formulation reduces the compliance by enlarging the volume of the
structure, thus deteriorating the corresponding value of L(Ω) (Fig. 5b). In a second phase, the BVA
based on the pure displacement formulation is able to better control the variation of the volume and the
final shapes obtained by the two algorithms have comparable sizes (Fig. 5c). Nevertheless, the overall
improvement of the compliance is far more limited when using the pure displacement formulation with
respect to the one observed starting from the dual mixed formulation (Fig. 5a).

Cantilever beam with six holes

The initial shape for the cantilever beam with six holes is depicted in figure 2b and features a reference
volume V0 = 40.59 and an initial Lagrange multiplier equal to γ0 = 0.13. As for the case of the
bulky cantilever, we present snapshots of the shapes obtained at different iterations of the Boundary
Variation Algorithm using both the pure displacement and the dual mixed formulation of the linear
elasticity problem (Fig. 6). Moreover, a qualitative analysis of the evolution of the compliance and of
the variation of the volume is discussed starting from figure 7. As previously remarked, the Boundary
Variation Algorithm based on the dual mixed formulation of the linear elasticity problem leads to
configurations with lower elastic energy. Figures 7a and 7b confirm that the variant of the BVA using
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(a) 10 iterations. (b) 20 iterations. (c) 30 iterations.

(d) 10 iterations. (e) 20 iterations. (f) 30 iterations.

Figure 4: Comparison of the BVA after 10, 20 and 30 iterations. At the top: BVA based on the expression of
the shape gradient computed using the pure displacement formulation of the linear elasticity problem. At the
bottom: BVA using the shape gradient arising from the dual mixed variational formulation. Density distribution
of the elastic energy within the range (0, 1.5 · 10−3), the lower values being in blue and the higher ones in red.

(a) Compliance J(Ω). (b) Penalized functional L(Ω). (c) Volume V (Ω).

Figure 5: Evolution of the (a) compliance J(Ω), (b) penalized functional L(Ω) = J(Ω)+γV (Ω) and (c) volume
V (Ω) using the BVA. Results obtained using the pure displacement formulation (red diamond) and the dual
mixed one (blue circle). The reference volume V0 is represented by a black dashed line in (c).
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the dual mixed formulation generates a sequence of shapes that improve the objective functional for
several subsequent iterations. On the contrary, the pure displacement formulation leads to a less
robust strategy in which at the beginning of the optimization process, the compliance is reduced by
increasing the volume of the structure. Concerning the BVA based on the dual mixed formulation,
the comparison of figure 6e with figure 6f, highlights that only minor modifications of the shape are
performed by the algorithm from iteration 20 to iteration 30. As a matter of fact, the evolution of the
volume (Fig. 7c) shows that after having identified a configuration with low compliance the algorithm
tends to correct the shape in order to fulfill the volume constraint which has been violated during
the initial iterations. As highlighted by the test case of the bulky cantilever, the Boundary Variation
Algorithm based on the dual mixed formulation is able to construct structures with lower compliance
than the configurations generated using the pure displacement formulation (Fig. 7a). Nevertheless,
both the final configuration in figure 6c and the one in figure 6f, present some issues. On the one
hand, the pure displacement solution presents kinks responsible for low compliance near the regions ΓD

where the structure is clamped. On the other hand, the shape obtained by the dual mixed formulation
features thin components which may be critical to handle during the manufacturing process. Both
these issues may be potentially influenced by the choice of explicitly representing the geometry through
the computational mesh and the consequent moving mesh approach to deform the domain. In order
to bypass these issues, an implicit description of the geometry may be employed.

Concerning the computational cost of the overall optimization procedures, it is important to remark
that the dual mixed formulation features more variables (stress tensor σΩ, displacement field uΩ and
Lagrange multiplier ηΩ) than the pure displacement one which - as the name states - solely relies
on the displacement field uΩ. From a practical point of view, this results in a higher number of
Degrees of Freedom in the discrete problem and consequently a higher computational cost. Moreover,
by comparing the first and the second lines of figures 4 and 6, we remark that the computations of
the BVA based on the dual mixed formulation were performed on finer meshes than the ones used
for the pure displacement one. This turned out to be necessary in order to retrieve an accurate
solution of the dual mixed Finite Element problem of linear elasticity, whereas the pure displacement
formulation may be easily approximated using Lagrangian Finite Element functions as long as one
avoids the nearly incompressible and the incompressible case. Eventually, the linear system obtained
by the discretization discussed in subsection 2.3 may be extremely ill-posed and the construction of
appropriate preconditioners (cf. e.g. [41]) may be necessary. Hence, though the preliminary numerical
results suggest that the BVA based on the dual mixed formulation is the best choice when dealing
with the minimization of the compliance in linear elasticity, the higher computational cost and the
additional numerical difficulties of the overall strategy have to be taken into account to provide a
global evaluation of the method. Within this context, additional investigations have to be performed
both from a theoretical point of view (e.g. a priori estimate of the error in the shape gradient) and
from a computational one, by optimizing and improving the resolution strategy outlined above.

7 Conclusion

To the best of our knowledge, the results in this article are the first attempt to derive volumetric
expressions of the shape gradient of a shape-dependent functional within the framework of linear
elasticity. In particular, we computed two novel expressions of the shape gradient of the compliance
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(a) 10 iterations. (b) 20 iterations. (c) 30 iterations.

(d) 10 iterations. (e) 20 iterations. (f) 30 iterations.

