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Abstract. This paper presents a study carried out in a controlled en-
vironment that aims at understanding behavioural patterns in climbing
activities. Multi-Scale Jensen-Shannon Neighbour Embedding [8], a re-
cent advance in non linear dimension reduction, has been applied to
recordings of movement sensors in order to help the visualization of co-
ordination modes. Initial clustering results show a correlation with jerk,
an indicator of fluency in climbing activities, but provides more details
on behavioural patterns.
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1 Introduction

Detection and qualification of behavioural patterns in climbing activities play
a key point in performance management. For example, the correct qualification
of his/her inter-limb coordination may help the performer to step into more
efficient behavioural patterns.

In fact, a larger repertoire of inter-limb coordination patterns would enable
rapid and efficient behavioural adaptation to environmental constraints (such as
size, shape of hold, distance between holds) because climbers can switch between
patterns [13]. Climbing efficiency, also called fluency, can be assessed by the
smoothness of the hip trajectory (known as jerk coefficient [13]), while inter-
limb coordination could be examined through limb kinematics (3D orientation,
angular velocity, linear acceleration, etc).

Past studies on coordination focus on statistics of the relative phase of 2
articulations that are seen as 2 oscillators [7, 1, 14]. Here we want to use machine
learning methods to leverage this limit and to study simultaneously on all the
limbs.



In our climbing data, structures are unknown and may appear on different
scales: climbers, holds, paths, climbing order, learning curve, . . . Nevertheless,
standard clustering or dimension reduction methods, such as Stochastic Neigh-
bour Embedding (SNE), are known to be good at structure preservation only
for a particular scale. Recently, Multi-Scale Jensen-Shannon NE [8] solves this
problem by opting to a multi-similarity approaches. This method will be applied
to the output of motion sensors in order to help the visualization of behaviours
even if they appears at different scales. Resulting behavioural clusters will be con-
fronted to the jerk coefficient, in order to investigate the relationships between
the climbing behaviour and his performance outcome (i.e. fluency) to achieve
the task/goal.

2 Methodology

2.1 Protocol

The learning protocol consisted in four climbing sessions, separated by two days
of rest. Participants were instructed to self-pace their ascent, with the following
task-goal: explore the way to climb as fluently as possible, i.e., without falling
down while minimizing pauses and saccades of the body displacement. Instruc-
tions were not made too specific to allow new coordination patterns to emerge
during exploratory behaviour under the varying task constraints.

Each session consisted in ascending randomly three different routes with
grade ranged 5b-5c in the French Rating Scale of Difficulty (F-RSD) (ranging
from 1 to 9). Each path was identifiable by colour and was set on an artificial
indoor climbing wall by three professional certified route setters who ensured
that routes match intermediate climbing ability. The three routes had the same
height (10.3m) and they included the same number of hand-holds (20), which
were bolted to a flat vertical surface. The holds were located at the same place
on the artificial wall; only the orientation of the hold was changed:

(i) the horizontal-edge route was designed to allow horizontal hold grasping,
(ii) the vertical-edge route was designed to allow vertical hold grasping, and
(iii) the double-edge route was designed to allow both horizontal and vertical

hold grasping.

Each edge could also be grasped by the left and/or the right hand. At the fourth
session, the participants climbed a fourth path, which mixed the three previous
routes.

Fourteen participants took voluntarily part to this study, with mean age
22.7 ± 2.9 yr, mean height: 176 ± 5 cm, mean weight: 64.2 ± 5.8 kg. Seven
individuals in this group have practised in indoor climbing wall, for three years,
three hours per week and have skill level in rock climbing of grade 6a-6b in
the F-RSD, which represents an intermediate level of performance. Seven other
participants have only practised for 10h and have a skill level of climbing of
grade 5b-5c, which corresponds to novice level of performance. The protocol



was approved by the local University ethics committee and complies with the
declaration of Helsinki. Procedures were explained to the climber, who then gave
his written informed consent to participate. Here, participant names have been
masqueraded.

2.2 Data collection and segmentation

The directions of the trunk and the limbs (3D unit vectors in Earth reference)
have been collected from small, wearable, inertial measurement units (IMU),
located on the hip, right and left wrists, right and left feet, with the North
magnetic as reference, and sampled at 100 Hz. Our IMUs corresponded to a
combination of a tri-axial accelerometer (±8G), tri-axial gyroscope (1600◦.s-1)
and a tri-axial magnetometer (MotionPod, Movea c©, Grenoble, France). For
each climb, the fluency was assessed by the jerk coefficient [13] and a time-based
segmentation is performed.

