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Abstract

For High Dynamic Range (HDR) content, the dynamic range of an image is

an important characteristic in algorithm design and validation, analysis of aes-

thetic attributes and content selection. Traditionally, it has been computed as

the ratio between the maximum and minimum pixel luminance, a purely objec-

tive measure; however, the human visual system’s perception of dynamic range

is more complex and has been largely neglected in the literature. In this paper,

a new methodology for measuring perceived dynamic range (PDR) of chromatic

and achromatic HDR images is proposed. PDR can benefit HDR in a number

of ways: for evaluating inverse tone mapping operators and HDR compression

methods; aesthetically; or as a parameter for content selection in perceptual

studies. A subjective study was conducted on a data set of 36 chromatic and

achromatic HDR images. Results showed a strong agreement across partici-

pants’ allocated scores. In addition, a high correlation between ratings of the

chromatic and achromatic stimuli was found. Based on the results from a pilot

study, five objective measures (pixel-based dynamic range, image key, area of

bright regions, contrast and colorfulness) were selected as candidates for a PDR

predictor model; two of which have been found to be significant contributors to

the model. Our analyses show that this model performs better than individual

metrics for both achromatic and chromatic stimuli.
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Evaluation, Predictor Model

1. Introduction

High dynamic range (HDR) technology [1, 2] enables the capture, storage,

transmission and display of the full range of real-world lighting and colors, with

a significant increase in precision when compared to traditional low dynamic

range (LDR) imaging. One of HDR’s main features is its ability to reproduce5

very bright and very dark portions of a scene concurrently. The span between

these extrema in the brightness scale is commonly referred to as the dynamic

range of a picture.

The dynamic range of image or video content is frequently reported by many

HDR applications. It is typically computed as the ratio between the maximum10

and minimum pixel luminance of an image, which will be referred to as pixel-

based dynamic range (DR) in this paper. Such a computation can be biased due

to image noise or singularities, such as isolated pixels with extreme luminance

values. Furthermore, such measures do not capture the complex behavior of the

human visual system’s (HVS) response and perception of lightness, including its15

intrinsic content-dependency [3]. The perceived dynamic range (PDR) of HDR

content and its assessment in HDR conditions still remain unexplored. The

accurate prediction of PDR would be important for a number of applications.

It could be used to optimize and evaluate inverse tone mapping operators (IT-

MOs) [4, 5, 6], HDR compression methods and HDR reproduction systems [7];20

it could be used for developing objective image quality measures and quantify-

ing aesthetic attributes [8]; it provides an objective means to select content for

HDR presentations and subjective studies [9]; and in general it would help to

better understand lightness and color perception, by extending studies on the

anchoring problem [3] to complex stimuli and HDR conditions.25

To the authors’ knowledge, this work is the first attempt to assess and pre-

dict the perceived dynamic range of HDR images under HDR conditions. Cur-

rently neither a standardized methodology nor an HDR data set with annotated
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measurements of this perceptual attribute exist. For this purpose, a subjective

study with 23 participants was designed and conducted, using a set of 36 HDR30

images (chosen from a larger pool) with different characteristics and content se-

mantics, including indoor/outdoor scenes, natural/man-made scenes and other

variations. This work is an extended version of the pilot study that investigated

only the achromatic stimuli [10]; this extension has increased the number of par-

ticipants, added chromatic stimuli to the study and used the data to propose35

and evaluate a predictive model. While dynamic range is generally measured

based only on the brightness of a picture, well-known color appearance phe-

nomena such as Hunt or Helmholtz-Kohlrausch effects [11] tend to question this

assumption and rather lean towards the hypothesis that dynamic range per-

ception changes from achromatic to chromatic stimuli. Therefore, in this work,40

both the achromatic and chromatic images were used and the correlation of the

subjective scores is investigated.

This paper makes the following contributions:

• a subjectively annotated data set with PDR values, using complex, chro-

matic and achromatic stimuli and HDR viewing conditions (using an HDR45

display) was created 1;

• a novel test methodology for measuring perceived dynamic range, par-

tially inspired by the subjective assessment methodology for video quality

(SAMVIQ) [12] is proposed;

• based on the results of the study, the Pearson’s correlations between mean50

opinion scores (MOS) and five image features, i.e., pixel-based dynamic

range (correlation coefficient r = 0.87 achromatic, r = 0.84 chromatic), im-

age key (r = -0.60, r = -0.61), area (modified to account for non-linearity;

r = 0.87, r = 0.87), contrast (r = -0.19, r = -0.22) and colorfulness (r =

-0.47 chromatic only) were analyzed;55

1The data set is available on the project website: http://pdr.lefca.net
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• the effect of chromatic information on perceived dynamic range was inves-

tigated and the relation between chromatic and achromatic quantified (r

= 0.99);

• a model for predicting the perceived dynamic range for both achromatic

(adjusted R2 = .89) and chromatic (adjusted R2 = .87) images has been60

proposed.

