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There is increasing body of experimental evidences of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase
in quasi-low-dimensional organic and heavy-fermion superconductors. The emergence of the FFLO phase
has been demonstrated mainly based on a thermodynamic quantity or microscopically with spin polarization
distribution that exhibit anomalies within the superconducting state in the presence of the in-plane magnetic
field. However, the direct observation of superconducting order parameter modulation is so far (still) missing.
Within the quasiclassical approach and Ginzburg-Landau formalism we study how the orbital effect of the
in-plane field influences the FFLO instability in quasi-one-dimensional superconductors with a sufficiently weak
interlayer coupling locking the magnetic flux to Josephson-type vortices. By making use of the continuum limit
approximation of the Frenkel-Kontorova model for competing periodicities, we find and characterize the locking
behavior of the modulation wave vector, when it remains equal to the magnetic length through some range of
values of the external field.

I. INTRODUCTION

If the superconducting state in high magnetic fields is para-
magnetically limited, the phase transition from a homogeneous
superconducting state to a normal state may occur either di-
rectly, at the Pauli limiting field HP = �0/

√
2 with �0 super-

conducting gap, or via an interposed wedged spatially inhomo-
geneous state, characterized by the simultaneous coexistence
of normal and superconducting phases and known as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [1]. The latter is pre-
dicted for clean spin-singlet superconductors in the vicinity of
the upper critical magnetic field Hc2, beyond the field set by the
Pauli paramagnetic limit as a result of the competition between
pairing correlations, favoring antiparallel spin alignment, and
the Zeeman effect, favoring parallel spin alignment along the
field, when the Pauli pair breaking dominates the orbital pair
breaking [2], with the limiting field H orb

c2 = �0/2πξ 2. In this
state the order parameter varies periodically in space and
Cooper pairs acquire a nonzero momentum. Another require-
ment for the FFLO state is that the superconductor should be
in the clean limit, l � ξ0 = �vF /π�0, where l is the mean
free path of the quasiparticles and ξ0 is the superconducting
coherence length at T = 0 and H = 0 [3–5]. Furthermore, the
highly anisotropic Fermi surface [6,7] favors the FFLO phase
formation. This is an inherent property of layered conductors
that exhibit a highly anisotropic structure and hence have
features of systems with reduced dimensionality [8].

There has been much attention focused on discovering
the FFLO state in various superconductors under a high
magnetic field since its prediction in 1964 [9,10]. Nevertheless,
the conclusive evidence for a nonhomogeneous state has
been provided only recently. Several signatures indicating the
experimental realization of the FFLO state in organic super-
conductors were observed for the in-plane external magnetic
field when the flux penetrates between the layers in the form
of Josephson vortices, thus limiting orbital suppression: (i) the
anomaly in the thermal conductivity [11], and finer details in
the phase diagram obtained by the tunnel diode oscillator rf
penetration depth measurements and pulsed field techniques

[12] for the clean organic sample λ-(BETS)2GaCl4; (ii) the
calorimetric and magnetic torque evidence for the appearance
of an additional first-order phase transition line within the
superconducting phase in the in-plane high-field regime for
the organic sample κ-(BEDT-TTF)2Cu(NCS)2 [13,14]; (iii)
evidence for phase transition within the superconducting phase
obtained from the local electronic spin polarization in a
13C NMR spectroscopy experiment [15], NMR detection of
spin-polarized quasiparticles [16] forming the Andreev bound
states spatially localized in the nodes of the order parameter
[6,17,18], and phase transitions in the (H − T ) phase diagram
that are consistent with the FFLO phase obtained from rf
penetration depth measurements [19] for an organic sample
κ-(BEDT-TTF)2Cu(NCS)2; (iv) NMR relaxation rate evidence
for an additional phase transition line [20] and the clear upturn
beyond the Pauli limit in the magnetic field and angular-
dependent high-resolution specific-heat measurements for the
organic material β ′′-(ET)2SF5CH2CF2SO3 [21]; (v) magnetic
torque evidence for the tricritical point between the FFLO,
homogeneous superconducting, and paramagnetic metallic
phases in the 2D magnetic-field-induced organic superconduc-
tor λ-(BETS)2FeCl4 [22]; and (vi) measurements of the tem-
perature and angular dependencies of Hc2 in pnictide super-
conductor LiFeAs [23] and KFe2As2 [24] probably suggesting
that these systems may have realized the FFLO phase as well.