The jerk can be seen here as a measure of smoothness of the hip trajectory
and is used as an indicator of the expertise skills. For trajectory x : [O, T ]→ R3,
the dimensionless jerk is defined as

Jx =
T 5

(∆x)2

∫ T

0

∣∣∣∣∣∣∣∣d3xdt3 (s)
∣∣∣∣∣∣∣∣2 ds,

where ∆x is the length of the trajectory.
Based on the acceleration and the angular velocity of the 5 sensors attached

to the limbs and the hip, a first segmentation [3] is performed for each sensor with
a CUSUM algorithm [2] to determine whether the limb is moving or immobile.
Parameters of the Γ -distributions used in the likelihood ratio for the CUSUM
are determined from manual labeling by an expert climber.

From this binary state segmentation of each limb, a global body state is de-
termined directly using the concatenation of the previous segmentation, leading
to 5 full-body states: Immobility (all sensors are immobile), Postural regulation
(only the hip sensor is mobile), Hold Exploration (hip sensor is immobile, limbs
sensors are mobile), Hold Change (last Hold Exploration before a traction),
Traction (some limbs sensors and the hip senors are mobile).

3 Building Features

3.1 From sensors to rotations

In order to prepare dimension reduction for qualitative human interpretation and
for the pattern discovery with clustering, gyroscope, accelerometer and magne-
tometer information are converted into a 3 × 3 rotation matrix that describes
each sensor in an Earth frame (North, West, vertical). The transformation is
performed through a complementary filter based algorithm described in [11, 10].
The resulting frame does not give the absolute position of a sensor but, by anal-
ogy with a camera, gives the direction in which the camera points at and the
direction of the top of the camera. This is enough to reconstruct the relative
limb positions.



3.2 From rotations to features

Rotation matrices belong to a compact manifold, the Lie group of rotations
so(3) [5], and thus standard metrics and statistics can not be applied. For ex-
ample the mean of rotations is not the element-wise mean of rotation matrices.
Thus we need to define the geodesic distance, the mean, and the variance that
we will use in our pattern recognition algorithms.

The geodesic distance between rotations A and B is defined as the angle of
the composition C of rotation B and the inverse of rotation A. If A and B are
the same rotations then the angle of C is null. In the rotation group, the inverse
of a matrix is simply its transpose. This gives,

d(A,B) = arccos

(
tr(Aᵀ.B)− 1

2

)
.

A rotation geodesic mean M is defined as a rotation that minimizes the sum
of geodesic distances between itself and the studied set of rotations. It may not
be unique. The computation of M , a rotation mean, of n rotations Ri with
i ∈ [1 . . . n] involved the following iteration process [12]:

1. Initialize M0 to one of the Ri,
2. Project each Ri to the tangent space of the rotation manifold in Mt,

Pi = log (Mᵀ
t .Ri) ,

3. Compute the mean of Pi and project it back to the manifold, leading to the
new mean estimation,

Mt+1 =Mt. exp

(
1

n

n∑
i

Pi

)
,

4. go back to 2 until convergence.

The log and exp operators are costly matricial operations in contrast to their
element-wise counterparts. Nevertheless, the log of a rotation matrix R can be
efficiently computed [4], log(R) = arcsin(||S||)

||S|| S where S = R−Rᵀ

2 .
For the variance V of a rotation set, we choose the mean of the squared

geodesic distances of each rotation to a rotation mean, namely,

V =
1

n

n∑
i=1

d(M,Ri)
2 .

As rotation meanM must minimize the geodesic distances, variance V is unique
even if the rotation mean M is not.

Rotation signals are split into 20 sets corresponding to the 5 sensors and to
the segmentation in 4 high-level states. For each of these sets, the rotation mean
and variance are computed. Moreover, segmentation is sum-up by state count
and state transitions probabilities. For each climb, it is summarized by a vector



of 220 continuous features decomposed in 20 rotation mean matrices in R3×3,
20 rotation variances in R, a state count vector in R4 and a transition matrix
in R4×4. Let us note that these features correspond to a hidden Markov model.

Further projection and clustering algorithms do not use features directly
but rather distances between examples. Because of the manifold nature of our
data, special care must be taken here. A rotation mean is a rotation itself,
thus a Euclidean distance between the matrices of two rotation means is not
suitable: one must use the geodesic distance on rotations defined above. Similarly,
rotation variances are squared angles, thus one must use the geodesic distance on
angles for this part of the features. That is why specific distances are computed
separately on each component of the feature vector. Then the final distance is a
weighted sum.

4 Dimension reduction through Multi-scale SNE

To facilitate visualization and preliminary qualitative interpretation, high di-
mensional climbing features will be projected into a 2D space while trying to
preserve the data structure. In Stochastic Neighbour Embedding (SNE), a non-
linear method proposed in [6], low dimensional (LD) projections are chosen so
that their similarities match similarities of the high dimensional (HD) features
for a fixed perplexity B .

The HD similarity σij between examples i and j is computed by,

σij =
exp

(
− δ2ij

2λi(B)2

)
∑
k,k 6=i exp

(
− δ2ik

2λi(B)2

) ,

where δij is the distance between HD examples. It corresponds to the probability
that j is the neighbour of i. Due to the bandwidth λi(B) specific to ith example
and perplexity B, similarities are not symmetric.

