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Abstract. In this paper, we present a novel approach to non-intrusive flow velocity profiling
technique using multi-element sensor array and wide-band signal’s processing methods.
Conventional techniques for the measurements of the flow velocity profiles are usually based
on intrusive instruments (current meters, acoustic Doppler profilers, Pitot tubes, etc.) that take
punctual velocity readings. Although very efficient, these choices are limited in terms of
practical cases of applications especially when non-intrusive measurements techniques are
required and/or a spatial accuracy of the velocity profiling is required This is due to factors
related to hydraulic machinery down time, the often long time duration needed to explore the
entire section area, the frequent cumbersome number of devices that needs to be handled
simultaneously, or the impossibility to perform intrusive tests. In the case of non-intrusive flow
profiling methods based on acoustic techniques, previous methods concentrated on using a
large number of acoustic transducers placed around the measured section. Although feasible,
this approach presents several major drawbacks such as a complicated signal timing,
transmission, acquisition and recording system, resulting in a relative high cost of operation. In
addition, because of the geometrical constraints, a desired number of sensors may not be
installed. Recent results in acoustic flow metering based on wide band signals and adaptive
beamforming proved that it is possible to achieve flow velocity profiles using less acoustic
transducers. In a normal acoustic time of flight path the transducers are both emitters and
receivers, sequentially changing their roles. In the new configuration, proposed in this paper,
two new receivers are added on each side. Since the beam angles of each acoustic transducer
are wide enough the newly added transducers can receive the transmitted signals and additional
time of flight estimation can be done. Thus, several flow velocities are possible to be
computed. Analytically defined emitted wide band signals makes possible the identification of
signals coming from each transducer. Using the adaptive beam-forming algorithm the
receiving transducers can record different signals from the receiver, equivalent to different
propagation paths. Therefore, different measurements of time of flight are possible, leading to
additional flow velocity measurements. Results carried out in an experiment facility belonging
to ICPE-CA, Bucharest - Romania allowed to the validation of the flow velocities computed
using this new technique, in symmetric, asymmetric and uneven flow conditions. The acoustic
derived values were referenced with those provided from a Pitot tube probe installed in the test
channel and the results obtained by the method proposed in this paper are relatively close to
this reference.

1. Introduction

In the hydraulic equipment management, the velocity profile represents a fundamental parameter that
provides data for flow analysis and its estimation is a topic of interest and great challenge [1]. Flow
velocity profile shows not only the velocity magnitude, but also information on transported fluid’s
behaviour through the domain of interest [2]. Non-intrusive acoustic methods are among the current
techniques used in dynamic flow measurements. In contrast to conventional methods, where the
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measurement instrument interfere with the flow domain, the flow velocity profiling using acoustic
methods allows the estimation of velocity profile as a two variables function: space and time, keeping
constants measuring configuration coordinates [3], [4]. Well known methods as ultrasonic pulse
Doppler or laser Doppler anemometry are efficient, but limited in terms of measured velocity range
imposed by the emitted wave’s frequency [5]. The velocities encountered in most hydraulic
applications may have high variations. Thus, the method presented in this paper solves this drawback
with the use of the emitted wide band signals. In addition, the spatial distribution of the flow profilesis
not obtained by adding ultrasonic sensor but by changing the sensing properties, in terms of relative
phase delays between receiving sensors, providing also additional acoustic paths that increase the
number of velocity points.

In order to prove its applicability, the acoustic time of flight flow metering is used here to find the
open channel flow velocity profile, under different flowing regimes.

The paper is organized as follows: the measurement technique principle is presented in section 2,
the wide band signals and the beam-forming techniques are detailed in section 3.The results are
discussed in section 4 and the conclusions and perspectives are presented in section 5.

2. State of art

The flow profiling approach presented in this paper is based on the acoustic time of flight principlein
order to evaluate the velocity profile in a certain flow domain section. A set of several acoustic paths
is defined, each one estimating an instantaneous time of flight along the axis which connects the
emitter and the receiver. A propagation delay corresponds to a given velocity, so if we measure the
delay AT (given by the difference between wave’s times of flight in the flow direction and in the
opposite one), and if we use the known value of the range between emitting sensor and the receiving
one, D, we can estimate the particle’s velocity along the path defined by the sensor’s pairs.

2
v C°AT 1)
2-D-ctg[2—q}

where c is the sound velocity in water and 6 is the angle between the flow direction and the ultrasonic
beam direction. As shown by this expression the time of flight estimation impacts strongly the flow
measurement accuracy. The alternative of using the impulse signals, as transmitted ones, our approach
uses wide-band signals whose frequency variation range provides more robustness to the propagation
phenomena. The estimation of time of flight (TOF) is then performed using matched filtering between
the transmitted signal (the reference) and the received one. The main point of this methodology is the
wide band signals (linear modulations, cubic, logarithmic - chirps or discrete frequency modulations,
discrete phase, etc.) that have been primarily studied in the radar field, due to their excellent resolution
and noise robustness properties. These properties are possible due to the instantaneous signal
frequency variation, which provides a wide band duration product being operated by the principle of
matched filtering (or pulse compression). As an example of the use of this technique in the context of
flow rate estimation, we mention the works we presented in [6].

