
HAL Id: hal-01441892
https://hal.science/hal-01441892

Submitted on 20 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced load modelling techniques for state estimation
on distribution networks with multiple distributed

generators
Weicong Kong, David W. Wang, Colin Foote, Graham Ault, Andrea

Michiorri, Robert Currie

To cite this version:
Weicong Kong, David W. Wang, Colin Foote, Graham Ault, Andrea Michiorri, et al.. Advanced
load modelling techniques for state estimation on distribution networks with multiple distributed
generators. 17th Power Systems Computation Conference, Aug 2011, Stockholm, Sweden. �hal-
01441892�

https://hal.science/hal-01441892
https://hal.archives-ouvertes.fr


ADVANCED LOAD MODELLING TECHNIQUES FOR STATE 

ESTIMATION ON DISTRIBUTION NETWORKS WITH MULTIPLE 

DISTRIBUTED GENERATORS 

Weicong Kong 

University of Strathclyde 

weicong.kong@eee.strath.ac.uk 

David Wang 

Smarter Grid Solutions 

david.wang@smartergridsolutions.com 

Colin Foote 

Smarter Grid Solutions 

colin.foote@smatergridsolutions.com 

Graham Ault 

University of Strathclyde 

g.ault@eee.strath.ac.uk

Andrea Michiorri 

Smarter Grid Solutions 
andrea.michiorri@smartergridsolutions.com 

Robert Currie 

Smarter Grid Solutions 

robert.currie@smartergridsolutions.com 

Abstract – The paper compares a variety of modelling 

methods of different complexity to improve the accuracy 

of pseudo-measurements used for state estimation on 

distribution networks. The pseudo-measurements are 

required due to the lack of real-time measurements. 

However, pseudo-measurements of low accuracy increase 

the error of the resultant state estimates, degrading the 

confidence in their use for control applications. The 

solution is to adopt advanced modelling methods to 

produce pseudo-measurements with higher accuracy. The 

candidate methods adopted here are the method of 

assumed variance, normal distribution fitting, the 

correlation method and Gaussian mixture modelling. 

These methods are tested on a real distribution network 

incorporating distributed generation. The results show 

that using more advanced methods normally improves the 

accuracy of state estimates but on some occasions the 

improvement is not significant and sometimes the accuracy 

can become worse. Moreover, false large percentage errors 

in power flow estimates caused by distributed generation 

have been observed, and this would give wrong indication 

in ideal locations to add real-time measurements. 

Keywords: State Estimation, Distribution Network, 

Pseudo Measurements, Normal Distribution, Gaussian 

Mixture Model, Correlation. 

1 INTRODUCTION 

The connection of renewable and other small-scale 

generators has complicated the operation of distribution 

networks (DNs), causing bidirectional power flow and 

affecting voltage levels. As distribution network 

operators are obliged to maintain a secure network, it is 

imperative to understand the impact of new generators 

at all times. The challenges faced in operating DNs are 

likely to increase further with new low carbon loads like 

electric vehicles. Weighted least squares state 

estimation (SE), which has already been applied widely 

to transmission networks, is an economically effective 

approach to improve real-time monitoring of DNs with 

good reliability and accuracy.  

However, low measurement redundancy on DNs 

often hampers the effectiveness of SE from estimating 

all the state variables (i.e. bus voltage magnitude and 

angles) on the DNs. To improve the observability of 

DNs, additional measurements are required either by 

installing more measuring devices, or estimating some 

power system quantities based on historical data [1]. 

The measurements added using the latter approach are 

called pseudo-measurements and as they are derived 

from historical data or other indicators they have lower 

accuracy than real-time measurements taken by 

measuring devices. Due to budget concerns limiting the 

number of measuring devices on DNs, pseudo-

measurements are necessary for distribution SE with the 

consequence of decreasing SE accuracy. 