Similarly, quasi-one-dimensional (1D) superconducting
compounds have been studied extensively for exhibiting the
inhomogeneous state. The field-amplitude and field-angle
dependence of the superconducting transition temperature
Tc(H ) of the organic superconductor (TMTSF)2ClO4 in a
magnetic field applied along the conduction planes have been
reported [25]. The authors observed an upturn of the curve of
the upper critical field at low temperatures. (An enhancement
of almost two times over HP � 27 kOe is observed, Hc2 �
50 kOe [25].) Moreover, an unusual in-plane anisotropy of HC2

in the high-field regime was observed. Both observations were
interpreted as an evidence of the FFLO state formation [26].

The above overview of the recent experimental develop-
ments in hunting inhomogeneous states shows that so far
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mainly thermodynamic and microscopic due to spin relaxation
(NMR) evidences for the existence of an FFLO state have been
provided. However, the direct evidence of FFLO states has
not been observed yet in experiments. In Ref. [26] we have
demonstrated that the temperature evolution of the in-plane
critical magnetic field anisotropy as well as of its fine structure
may give important information about the FFLO state and
unambiguously prove its existence. Our subsequent analysis
[27] of the properties of the organic superconductors revealed
that in some of them the resonance between the period of the
FFLO modulation and the period of the interlayer coupling
modulation induced by the external field is possible, which
results in anomalous cusps in the temperature and angular
dependencies of the in-plane critical field. Furthermore, at the
resonances the interplay between the orbital and the paramag-
netic effects may result in a commensurability effect between
the FFLO and magnetic wave vectors [22,28]. These effects
are directly based on the main feature of the inhomogeneous
state, the spatial modulations of the order parameter.

In this work we keep studying the effects of orbital
contribution to the FFLO modulation, leading to unambiguous
proof of the FFLO phase. We study the orbital effect in quasi-
1D superconductors under the the influence of the external
magnetic field and demonstrate that in the FFLO phase there
are two competing length scales: the period of the magnetic
field potential and the characteristic length associated with
the FFLO modulation [29]. The interplay between these two
lengths results in locking phenomena, when the modulation
wave vector remains equal to the period (or matches m

periods) of the potential through some range of the magnetic
field values. To study effects of competing periodicities in
the system we use the Frenkel-Kontorova (FK) model [30]
and show that the solution in the proximity of the locking
transition can be described by cos [Qx + ϕ(x)], with ϕ(x)
a phase soliton lattice. The surprising ability of this model
to describe many physically important phenomena, such as
the dynamics of absorbed layers of atoms on crystal surfaces
[31], charge-density waves [32], ferro- or antiferromagnetics
[33], Josephson junctions chains [34], transport properties of
vortices [35], and and superionic conductors [36], has attracted
much attention in condensed matter physics and nonlinear
dynamics. With this work we further extend this series of
described phenomena.

II. THEORETICAL MODEL

We consider a quasi-1D conductor with the following
electron spectrum:

Ep = p2
x/2mx + 2ty cos(pydy) + 2tz cos(pzdz), (1)

where dy and dz are the interchain distances along the
y and z axis, respectively. We assume that the couplings
between chains are small, i.e., tz < Tc0 and ty < Tc0, but
sufficiently large to suppress the charge- and spin-density-
wave transitions, to stabilize the superconducting long-range
order, and to make the mean-field treatment justified, T 2

c0/EF

� tz, T 2
c0/EF � ty [37]. Here Tc0 is the critical temperature

of the system at H = 0.
In quasi-1D superconductors the orbital effect is extremely

weak for the magnetic field applied along the chains [38].

Indeed, near Tc0 the parallel (along the x axis) upper critical
field is Hx

c2 = φ0

2πξyξz

Tc0−T

Tc0
,where ξy = dy

ty
Tc0

and ξz = dz
tz
Tc0

,
while the perpendicular upper critical field (i.e., along the
y axis) is H

y

c2 = φ0

2πξxξz

Tc0−T

Tc0
, with ξx ∼ vF

Tc0
. We see that

Hx
c2 � H

y

c2 and the orbital effect for the parallel component
of the magnetic field is weakened by the factor ty

Tc0

dy

ξx
� 1.