In the rest of the paper, the abbreviations and terms presented in Table 1

will be used.

Table 1: A list of abbreviations and terms used in the paper.

Term Meaning

PDR Perceived dynamic range

MDR Dynamic range as predicted by the proposed regression model

HVS Human visual system

iTMO Inverse tone mapping operator

MOS Mean opinion score

CSF Contrast sensitivity function

IK Image key

SI Spatial information

C Contrast

Col Colorfulness

F(x,y) F-ratio (test statistic used in ANOVA)

p The probability value

r Pearson’s correlation coefficient

rs Spearman’s rank correlation coefficient

W Kendall’s coefficient of concordance

R The multiple correlation coefficient

R2 The coefficient of determination

adj. R2 The adjusted R2 coefficient

B The regression coefficient (unstandardized)

Beta Standardized regression coefficient

SR Standardized residuals

CD Cook’s distance

VIF Variance inflation factor
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2. Related Work

The study of perceived dynamic range shares some common features with65

perceived lightness, image contrast and image quality. Most of these psycho-

perceptual theories lack sufficient validation with complex stimuli, and have

never been tested in HDR conditions.

2.1. Perceived Lightness

Lightness is a measure of relative brightness of elements of a scene, and has70

been extensively studied within the field of perceptual psychology. One of the

most popular models in lightness perception is the intrinsic image model [13,

14, 15, 16]. This is typically based on a multi-component approach, which con-

sists in factorizing the perceived scene as the interaction of different elements,

e.g., surface reflectance, illumination and three-dimensional form or depth val-75

ues. However, Gilchrist argued that these models are incomplete and proposed

a new anchoring model [3], based on a combination of global and local anchor-

ing of lightness values. On the whole, the anchoring models promote the idea

that the perception of lightness is determined by the brightest patch of the

scene. The human visual system then scales the rest to this maximum, gen-80

erating an internal, scene-dependent scale of light and dark. Furthermore, Li

and Gilchrist [17] observed that anchoring is affected by the relative area of the

brightest patch.

The Retinex theory [18] attempts to generate an output that is most similar

to what a human observer would perceive by looking at the real scene where an85

image was taken. Compared with the anchoring theories, the Retinex theory

indirectly arrives to the same conclusion through a probabilistic formulation.

This is achieved by averaging luminance values along paths of pixels originating

from each point of the picture [19], while taking into account the relative distance

between patches of different brightness.90
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2.2. Image Contrast

While image contrast and dynamic range have similar perceptual connota-

tion, they describe different aesthetic attributes. Global contrast measures [20,

21, 22] model image sharpness, which is a fine-scale image feature, as the per-

ceptual experiments by Haun and Peli [23] clearly display. On the contrary, the95

perceived dynamic range is a measure of the magnitude of the global difference

in the perceived image brightness. This is closely related to the “tone” aesthetic

attribute as defined in work by Aydin et al. [8]. However, in their work this

attribute is computed as a variation of the pixel-based dynamic range and does

not take into account other perceptual factors. In a series of studies by Calabria100

and Fairchild it has been shown that perceived image contrast for LDR images

is a function of image lightness, chroma, and sharpness [24] and the model of

perceived image contrast and observed preference data were proposed [25].

In their recent work, Vangorp et al. defined a model of local adaptation

and use it to measure dynamic range as the ratio between the brightest and105

darkest image region in which people can still see some details [26]. The model

predicts the maximum visible dynamic range for any given scene, based on both

glare and local adaptation. The results revealed that the greatest decrease in

perceived dynamic range, compared to the physical DR, occurs in darker scene

regions due to glare. On the other hand, local adaptation causes a significant110

loss of dynamic range visibility in brighter parts of the scenes.

2.3. Image Quality

Image quality metrics are usually based on either predicting the visibility of

distortions [27, 28] or magnitude of aesthetic attributes [8]. While such metrics

usually do not consider perceived dynamic range explicitly, there is evidence115

that the latter is highly related with the overall image quality. In the study by

Akyüz et al., when two versions of the same image were compared, observers

generally preferred the higher dynamic range one [29].