In earlier distribution state estimation work, the 

errors of pseudo-measurements were simply assumed by 

the authors [2, 3] to be much greater than those of real-

time measurements, while later more advanced methods 

were introduced to generate more accurate pseudo-

measurements. Ghosh et al [4] showed that the pseudo-

measurements of loads can be modelled more accurately 

using a beta distribution rather than a normal 

distribution; however, the beta distribution cannot be 

used for the weighted least squares based SE. Mantisas 

et al [5] proposed two methods to model pseudo-

measurements; one was based on analysing the 

correlation between real-time measurements taken at 

substations and load pseudo-measurements, while in 

another approach the accuracy of the load pseudo-

measurements was improved through Gaussian Mixture 

Models (GMM). The results showed that both 

approaches improved the SE accuracy on a 14-bus 

distribution network to a similar degree. The GMM was 

further investigated in [6] to produce pseudo-

measurements of 55 loads within a generic 95-bus 

distribution network. In [7], an artificial neural network 

(ANN) algorithm was adopted to generate pseudo-

measurements that temporarily replace the real-time 

measurements lost during contingent events. However, 

the pseudo-measurements obtained this way require the 

prior knowledge of the real-time measurements before 

the fault rather than a historical load profile. Despite 

advanced methods being used, there was no mention 

about how much improvement in SE accuracy can be 

achieved compared with using simpler methods. 

In this paper four pseudo-measurement modelling 

methods are compared. These are a method based on 

simple assumptions, normal distribution fitting, more 

complicated correlation method and GMM. As a result 

the incentives for adopting more advanced methods are 



shown. The four methods are applied to a real 

distribution network with high renewable generation 

penetration. The paper is structured as follows: Section 

2 explains the fundamental theory of SE while Section 3 

describes the four pseudo-measurement modelling 

methods. The results of SE on the distribution network 

based on the modelling methods are shown in Section 4. 

The conclusions are drawn in Section 5. 

2 STATE ESTIMATION 

Each measurement input in SE would have certain 

degree of errors that can be expressed using the 

following equation: 

(1) 

where  is a measurement error vector,  is a 

measurement vector,  is a system state variables 

vector, and  is a nonlinear measurement function 

vector. 

In the WLS method [8],   is calculated that 

minimises the square of the error vector  , the objective 

function is formulated as follows: 

(2) 

where   is a diagonal error covariance matrix that gives 

the weighting to each measurement error based on the 

variance    of the measurements: 

(3) 

where   is the total number of measurements used for 

SE. The state variable vector   can be obtained by 

solving the following linearised derivative of (2) 

iteratively: 

(4) 

(5) 

(6) 

where   is an iteration number index. In this paper, the 

WLS method with an augmented matrix is adopted [9]. 

The main modification is to add two constraints to the 

objective function (2): 

(7) 

where      is the measurement function vector for the 

zero power injection measurements on the buses which 

have neither generators nor loads connected to them.   

is a residue vector. Equation (4) is ‘augmented’ while 

considering the two constraints: 

(8) 

(9) 

where   and   are the Lagrange multiplier vectors. The 

matrices in (8) are in better conditions (i.e. less singular) 

than those in (2). As a result solving (8) reduces the 

round-off errors introduced in the iterative process and 

the risk of solution divergence [9, 10]. 

As shown in (1) to (9), two inputs are required for 

each measurement in the WLS based methods: (a) the 

measurement value and (b) its variance used for 

computing the weighting matrix    . Consequently, the 

pseudo-measurement modelling methods aim at 

improving the accuracy of these two values. 

3 PSEUDO-MEASUREMENTS MODELLING 

METHODS 

Given historical load data, the probability density 

function (PDF) of a load for a specific time period can 

be computed as shown as the histograms in Figure 1. 

The methods of assumed variance, normal distribution 

fitting and Gaussian mixture modelling utilise the PDF 

to model the pseudo-measurement of the load. In each 

case the PDF is characterised by one or more values of a 

mean μ and a variance σ
2
. 

3.1 Method of Assumed Variance 

Given a historical load profile, the method of 

assumed variance (AV) finds the measurement value  : 

(10) 

where   , is the     sample of the random variable 

demand   and n is the size of samples taken from the 

historical data. In AV the standard deviation σ of the 

pseudo-measurement is simply calculated based on an 

assumed arbitrary percentage  , normally between 20% 

and 50%: 

(11) 

The assumed percentage is fixed for all the load 

pseudo-measurements regardless of the time and 

location of the load. In this paper   is equal to 50%. 

3.2 Normal Distribution Fitting 

Similar to the AV method, the same measurement 

value   is obtained using (10). However, the variance 

 is calculated using the conventional statistics 

equation: 

(12) 

Figure 1 shows the normal distribution model 

obtained using the NDF method. It is obvious that in 



this example the normal distribution model does not 

closely mimic the original PDF. 

Figure 1: Original load probability density function and the 
normal distribution model 

3.3 Gaussian Mixture Modelling 

Unlike NDF, Gaussian mixture modelling calculates 

a multi-component PDF that consists of multiple 

normally distributed sub-PDFs (mixture components), 

as depicted in Figure 2. 