Therefore, in our analysis of the orbital effect it is enough
to take into account only the perpendicular component of the
magnetic field because it provides the dominant contribution
to the orbital effect. For better clarity we consider the magnetic
field to be aligned in the xy plane, making the angle θ with
the x axis. The perpendicular component of the magnetic field
Hy = H sin θ and the corresponding vector potential may be
chosen as Az = −xHy = −xH sin θ , Ay = 0, Ax = 0. The
vector potential varies slowly at the interchain distances,
because the diamagnetic screening currents are very weak and
the magnetic induction is practically uniform and equal to the
external field, H . With the help of the Eilenberger equations
we obtain the following linearized Ginzburg-Landau equation
(for details, see the Appendix):

α�(x) =β∂2
x�(x) − δ∂4

x�(x) − 48t4ν sin4(Qx)�(x)

− 1
2 t2μ[1 − 7 cos(2Qx)]Q2�(x)

+ 2t2μ[3 sin(2Qx)Q∂x�(x)

+ 3 sin2(Qx)Q2�(x)]

− 4t2γ [1 − cos(2Qx)]�(x). (2)

Here Q = −πdzHy/φ0 = −πdzH sin θ/φ0, with φ0 =
π�c/e, t ≡ tz, α ≡ ln Tc

Tc0
− [K1(Tc) − K0

1 (Tc)] = Tc−TcP

ATc
, and

α < 0 in the uniform superconducting state. Equation (2) con-
tains the magnetic-field-induced potential, which is periodic in
real space with the period λH = 2φ0/dzHy . The corresponding
functional reads as

Fsn = 1

Lx

∫
dx

{
α|�(x)|2 + β|∂x�(x)|2 + δ

∣∣∂2
x�(x)

∣∣2

+ 1

2
t2μ[1 − 7 cos(2Qx)]Q2|�(x)|2

+ 6t2μ sin2(Qx)|∂x�(x)|2

+ 4t2γ [1 − cos(2Qx)]|�(x)|2}, (3)

where the coefficients are given in the Appendix [39]. The
functional (3) is obtained for t < vF Q and in this limit the
term 48t4ν sin4(Qx)�(x) can be simply neglected.

Without the orbital contribution in 1D, the solution of
the Ginzburg-Landau equation is an elliptic sine function
(see Appendix) [40], which in the proximity of the line of
the transition takes the simple form �0 cos(qx), where q

is the absolute value of the modulation wave vector. The
linearized Ginzburg-Landau functional (3) and Eq. (2) in the
paramagnetic limit (when neglecting the orbital contribution)
reduce to

F 1D
sn = 1

Lx

∫
dx

{
α|�(x)|2 + β|∂x�(x)|2 + δ

∣∣∂2
x�(x)

∣∣2}
(4)
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and

α�(x) = β∂2
x�(x) − δ∂4

x�(x). (5)

The expression for the modulation wave vector is readily
obtained from the solution of the linearized equation in
the paramagnetic limit, �(x) = �0 cos(qx), q2 = −β/2δ =
2K3(TcP )/K5(TcP )v2

F > 0. This wave vector increases from 0
at the tricritical point to a very large value at T −→ 0.

The orbital effect weakly modifies this solution except for
the resonance region, q ≈ Q, where it may strongly influence
the FFLO structure [28]. To investigate the influence of the
orbital effect on the solution we apply the theory developed
by Dzyaloshinskii [41–43]. Hence we look for the solution of
the type �0 cos [Qx + ϕ(x)], where ϕ(x) is a slowly varying
function ϕ′(x) � Q. This implies that the orbital effect weakly
modifies the exact one-dimensional solution, which is justified
for (Tc − T )/Tc0 � (t/Tc0)2. We insert this solution into
the functional (3) and perform the average over the period
Q−1 as

〈...〉 = Q

2π

∫ π/Q

−π/Q

[...]dx, (6)

and taking into account that ϕ(x) � Qx, we obtain

〈Fsn〉Q =�2
0

Lx

∫
dx

α

2
+ 1

2
β[Q + ϕ′]2

+ 1

2
δ[Q + ϕ′]4 + t2γ [2 − cos 2ϕ(x)]

+ 1

8
t2μQ2[2 − 7 cos 2ϕ(x)]

+ 6

8
t2μ[2 − cos 2ϕ(x)][Q + ϕ′]2. (7)

In the adopted approximation the functional Fsn depends only
on the space-varying phase, ϕ(x). Since we are interested in the
behavior of the system in the vicinity of the resonance q ≈ Q,
we can write the functional in a simpler form (normalized by
−πK5(Tc)�2

0, note that K5(Tc) < 0)

〈
Fϕ

sn

〉
Q

= �2
0

Lx

∫
dx

−α

2
+ 1

8
v4

F Q2(ϕ′ − δq)2

+ 5

8
t2v2

F Q2 − 11

16
t2v2

F Q2 cos[2ϕ(x)], (8)

where δq ≡ Q − q is the detuning, or the relative misfit
between two periodicities in the system. The phase ϕ(x) is
the shift of the FFLO modulation relative to the minima
in the potential ∼ cos [2ϕ(x)]. The state ϕ(x) = 0 is the
commensurate phase between Q and q. Equation (8) is
a continuum limit approximation of the Frenkel-Kontorova
Hamiltonian introduced by Frank and Van der Merwe
[44].