Figure 6: Comparison of the BVA after 10, 20 and 30 iterations. At the top: BVA based on the expression of
the shape gradient computed using the pure displacement formulation of the linear elasticity problem. At the
bottom: BVA using the shape gradient arising from the dual mixed variational formulation. Density distribution
of the elastic energy within the range (0, 3 · 10−3), the lower values being in blue and the higher ones in red.

(a) Compliance J(Ω). (b) Penalized functional L(Ω). (c) Volume V (Ω).

Figure 7: Evolution of the (a) compliance J(Ω), (b) penalized functional L(Ω) = J(Ω)+γV (Ω) and (c) volume
V (Ω) using the BVA. Results obtained using the pure displacement formulation (red diamond) and the dual
mixed one (blue circle). The reference volume V0 is represented by a black dashed line in (c).
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starting from the pure displacement and the dual mixed formulations of the governing equation. A
preliminary comparison of the aforementioned expressions by means of numerical simulations showed
extremely promising results, especially using the dual mixed variational formulation of the linear
elasticity equation. As a matter of fact, the global optimization strategy based on this approach
seems more robust than the one obtained from the pure displacement formulation and is able to further
reduce the compliance of the structure under analysis. Nevertheless, a rigorous and detailed analysis
both from an analytical and a numerical point of view is necessary to validate the aforementioned
statement. Concerning the analytical derivation of the volumetric shape gradient of the compliance, a
rigorous proof of the equivalence of the expressions obtained using the pure displacement and the dual
mixed variational formulations of the linear elasticity problem is required. Moreover, following the
analysis performed for the elliptic case in [39], a priori estimates of the error in the shape gradient may
be derived. This analysis seems particularly interesting since it may provide additional information on
the convergence of the shape gradient using different discretization techniques, thus possibly fostering
one formulation over the other to achieve better accuracy in the approximation of the shape gradient.

It. j L(Ωj) 〈dhL(Ωj), θ
h
j 〉 L(Ωj+1)

1 9.38 −5.7 · 10−1 9.25

5 9.99 −6.61 · 10−2 10.52

10 12.80 −1.05 · 10−1 13.19

15 12.78 −9.4 · 10−2 12.46

25 8.58 −3.61 · 10−2 8.4

30 7.54 −9.52 · 10−3 −

(a) Test in fig. 5 - Pure displacement formula-
tion.

It. j L(Ωj) 〈dhL(Ωj), θ
h
j 〉 L(Ωj+1)

1 9.49 −4.78 8.83

6 8.37 −7.28 · 10−1 8.43

10 7.95 −7.88 · 10−1 7.79

15 6.62 −5.55 · 10−1 6.3

28 4.68 −6.55 · 10−1 4.74

30 4.66 −6.21 · 10−1 −

(b) Test in fig. 5 - Dual mixed formulation.

It. j L(Ωj) 〈dhL(Ωj), θ
h
j 〉 L(Ωj+1)

1 10.64 −1.00 10.48

3 10.50 −3.68 · 10−1 10.66

9 12.30 −1.74 · 10−1 12.34

15 10.61 −1.04 · 10−1 10.06

25 7.16 −1.1 · 10−2 7.05

30 6.82 −2.75 · 10−3 −

(c) Test in fig. 7 - Pure displacement formula-
tion.

It. j L(Ωj) 〈dhL(Ωj), θ
h
j 〉 L(Ωj+1)

1 11.01 −15.32 10.48

5 8.49 −2.55 8.12

10 5.50 −1.29 4.95

18 3.18 −1.36 3.19

28 3.32 −2.06 3.36

30 3.37 −2.18 −

(d) Test in fig. 7 - Dual mixed formulation.

Table 1: Boundary Variation Algorithm based on the pure displacement formulation (left) and on the dual
mixed formulation (right) of the linear elasticity problem. On the first line: test case in figure 5. On the second
line: test case in figure 7. Evolution of the penalized objective functional L(Ω) with respect to the iteration
number. In yellow: the cases in which the discretized direction θh fails to be a genuine descent direction for
L(Ω) despite being 〈dhL(Ω), θh〉 < 0.

The numerical results in section 6 highlight some issues associated with the application of the
Boundary Variation Algorithm to the minimization of the compliance in structural optimization. On
the one hand, it is straightforward to observe (Fig. 5 and 7) that the direction computed using the
discretized shape gradient is not always a genuine descent direction for the functional under analysis.
To remedy this issue, in [33–35] we proposed a variant of the BVA - named Certified Descent Algorithm
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(CDA) - that couples a gradient-based optimization strategy with a posteriori estimators of the error
in the shape gradient. This remark is confirmed by table 1 in which we observe that despite being
〈dhL(Ω), θh〉 < 0, the functional L(Ω) may increase when the shape is perturbed accordingly to the field
θh. Ongoing investigations focus on the application of the aforementioned CDA to the minimization
of the compliance discussed in this article. On the other hand, the choice of explicitly representing
the geometry and deforming it by moving the computational mesh is responsible for the degradation
of the final shapes computed by the algorithm. Currently, we are investigating the approach proposed
by Allaire et al. in [3] that exploits an implicit description of the geometry via a level-set function and
propagates it by solving an Hamilton-Jacobi equation.

Eventually mixed formulations of the linear elasticity problem with strongly-enforced symmetry
of the stress tensor may be investigated, e.g. the Hellinger-Reissner formulation approximated by
means of Arnold-Winther Finite Element spaces (cf. [10,16]) and the Tangential-Displacement Normal-
Normal-Stress (TD-NNS) formulation recently proposed by Pechstein and Schöberl in [45].
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