The property of the matched filter with the emitted signal s(t) and applied to the received one x(t),
is that its output is defined by the correlation between these two signals. Thus, given a wide band
signal, the temporally matched filter to this signal (i.e. relative to shifted versions of the signal) is
constructed with the following expression (the assumption of a stationary configuration is made):

h(t)=a-s*(t, —t) 2
where a is a normalization factor, to represents a time reference and the operator * is the Hermitian
operator. As this expression indicates, the filter impulse response, h(t), is obtained by time reversal of

the original (transmitted) signal. Let’s consider the simplest model for the received signal through the
measuring system:

Xx(t) = A-s(t —TOF) + n(t) 3
where A and TOF represents, the attenuation, respectively the time of flight of the emitted signal and

n (t) represents the signal noise. The application of the matched filter on the signal x(t), expressed as a
convol ution between x and h, leadsto:
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y(t) = [ x(t)-st—t)dt (4)

The estimation of the time of flight is now reduced at the computation of the instant of time for
which the matched filter response is maximal:

TOF =argmax[y(t)] —t, (5)
We also use wide band signals, in this context of flow velocity profiling, in order to ensure a good

resolution in terms of wave’s time of flight estimation, which leads to accurate differences in transit
time computation and, implicitly, good flow vel ocities measurement accuracy.

3. Adaptive beamforming technique

In the previous section, the use of wide band signals and the associated matched filtering is defined as
way to accurately estimate the TOF along one acoustic propagation path. The difference between the
TOFs measured in the sense of flow in the counter sense conducts, via the relation (1), to the
measurement of the flow velocity related to the acoustic path defined by the transmitter and the
receiver. Measuring the velocities in other points requires classically the definition of the
corresponding additional paths by many pairs of transmitter/receiver sensors. The alternative proposed
by this paper is to use the adaptive beamforming technique is based on the coherent multi-transducer
reception measurement principle [7]. According to this principle, the use of multi-element transmitting
and/or receiving elements allows to change the directions of wave propagation by modifying the phase
delays between the signals transmitted/received by the elements of the sensing array. In order to
illustrate this principle in our case, let us consider one acoustic paths defined by one emitting element
and two receivers — figure 1 (this is actually the configuration used in our experimental setup
presented in the next section).

& Flow direelion fall

o Emitter
|| Emitter : L itter :
‘R2
g Eymmetrie progogation paths - no phasc b Asyimein propageion palhs  phose delay
delay betw=en receiving ransducers Lelwween recenving framsducers

Figure 1. Principe of adaptive beam-forming in the case of two element receiver

The first case (figure 1.8) concerns the symmetric propagation paths where the emitter transducer
is located at the same ranges with respect of the receiving transducers. If the transmitted signal is s(t),
then the received signal corresponding to the array composed by the two receiving sensors (R1 et R2)
is (ignoring the amplitude attenuations):

x(t)= '{t -~ LJ (6)
C+V, cosa,

where c is the sound velocity and a; is the angle between the axis D1 between the sensors and the flow
velocity. This signal is obtained by combining the signals received by the both receiving sensors
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knowing that if these signals are in phase, their combination corresponds to the acoustic path defined
by the emitting sensor-bouncing on the opposite wall of the channel and the point O that is placed at
the half distance between the both sensors. Using the phase summation of the both received signals we
obtain the signal x and, by matched filtering processing and considering the same diagram but in the
opposite sense of the flow, we obtain the flow velocity along this acoustic path.

In the asymmetric case, if the received signals are delayed in phase with a controlled value, o,
thisis equivalent to consider that the emitter has another position (figure 1.b) and that the propagation
paths don’t have the same range. These new propagation paths are created by electronically modifying
the line of sight of the both transducers by a controlled delay, which allow estimating the velocity in
these new axes. Thisis done by processing the signals defined as:

X(t) = {t —~ LJ )
Cc+V,cosa,

by considering also the signals received when the transmission isin opposite sense of the flow.

This signal corresponds to an acoustic path defined by a virtual position of the emitter that
corresponds to areceiving point located at arange d with respect of point O.

By setting the phase delays from O to +/- maximum admissible value it is possible to define many
propagation paths, for each one a flow velocity being estimated. The admissible value is defined as the
maximum phase delay for which the two receiving transducers remain in the radiating zone of the
emitter. More accuracy may be achieved by using many elements at the emission and/or receiver.

This technique is very interesting to measure the velocity profile since it does not require to physically
define the acoustic paths. The next section illustrates the interest behind this technique in an
experimental facility.

4. Experimental tests and results

The aim of this application is to estimate an open-channel flow velocity profile, using acoustic time of
flight flow metering based on matched filtering and adaptive beamforming. The facility test, located at
the National R&D Institute in Electrical Engineering from Bucharest - Romania, is a closed loop
where the water is circulated through a rectangular Plexiglas channel (see figure 2). We estimate
different velocity profiles: symmetric and asymmetric profiles, for multiple flow mean velocities
values which do not exceed 1.1 m/s. The obtained results are validated by velocity measurements
using a Pitot tube installed downstream the acoustic system.