Perplexity B is a hyper-parameter that indicates the soft Gaussian number
of neighbours to take into account around an example. Bandwidth λi(B) cor-
responds to the soft radius around the ith example needed to encompass such
a number of neighbours. Formally, in a preprocessing step called equalization,
λi(B) is chosen so that the entropy of the HD similarities of the ith example is
equal to the log of perplexity B,

B = exp

−∑
j

σij log(σij)

 .

The LD similarity sij is defined by,

sij =
exp

(
−d

2
ij

2

)
∑
k,k 6=i exp

(
−d

2
ik

2

) ,



where dij is the distance between between ith and jth LD examples.
Since similarities are normalized like distribution, a Kullback–Leibler diver-

gence DKL can be used as a criterion to measure the adequation between HD
and LD similarities. In our case, we use the Jensen–Shannon divergence [9], a
type-2 mixture divergence,

Dκ
JS(σ||s) = κDKL(σ||z) + (1− κ)DKL(s||z) ,

where z = κσ + (1− κ)s and κ is the mixing parameter.
In our data, structures may arise at different scales: the climber, the path,

the order of the climbs. Nevertheless SNE methods are known to be good at
preserving the data structure around the neighbourhood fixed by perplexity B.
Global structures may be filtered out for a low perplexity. Small structure might
be inaccurate for high perplexity.

Multi-scale JSE [8] addresses this problem by using a bank of similarities
obtained through the combination of multiple perplexities,

σij =
1

L

∑
σijh ,

where σijh is a similarity for a bandwidth λih specific to a perplexity Bh.
The full embedding process starts by computing a SVD decomposition of HD

features to initialize the LD projection. Then the chosen criterion is minimized
by a gradient descent on the LD projections. See [9, 8] for gradient details.

4.1 Visualization of climbing data

Figure 1 shows the same MS-JSE projection with two different annotations,
the first one with climber labels, the second one with path labels. Each point
represents a different climb.

For a particular climber (Fig. 1(a)), most of its climbs form between 1 to 3
clusters with few outliers. Each of theses clusters can be seen as a coordination
pattern specific to the climber. A general path/route effect appears in the pro-
jection with higher density zone for each of the path even if their examples are
not clearly split (Fig. 1(b)). Thus, MS-JSE has succeeded in preserving these
two scopes.

Moreover, three clusters of climber Henry have been highlighted in both
scatter plots. Each of the consolidations contains more than one path. This
suggests that the clusters observed for one climber are not the consequence of
a route effect but may be due to a time effect. This will be investigated in the
next section.
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Fig. 1. MS-JSE SNE projection with Henry climbs surrounded
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Fig. 2. Clustering and jerk displayed along time for selected climbers

5 Clustering

To get a more precise picture of behavioural patterns, we have applied a ag-
glomerative clustering on the data. The agglomerative tree has been cut to get
6 clusters (number chosen by BIC).

The result of clustering is shown in figure 2 in a time-line for four selected
climbers. Each graph is split into 4 parts: a time-line on all the climbs, and 3
time-lines for each climb route. The last fourth path is intended to test transfer
learning in further experimentation and has been climbed only once. The back-
ground color indicates in which cluster a climb belongs, colour are consistent
for the climbers. The rotation jerk has been plotted in white over the cluster
time-line.

In figure 2(a), a learning effect can be seen: the two first climbs of each path
display a different pattern than the following climbs. The jerk slowly decreases,
which indicates better fluency over time, this is generally correlated with fewer
explorations as the climber learns.

In figure 2(b), the same learning effect is seen, but the jerk makes a step
at the change of patterns showing an exploration burst. Moreover on the last 4
climbs, the patterns of path 3 differs from path 1 and 2; showing a particular



adaptation to this environment. That singular route effect does not appear in
the jerk.

In figure 2(c), cluster changes occur later at climb 4 with a path effect that
is also not seen on thr jerk.

In figure 2(d), the jerk makse a bump at the end of the training, showing
difficulties for the climber to perform the task. As the first two climbers, a change
of cluster occurs at climb 2 but then returns back to the original pattern.

6 Conclusion and perspectives

The rotation features projected by MS-JSE and their clustering convey more
information than the jerk on behavioural patterns: patterns are still correlated
with the fluency indicator but show path effects that are not seen in the jerk
because only a single value of jerk is computed for a climb. For example the time-
line analysis of clusters highlight that climbers start from one set of patterns
and evolved separately to different sets of patterns. Moreover, having both, jerk
and clusters, indicates which pattern lead to better fluency (jerk decreases in
parallel) and which patterns are typical to new exploration by the climber (jerk
bumps and decreases). This is interesting for performers in order to qualify the
behavioural patterns along the learning curve, because it would allow identifying
efficient vs. non-efficient patterns, and shared patterns between climbers.

In the future, we will investigate MS-JSE and clustering on a state segmen-
tation basis, in order to provide finer pattern grain than one climb.
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