Figure 2: Gaussian mixture model 

The multi-component PDF  ) is expressed as: 

(13) 

where  is the number of mixture components,  is 

the weight of  mixture component.  is the 

 mixture component given by: 

(14) 

where  is the mean of  normal mixture component, 

and 

(15) 

The pseudo-measurement value   is equal to the mean 

of the normal mixture component closest to the 

estimated demand, while    is set to the variance of the 

normal mixture component. 

3.4 Correlation Method 

The method of correlation seeks the linear numerical 

relationship between a power system quantity X that is 

real-time measured and a load Y by analysing the 

historical data: 

(16) 

where    and    are the means of X and Y. In the error 

covariance matrix  , the element that corresponds to the 

real measurement of X and the pseudo-measurement of 

Y is set equal to the covariance calculated. 

The covariance coefficient, which has a range 

between -1 and 1, is then derived: 

(17) 

where    and    are the standard deviation of X and 

Y respectively. The closer the correlation coefficient to 

its extreme values, the more linear is the relationship 

between X and Y. 

Figure 3: Correlation between a real-time measurement and 

pseudo-measurement 

Regression analysis is applied considering the 

covariance coefficient to find out the degree of 

dependency between the non-monitored load and the 

real measurement. As depicted in Figure 3, the 

regression line in the middle is drawn indicating the 

linear relationship between the real measurement X and 

load Y. The value of the load pseudo-measurement of 

therefore lies on the line and depends on the value of the 

real-time measurement. The interval between the 

regression line and the one of the boundaries indicates 

the standard deviation   of the pseudo-measurement. 

(MW) 

(MW) 

(%
)
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)

multi-component PDF 

normal mixture component 



4 CASE STUDY AND RESULTS 

4.1 Distribution Network of Orkney 

The 33 kV distribution network on the Orkney Islands 

in the UK is depicted in Figure 4. There are 16 loads 

connected to the 33 kV network via 33/11 kV 

transformers. Due to abundant wind resources, the DN 

has one of the highest levels of wind generation 

penetration in the UK. Most of the renewable generators 

are connected on the same branches as loads. As the 

total generation exceeds the total demand on Orkney, 

the power is exported from the DN to the mainland 

transmission network via two sub-sea cables (lines 68 

and 78). It is assumed here that all 16 loads are 

unmonitored and modelled as pseudo-measurements. 

4.2 Historical Load Data and Result Validation 

Generic half-hourly historical load profiles for 2008 

and 2009 [11] were used to conduct the study. The load 

data in 2008 was used for modelling the pseudo-

measurements. The load data in 2009 was regarded as 

the true demand values and used for running load flow 

analysis to compare the results with those of SE using 

the pseudo-measurements at the same time stamp. In 

this study an hourly interval between each time stamp is 

considered and the period of study is confined in the 

winter season between December to January.  

The estimated error of state variables at time step t is 

calculated: 

(18) 

Where     and     are the state variable values obtained 

from the SE and power flow methods respectively. The 

average estimated error over a period can also be 

calculated by dividing the aggregated estimated errors 

by the number of time stamps in the considered period. 

4.3 Results 

The average error of using the four methods to 

estimate (a) voltage magnitude and (b) voltage angle 

regardless the bus locations is shown in Figure 5. 

Overall, the method of correlation produced the most 

accurate pseudo-measurements, followed by the GMM. 

However, the improvement in the voltage magnitude 

accuracy is not great compared with the AV and NDF 

methods, as all the methods can yield average accurate 

voltage magnitude estimates with less than 0.05% error. 

The accuracy of the voltage angle estimates is worse 

than that of voltage magnitude estimates, while more 

remarkable improvement has been shown using the 

correlation method and GMM than the AV method, 

giving clear incentive to adopt more advanced modeling 

methods.

Figure 4: 70-bus distribution network on Orkney Islands
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It can be observed from Figure 2 that GMM matches 

a historical load behavior closer than the NF and AV, 

therefore giving higher accuracy of the pseudo-

measurements and resultant state estimates. As AV, NF 

and GMM do not have any dependency with real-time 

measurements, the accuracy of these models is prone to 

uncertainties, such as weather and temperature, that 

could render significant difference between the 

historical and real-time loads. Correlation method, on 

the other hand, investigates the historical relationship 

between electrical quantities and real-time 

measurements and introduces the flexibility of the 

model to reflect the real-time network conditions. 