III. FFLO SOLITON LATTICE

Taking into account the periodicity of the function ϕ(x) we
obtain (for the purpose of clarity the expression is normalized

by −πK5(Tc)v2
F Q2�2

0)

〈
Fϕ

sn

〉
Q,ϕ

= 1

K(κ2)

∫ K(κ2)

0
dx

v2
F

8
ϕ′,2(x)

− v2
F

4
δqϕ′(x) + 11t2

16
cos[2ϕ(x)]. (9)

Therefore, the ground state which minimizes 〈Fϕ
sn〉Q,ϕ , Eq. (9),

is given by the solutions of the exactly integrable sine-Gordon
equation for the phase ϕ(x)

2
∂2ϕ

∂x2
+ v sin[2ϕ(x)] = 0, (10)

where v ≡ 11t2/v2
F is the effective interlayer coupling pa-

rameter. In the absence of this coupling, v = 0, Eq. (10) has a
solution, ϕ(x) = Cx, that describes unperturbed one-harmonic
incommensurate phase, �0 cos (Q + C)x. On the other hand,
Eq. (10) has a trivial solution, ϕ = 0, that corresponds to a
commensurate structure �0 cos Qx. For a finite v Eq. (10)
should describe some inhomogeneous distribution of the phase
of the order parameter. The first integral of this equation is
given by (

∂ϕ

∂x

)2

= v

κ2
{1 − κ2 sin2[ϕ(x)]}, (11)

where κ2 ≡ 2v/(ε + v) and ε is the constant of integration.
Then the exact solution of Eq. (11), expressed in terms of the
Jacobi amplitude, is

ϕ(x) = am

[√
v

κ
x,κ2

]
, (12)

where κ is the constant of integration and must be found
from the energy minimum of the system. The solution is the
regularly spaced solitons, a soliton lattice. The soliton lattice
is a compromise between the term cos [2ϕ(x)], which favors
ϕ(x) = const, and the derivative part that favors ϕ(x) = Cx.
For κ → 1 it reduces to

ϕ(x) = 2 tan−1

[
tanh

√
v

2κ
x

]
, (13)

that describes a domain wall, which separates two commen-
surate regions, one with phase ϕ = −π/2 and other with
ϕ = π/2. Within this wall (soliton) a π change of the phase
occurs. The length of the soliton can be small, meaning the
fast change of the phase.

Substituting the solution ϕ(x) for the order parameter into
Eq. (8), the normalized energy of the state with the spatial
distribution of the order parameter given by Eq. (12) is
expressed in terms of complete elliptic integrals E an K as

〈
Fϕ

sn

〉 = δq

4

π

2

√
v

κK(κ2)
− v

16

[
1 − 2

κ2
+ 4

E(κ2)

κ2K(κ2)

]
. (14)

Here it is necessary to take into account the fact that the
function K5(Tc) < 0 for the region of interest. Minimization
of the energy with respect to κ leads to the following equation
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FIG. 1. Minimization parameter as a function of the anisotropy
parameter.

for κ:

κ

E(κ2)
=

√
v

vc

≡ ζ, (15)

where vc = π2δq2/4. The numerical solution of this equation
is given in Fig. 1. The parameter κ varies in the range 0 � κ �
1 as long as v varies in the range 0 � v � vc. In this plot we
use the notation ζ = √

v/vc. The variation of the parameter κ

results in drastic changes in the behavior of the phase ϕ(x).
Figure 2 displays the phase for several values of the parameter
ζ ∈ {0.2,0.6,0.8,0.9,0.99,0.999 999}. As ζ is increased a
plateau section appears within the period of the soliton
lattice L = 2K(κ2)κ/

√
v or δqL = (2/π )2E(κ2)K(κ2). With

increasing ζ , not only the period of the soliton lattice increases
but also the relative fraction of the plateau width. On this
plateau the phase remains almost constant, but it strongly
changes beyond the plateau at the end of the periods. Thus the
system can be represented as a periodic structure of domains of
the commensurate/locked phase separated by solitons. We can
give to Eq. (14) another form taking into account the distance
L between the domain walls,

〈
Fϕ

sn

〉 = π

4

δq

L
− v

16

[
1 − 2

κ2
+ 4

κ2

E(κ2)