For all acoustical measurements, 45 degrees acryl wedge transducers of 1 MHz frequency band
were used. The injected waveforms are 800 - 1200 kHz linear increasing sweep frequency signals and
they are recorded with a sampling frequency of 200 MHz. Thus, the temporal resolution of 5 ns
ensures the estimation of flow velocities down to 0.2 m/s.

Each pair emitter-receiver is placed in “V” configuration which means that both the emitter and
the receiver are clamped-on the same channel side. For simplicity, the acoustic measuring system is
adapted to each velocity profile [8]. In the case of a fully developed flow with a velocity range
between 0.2 and 1.1 m/s and symmetric velocity profile, an acoustic flow metering configuration
composed by two emitters and two receivers is proposed. Accordingly, two “V” paths are used for the
symmetric velocity profile estimation (see figure 3), which means that there are two flow velocity
values available. More values, required to complete the flow velocity profile, will be obtained by
phase shifting these two received signals.

In order to create a flow with an asymmetric velocity profile, the open-channel inlet was
restrained with about 60% from its complete opening. In these conditions, the flow velocity is
increased at the channel bottom and the difference in flow velocity between al the flow layers demand
a new acoustic flow metering configuration. The new configuration allows an accurate estimation of
the velocity variation in the flow domain section of interest. Two “V” paths (see figure 4) between one
emitter and two receivers are created. The third one is established between the two emissions: because
the waves in the flow direction and in the opposite direction are generated aternatively, the non-active
emitter can record also the wave emitted by the active one. Thus, this transducers configuration allows
the flow velocity measurement in three points of the flow domain transversal section. Using the same
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principle as for the symmetric velocity profile estimation, also in this case the complete velocity
profile can be constructed without changing the transducers position.

Flew direction
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Figure 2. Facility test schema used for velocity profile estimation
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Figure 3. Experimental configuration for the symmetric velocity profile estimation: a) the two “V” paths [E1-R1]
and [E2-R2] correspond to emitted signal in the flow direction (the red continuous line), respectively in the
opposite direction (the red dotted line); b) The transducers clamp-on open-channel side.

One example of results is presented in figure 5, for the flow velocity profile estimation when the
flow rate is equal to 0.0276 m¥s, i.e. the instantaneous flow velocity in the case of the symmetric
velocity profile estimation lies between 0.29 m/s and 0.30 m/s (see figure 5.a) and in the case of the
asymmetric velocity profile between 0.16 m/s and 0.68 m/s (see figure 5.b). Table 1 contains the
measured flow velocities using the Pitot tube installed on the experimental facility and the estimated
flow velocities using the acoustic method developed in this paper.

The number of points used to construct the velocity profile is chosen by the user taking into
account the measurement purpose and conditions. It is necessary to mention that the transducers setup
has to ensure no influence (wave attenuation, scattering or deviation) from the free surface or channel
bottom.
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Figure 4. Experimental configuration for the asymmetric velocity profile estimation: @) each three set of “V”
paths[E1-R3, E1-E2, E1-R4] and [E2-R1, E2-E1, E2-R2] correspond to emitted signal in the flow direction (the
red continuous line), respectively in the opposite direction (the red dotted line); b) The transducers clamp-on
open-channel side.
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Table 1. Flow velocity values measured with the Pitot tube and estimated with the acoustic time of flight flow
meter for the symmetric and asymmetric flow profiling

Symmetric velocity profile Asymmetric velocity profile
(mm) V measured V estimated V measured V estimated

(mv/s) (mv/s) (mv/s) (mvs)
71 0.2987 0.2964 0.6398 0.625
109 0.2986 0.2986 0.4746 0.4723
149 0.2959 0.2984 0.3468 0.3482
183 0.2965 0.2958 0.2190 0.2631
237 0.2960 0.2968 0.1646 0.1389
277 0.2912 0.2952 0.1650 0.1959
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Figure 5.a Symmetric flow velocity profile Figure 5.b Asymmetric flow velocity profile
measured with Pitot tube (the blue curve) and measured with Pitot tube (the blue curve) and
estimated with acoustic time of flight meter (the estimated with acoustic time of flight meter (the red
red curve) curve)

5. Conclusion

The adaptive beamforming technic implementation allows the signal reception directional adapting
electronically. The main difficulties are related the geometric constraints for the multi-transducers
configuration installation. Except that, we have shown that the adaptive beamforming algorithm
applied for wide band signals represents a robust estimation of flow velocity despite different flow
regimes and transducers mechanica misalignments, using multi-paths fusion information which
provide an estimate of the flow velocity profile.

In the further works, we will closely investigate the propagation effects between the sensors and
the inside parts of the pipe. Namely, it is obvious that the propagation in the solid part of the pipes
deforms the transmitting signals but estimating carefully this deformation could be useful to improve
the both matched filtering and adaptive beam-forming performances. Also, it will help us defining the
ultrasonic wide-band phase interferometry that will lead to the design of agile and high resolution
ultrasonic sensing systems.
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