Figure 5: Average percentage error of (a) voltage magnitude 

(b) voltage angle state estimates regardless bus locations 

Figure 6 shows the average error of (a) voltage 

magnitudes and (b) voltage angles at different buses. 

The estimated error is highly dependent on the bus 

locations, and despite the ranking shown in Figure 5, the 

advanced methods may not always be preferable, such 

as bus 31where the correlation method produced the 

most inaccurate state estimate in average, and for bus 26 

and 27 the GMM becomes the worst method. 

Figure 6: Estimated average error percentage of (a) voltage 

magnitude (b) voltage angle state variables using different 

modelling methods 

Figure 7 depicts the average estimated errors of 

branch (a) real and (b) reactive power flow estimates. 

As expected in overall using the method of correlation 

yields the most accurate result. However, some error 

spikes that are over 100% were observed and none of 

the four methods seemed to be able to prevent these 

spikes. Further analysis showed that these error spikes 

happened on the branches that have both load and 

generation connected downstream, such as branch 59. 

Figure 8 shows the estimated real and reactive power 

errors on branch 59 for the total 2160 hours using the 

method of correlation. At hour 336 the real generation 

output at bus 15 is very close to the demand at the same 

bus, resulting in almost zero real branch flows in branch 

59. Using (8), even slight error in the pseudo-

measurement would give an extremely large error 

percentage that significantly increases the average 

estimated error in Figure 7. Therefore using the 

accuracy index in percentage could give false indication 

in the ideal locations to add real-time measurements to 

reduce the errors, such as the practice conducted in [12]. 

As there will be more renewable generation connection 

at various locations on Orkney, more branches will 

occasionally experience nearly zero power flows in 

future. Nearly zero reactive power flow in branch 59 did 

not happen in the period of analysis, as shown in Figure 

8, and the error was between 0 and 25%. 

Figure 7: Estimated average error percentage of (a) real 

power flow (b) reactive power flow estimates using different 
modelling methods 

Figure 8: Estimated error percentage of real and reactive 
power flow estimates on branch 59 recorded in 2160 hours. 

(%
)



State estimation is essential for many active network 

control schemes such as real-time constraint 

management. It is important for these schemes to issue 

accurate control instructions by considering the 

potential degree of errors in their inputs generated by 

state estimation. Therefore, the percentage errors may 

not only lead to incorrect decisions on locations for 

installing new measuring devices, but also have adverse 

impact on the control accuracy and reliability. 

One solution is to measure the errors in absolute 

values instead of percentages. As shown in Figure 9, the 

absolute errors of the real power flow estimates in 

branch 59 for the 2160 hours were all within 0.06 MW, 

eliminating the spike observed in Figure 8. 

Figure 9: Estimated absolute error of real power flow 
estimates on branch 59 recorded in 2160 hours. 

5 CONCLUSION 

In this paper, four modelling methods were applied to 

improve the accuracy of pseudo-measurements used for 

the weighted least squares based state estimation 

method. The modelling method of assumed variance 

and the normal distribution fitting approach utilised 

conventional statistics to model the pseudo-

measurements as normally distributed probability 

density functions. In the more complicated Gaussian 

mixture method, the pseudo-measurements were 

modelled as a multi-component function that consists of 

multiple sub-models that are normally distributed. The 

last method was based on analysing the correlation 

between real-time measurements and pseudo-

measurements. 

A real distribution network was used for the study. 

The results showed that in overall the errors of the state 

estimates were the smallest when the pseudo-

measurements were modelled using the method of 

correlation, followed by Gaussian mixture modelling. 

Although the method of assumed variance and the 

normal distribution fitting were in overall the worst 

methods in this study, for some state estimates the 

improvement in accuracy was not significant using 

correlation or Gaussian modelling compared to the two 

simpler methods. Even in few cases using the method of 

assumed variance and the normal distribution fitting 

yielded more accurate result than the correlation method 

and Gaussian mixture models. 

Extremely high error percentages have been observed 

on some power flow estimates of the branches that 

connect both generators and loads. When the branches 

experienced nearly zero power flow due to generation 

output closely matching demand, even slight error in the 

pseudo-measurement resulted in large percentage error 

of the branch flow estimates. In this condition the 

accuracy indicator expressed as a percentage would 

become inappropriate and give false information about 

the potential locations to install real-time measurements 

to reduce state estimation errors. 
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