K(κ2)

]
, (16)

0 10 20 30 40 50
0

5

10

15

20

25

x

FIG. 2. The phase shift of the FFLO modulation for several values
of the anisotropy parameter ζ . The straight line corresponds to an
unperturbed incommensurate structure.

or since q(κ2) = π�0/κK(κ2) and h(κ2) = 2E(κ2)�0/πκ is
the parametric definition of the modulation wave vector and
the critical field, respectively [45],〈

Fϕ
sn

〉 = δq

8

√
vq(κ2) − v

16

[
1 − 2

κ2
+ 2q(κ2)h(κ2)

]
. (17)

The first term is proportional to the soliton density (inversely
proportional to the distance between the solitons) and the
second one describes the interaction with the field-induced
potential.

One can see that as δq −→ 0 the parameter ζ increases
its value. In the limit ζ −→ 1 the period of the soliton lattice
diverges,

lim
ζ−→1

L = 2κ√
v

ln
4√

1 − κ2
, (18)

and the modulation wave vector is negligible. For ζ � 1
there is no real valued solution of Eq. (15). Consequently,
there exists a limiting value of δqc ≡ 2

√
11t/πvF beyond

which the phase is always locked, and the commensurate
phase remains stable as δq decreases further. That means
that the modulation vector coincides with the modulation
induced by the field. Therefore at δqc we have a lock-in
of the FFLO modulation to the field-induced potential, i.e.,
an incommensurate/commensurate-type phase transition. That
corresponds to L → ∞ and the FFLO modulation is described
by �0 cos Qx. Figure 3 illustrates the behavior of the spatially
varied order parameter in the vicinity of the IC-C phase
transition when ζ → 1. One can see the domain walls (phase
solitons) in the spatial distribution of the order parameter.

0 10 20 30 40 50
1.0

0.5

0.0

0.5

1.0

x

0 10 20 30 40 50
1.0

0.5

0.0

0.5

1.0

x

FIG. 3. The spatial distribution of the order parameter in the
vicinity of the IC-C phase transition for Q = 0.7 (upper panel) and
Q = 1.7 (lower panel).
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So far we have discussed the quasi-1D case. However,
the theory developed is directly applicable to the quasi-2D
materials as well. The orientation of the FFLO modulation
vector is arbitrary in the pure Pauli-limited s-wave supercon-
ductor in the case of a Fermi surface with an elliptical cross
section, which can be mapped by scaling transformation to the
isotropic case [46]. However, the direction of the FFLO wave
vector in real crystals is determined by the crystal field effects
[47,48] and/or the pairing symmetry [49]. Therefore, when
the in-plane magnetic field is perpendicular to the FFLO wave
vector q we reduce the quasi-2D case to the above-described
quasi-1D case, Eq. (3), but with the renormalized coefficients:
β ≡ π

8 K3(T )v2
F , δ ≡ − 3π

128K5(T )v4
F , μ ≡ −π

4 K5(T )v2
F , γ ≡

π
4 K3(T ). The coefficients γ , ν have the same values. The
resonance conditions could be realized, for example, in
(TMTSF)2ClO4 with in-plane perpendicular to q Hb′

c2(0) = 3 T,
dz = 1.31 nm, ξa

0 = 45 nm that result in λH = 2π/Q = 1050
nm and λ0

FFLO = 2π/q = π�vF /�0 = π2ξa
0 = 444 nm, i.e.,

λ0
FFLO < λ0

H at T = 0. Therefore it guarantees that while
approaching a tricritical point the resonance λFFLO(T ) =
λH (T ) will occur. In the case of the quasi-2D magnetic-
field-induced organic superconductor λ-(BETS)2FeCl4 the
perpendicular Hc2(0) = 4 T, dz = 1.85 nm, ξ0 = 6.5 nm, and
λ0

FFLO = 65 nm. The superconductivity appears at the in-plane
field H � 18 T and reaches the maximum critical temperature,
TC = 4 K, at H ∼ 32 T. This means that λH decreases
from λH = 556 nm at T = 0 to 312 nm at TC . This again
guarantees the fulfill of the resonance condition in the FFLO
phase.

In conclusion: Starting from the Eilenberger equations
for a quasi-1D superconductor, which takes into account the
orbital effects of an external field, in the proximity to the
resonance between the period of the FFLO modulation and
the period of the interlayer coupling modulation induced by
the external field, we have reduced them to the continuum limit
approximation of the Frenkel-Kontorova model equation. This
equation is obtained by minimization of the Ginzburg-Landau
functional (analogous to the extended Lawrence-Doniach the-
ory for layered superconductors [27]) for an inhomogeneous
distribution of the order parameter. As a main result we
show that, besides the anomalous cusps in the temperature
and angular dependencies of the in-plane critical field, when
the FFLO modulation wave vector is in the resonance with
the magnetic wave vector, predicted in our previous work,
the following occurs: (i) The order parameter is defined by
�0 cos [Qx + ϕ(x)], with ϕ(x) describing regularly spaced
phase solitons. (ii) The proximity to the resonance condition
is characterized by the field-induced phase transition from
the incommensurate to the commensurate structure (C-I) of
the spatial modulation of the order parameter with respect
to the magnetic wave vector structure. The periodic potential
tends to “lock-in” the FFLO modulation into a commensurate
configuration. (iii) In the incommensurate phase near the C-I
transition the periodicity of the phase solitons or phase-domain
walls depends continuously on the temperature and external
field strength. This soliton lattice is a compromise between two
periodicities of the system. The soliton represents a “phase
slip” of the order parameter modulation. (iv) The distance
between the phase slips logarithmically diverges at critical
detuning or misfit, δqc.

It would be promising to study anomalies of the supercon-
ducting properties accompanying the field-induced passage of
the modulation wave vector of the order parameter through the
commensurate value. The formation of the phase soliton lattice
could be observed in the NMR spectroscopy measurements
similar to those performed in Ref. [15]. The NMR signal,
which is proportional to the local electronic spin susceptibility,
may be very different in the phase domain wall as compared to
the commensurate phase. The appearance of the domain walls
in the FFLO phase may enhance its pinning and therefore
could be revealed in transport measurements.
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APPENDIX: DERIVATION OF THE EXTENDED
NONLINEAR LAWRENCE-DONIACH EQUATION

We start from the Eilenberger equations for a quasi-1D
superconductor [50]:

big[�n + 1
2�̂(Q)

]
fω(x,k⊥,p⊥) = �(x,k⊥)gω(x,k⊥,p⊥),

(A1)[
�n − 1

2�̂(Q)
]
f †

ω(x,k⊥,p⊥) = �∗(x,k⊥)gω(x,k⊥,p⊥),

(A2)

1
2�̂(0)gω(x,k⊥,p⊥) = �∗(x,k⊥)fω(x,k⊥,p⊥)

− f †
ω(x,k⊥,p⊥)�(x,k⊥), (A3)

where

�̂ ≡�vF

∂

∂x
+ 4ity sin(pydy) sin

(
Qyx − kydy

2

)

+ 4itz sin(pzdz) sin

(
Qxx−kzdz

2

)
, (A4)

obtained for an arbitrary direction of the external
magnetic field with the chosen gauge (see Sec.
II) resulting in Az = −xHy = −xH sin α sin θ ,
Ay = xHz = xH cos α sin θ , Ax = 0, where α accounts
for the field direction, with amplitude H , in the y-z plane
from the positive y axis, while θ is the angle accounting
the field direction from the positive x axis. This choice
leads to Qy = πdyHz/φ0 = πdyH cos α sin θ/φ0, Qx =
−πdzHy/φ0 = −πdzH sin α sin θ/φ0, with φ0 = π�c/e.
Here k⊥ = (ky,kz), p⊥ = (py,pz), vF = vFx

i is the Fermi
velocity along the x axis, �n ≡ ωn + 1/2τ − ihsgn(ωn) with
h = μBH is the Zeeman energy, and we have assumed that
the vector potential varies slowly at the inter-chain distances.
(This assumption means that we neglect the diamagnetic
screening currents and take the magnetic field as uniform
and given by the external field H .) These equations depend
on k⊥, which takes into account the dependence of the order
parameter on the center-of-mass coordinate (z + z′)/2 and
(y + y ′)/2. The order parameter is defined self-consistently
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as

1

λ
�(x,k⊥) = 2πT Re

∑
ω>0

〈fω(x,k⊥,p⊥)〉, (A5)

where λ is the pairing constant and the brackets denote
averaging over py and pz and vFx

,

〈...〉 ≡ N (1)
∫ π

dy

− π
dy

dydpy

2π

∫ π
dz

− π
dz

dzdpz

2π

1

2

∑
±vF

(...), (A6)

with N (1) ≡ m/2πpxdydz. The temperature unit is so that the
Boltzmann constant kB = 1. The maximum critical tempera-
ture corresponds to ky = 0, and we have freedom in choosing
kz, for example, we can make kz = 0. For the purpose of
simplicity, choosing the external magnetic field in the x-y
plane, finally we obtain

�̂ ≡ �vF

∂

∂x
+ 4itz sin(pzdz) sin(χA), (A7)

where χA ≡ Qxx− kz

2 d .
In sequel we make two basic assumptions. First, it is

required that the system is near the phase transition that allows
expansion of Green functions in powers of �/ωn. However, the
assumption used is that not only the order parameter is small
but also the spatial gradients of the order parameter are small.
If we assume that the system resides near the phase transition,
then gω(x,k⊥,p⊥) � sgnωn, and this condition gives rise to(

�n + 1
2�̂

)
fω(x,k⊥,p⊥) = �, (A8)

where �n = ωn − iμBH . It is convenient to write the proce-
dure as the following iterative scheme:

f (k+1)
ω (x,k⊥,p⊥) = �

�n

g(k)
ω − 1

2�n

�̂f (k)
ω , (A9)

f †(k+1)
ω (x,k⊥,p⊥) = �∗

�n

g(k)
ω + 1

2�n

�̂f †(k)
ω . (A10)

The zero-order approximation (the absence of the su-
perconducting state) results in g(0)

ω (x,k⊥,p⊥) = 1 and
f (0)

ω (x,k⊥,p⊥) = 0. Then for the first-order approxima-
tion the iterative scheme produces f (1)

ω (x,k⊥,p⊥) = �/�n,
f †(1)

ω (x,k⊥,p⊥) = �∗/�n. For the iterative scheme we need
the iterative expression for the g(k)

ω function. If we write it, for
example, for g(5)

ω , as g(5)
ω = g̃(0)

ω + λg̃(1)
ω + λ2

ωg̃(2)
ω + λ3

ωg̃(2)
ω +

λ4g̃(4)
ω + λ5g̃(5)

ω and f (5)
ω = f̃ (0)

ω + λf̃ (1)
ω + λ2f̃ (2)

ω + λ3f̃ (3)
ω +

λ4f̃ (4)
ω + λ5f̃ (5)

ω , then making use of the normalization condi-
tion,

g2
ω + fωf †

ω = 1, (A11)

we obtain the following system of coupled expressions for the
kth iteration,

g̃(0)
ω (x,k⊥,p⊥) = 1, (A12)

k∑
i=0

g̃(i)
ω g̃(k−i)

ω = −
k∑

i=0

f̃ (k−i)
ω f̃ †(i)

ω . (A13)

The second iteration of the iteration scheme leads to

f (2)
ω (x,k⊥,p⊥) = �(x,k⊥)

�n

− 1

2�2
n

�̂�(x,k⊥), (A14)

f †(2)
ω (x,k⊥,p⊥) = �∗(x,k⊥)

�n

+ 1

2�2
n

�̂�∗(x,k⊥). (A15)

Therefore here f̃ (2)
ω = −�̂�(x,k⊥)/2�2

n, f̃ †(2)
ω =

�̂�∗(x,k⊥)/2�2
n. From the normalization condition we

can obtain also

g̃(1),2
ω + 2g̃(0)

ω g̃(2)
ω = −f̃ (2)

ω f̃ †(0)
ω − f̃ (1)

ω f̃ †(1)
ω − f̃ (0)

ω f̃ †(2)
ω ,

(A16)

2g̃(0)
ω g̃(2)

ω = −f̃ (1)
ω f̃ †(1)

ω , (A17)

which gives g̃(2)
ω = −f̃ (1)

ω f̃ †(1)
ω /2 = −f (1)

ω f †(1)
ω /2 and g̃(1)

ω = 0.
Therefore the normal Green function g(2)

ω (x,k⊥,p⊥) acquires
the following form:

g(2)
ω (x,k⊥,p⊥) = g̃(0)

ω + g̃(1)
ω + g̃(2)

ω = 1 − f (1)
ω f †(1)

ω

2

= 1 − |�(x,k⊥)|2
2�2

n

.

Following similar steps, then performing averaging over py

and pz and Fermi surface vFx
, we obtain on the fifth iteration

for f (5)
ω ≡ f (5)

ω (x,k⊥,p⊥),

f (5)
ω = �(x,k⊥)

�n

− �(x)|�(x,k⊥)|2
2�3

n

+ 1

4�3
n

�̂2�(x,k⊥) + 3�(x,k⊥)|�(x,k⊥)|4
8�5

n

+ 1

16�5
n

�̂4�(x,k⊥) − 4

8�5
n

|�(x,k⊥)|2�̂2�(x,k⊥)

− 1

8�5
n

�2(x,k⊥)�̂2�∗(x,k⊥)

− 3

8�5
n

�∗(x,k⊥)�̂�(x,k⊥)�̂�(x,k⊥)

− 2

8�5
n

�(x,k⊥)�̂�(x,k⊥)�̂�∗(x,k⊥).

Substituting the found averages into the self-consistency re-
lation given by �(5)(x,k⊥)/λ = πT

∑
n 〈f (5)

ω (x,k⊥,p⊥)〉 and
using the standard regularization rule

1

λ
= ln

T

Tc0
+ 2πT

∑
ωn>0

1

ωn

, (A18)

we obtain the following extended version of the Ginzburg-
Landau equation (for clarity we dropped down k⊥ depen-
dence), if by �̂ one understands its three-dimensional version,

0 = �(x)

{
π

[
K1(T ) − K0

1 (T )
] − ln

T

Tc0

}

+ πK3(T )

4
�̂2�(x) − πK3(T )

2
�(x)|�(x)|2

+ 3πK5(T )

8
�(x)|�(x)|4 + πK5(T )

16
�̂4�(x)
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− πK5(T )

8
{4|�(x)|2�̂2�(x) + �2(x)�̂2�∗(x)

+ 3�∗(x)�̂�(x)�̂�(x) + 2�(x)�̂�(x)�̂�∗(x)},
(A19)

where we have introduced the notations [39] Km(T ) =
2T

∑
ω>0 (ωn − iμBH )−m and K0

m(T ) = 2T
∑

ω>0 ω−m
n . This

result is similar to the one obtained by Houzet and Mineev
[5]. Now we recall the original notations of Eq. (A7) and
after the averaging procedure we can write (neglecting the k⊥
dependence)

α�(x) = β∂2
x�(x) − δ∂4

x�(x) − 2γ�(x)|�(x)|2
− 3ν�(x)|�(x)|4 + μ|�(x)|2∂2

x�(x)

+ μ

4
�2(x)∂2

x�∗(x) + 3μ

4
�∗(x)[∂x�(x)]2

+ μ

2
�(x)∂x�(x)∂x�

∗(x) − t2μ

2

× [1 − 7 cos(2χA)][∂xχA]2�(x) − 80t2ν sin2(χA)

×�(x)|�(x)|2 + 2t2μ
[
3 sin(2χA)∂xχA∂x�(x)

+ sin(2χA)∂2
xχA�(x) + 3 sin2(χA)∂2

x�(x)
]

− 8t2γ sin2(χA)�(x) − 48t4ν sin4(χA)�(x),

where α ≡ ln T
Tc0

− π [K1(T ) − K0
1 (T )], β ≡ π

4 K3(T )〈v2
Fx〉,

δ ≡ − π
16K5(T )〈v4

Fx〉, γ ≡ π
4 K3(T ), μ ≡ −π

2 K5(T )〈v2
Fx〉,

ν ≡ −π
8 K5(T ). Here, the derivative signs mean the fol-

lowing: ∂2�(x) = 〈v2
Fx〉∂2

x�(x), ∂4�(x) = 〈v4
Fx〉∂4

x�(x),
∂χA∂�(x) = 〈v2

Fx〉∂xχA∂x�(x), and [∂χA]2 = 〈v2
Fx〉[∂xχA]2.

If one neglects the interchain hopping, then the previous
equation reduces to

0 =α�(x) − β∂2
x�(x) + δ∂4

x�(x)

+ 2γ�(x)|�(x)|2 + 3ν�(x)|�(x)|4

− μ|�(x)|2∂2
x�(x) − μ

4
�2(x)∂2

x�∗(x)

− 3μ

4
�∗(x)[∂x�(x)]2 − μ

2
�(x)∂x�(x)∂x�

∗(x).

(A20)

As shown in Ref. [39], a solution of this equation is the Jacobi
elliptic sine function �(x) = vF

ξ (k)ksn( x
ξ (k) ,k), expressed in

terms of the modulus k, which is determined upon minimizing
the free energy at the fixed external field parameter h. The
linearized version of this equation,

α�(x) = β∂2
x�(x) − δ∂4

x�(x) − 48t4ν sin4(χA)�(x)

− t2

2
μ[1 − 7 cos(2χA)][∂xχA]2�(x)

+ 2t2μ[3 sin(2χA)∂xχA∂x�(x)

+ 3 sin2(χA)∂2
x�(x)] − 8t2γ sin2(χA)�(x),

(A21)

is used in the main part of the article.
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