Therefore, assessing the perceived dynamic range of HDR pictures and videos

can make a great contribution in design and evaluation of HDR methods, for120
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example, inverse tone mapping operators (iTMOs) [4, 30], where the dynamic

range of LDR content is expanded for displaying on an HDR display. Most of

the current approaches to enhance the perception of dynamic range are based on

heuristics. Meylan et al. [31] showed that, when expanding the dynamic range

of LDR content, specular highlights have to be allocated a significant range.125

Similarly, other studies tend to boost the brightest pixels of the LDR scene in

order to “approximate the visceral response associated with the higher contrast

and overall brightness in the original scene” [5, 4]. The results of the subjective

experiment conducted in this paper provide a groundtruth for designing more

perceptually meaningful dynamic range metrics.130

Furthermore, as pointed out by Narwaria et al. [9], having a perceptually

annotated HDR image dataset with MOS values is necessary for both HDR

source content selection in subjective studies and for testing HDR processing

algorithms. However, in that work the proposed objective measure is tailored to

a dynamic range reduction task, such as in the case of tone mapping evaluation.135

Moreover, no formal subjective evaluation is proposed to verify the perceptual

relevance of that method. Predictive models, if successful, can serve the same

role as annotated databases without requiring time-consuming data collection.

3. Motivation and Methodology

Computational metrics that predict PDR could allow for automatic organi-140

zation, ordering and presentation of HDR content. This work’s goal is to analyze

how humans perceive dynamic range of HDR content on complex scenes, and

be able to predict the PDR of a scene automatically. The research method

employed involves data collection and analysis of HDR content from real-world

HDR images. This data is compared with objective measurements; these are145

subsequently used to build a PDR model. This section describes the choice of

objective metrics and describes the experimental methodology.
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3.1. Objective Evaluation

The objective measurements proposed here are based on the insights of a

previous pilot study [10], on achromatic HDR images, which inspired the work150

presented here; two measures (pixel-based DR and image key) are retained from

the study and another three (area, contrast and colorfulness) are included based

on analysis of that study’s results and previous findings on these topics [17, 24,

11]. Three objective measures were used in the pilot study: dynamic range

(DR), image key (IK) and spatial perceptual information (SI). After obtaining155

MOS scores, a significant correlation was found between the DR and MOS

(Spearman’s rank-order correlation coefficient rs = .788; p < .001) and IK and

MOS (rs = −.671; p < .001), while the correlation between the SI and MOS

was not found to be significant (rs = .037; p = .830).

In addition, analysis of the results revealed that there might be a significant160

contribution to the perceived dynamic range based on the area of the brightest

parts of the image. The images with relatively small light sources (e.g. Zentrum,

WaffleHouse, LasVegasStore) had the highest difference between the perceived

and pixel-based DR. This is in accordance with the discussions in the literature

on image contrast and anchoring theories where the area and distance between165

the contrasting patches have been found to be the significant image features [32,

3]. In these studies, usually two types of white are discriminated: the diffuse,

below a certain threshold; and specular or self-luminous, that represent values

above the diffuse white threshold. A couple of studies on preferred diffuse range

reported similar findings. The ITU document 6C/146-E, revealed that 90%170

of participants were satisfied with an upper limit of diffuse white being set to

2,400 cd/m2 [33]. In a second study, the same threshold (90% preference level)

was been reported for three groups of participants with the following values:

4,677 cd/m2 for technical, 3,090 cd/m2 for arts and 1,995 cd/m2 for naive

participants [34]. Both experiments were conducted on a dual modulation HDR175

display system [35], with the ability to reproduce luminance levels in the range

from 0.004 to 20,000 cd/m2. Seven images were evaluated, six of which were

real-world structured stimuli, using 34 participants.
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In addition, dynamic range is often confused with contrast in some contexts.

Nevertheless, it was necessary to investigate perceptual relation between the180

two attributes, by inspecting whether a predictor of local contrast can further

explain DR perception. Finally, as a number of psychophysical phenomena, such

as the Helmhotz-Kohlrausch effect, link color appearance to dynamic range and

contrast, colorfulness has been selected as an objective measure for chromatic

images. The main goal was to investigate whether an attribute such as DR,185

generally considered monochromatic, could be perceived differently when the

chrominance changes even if the luminance is kept constant.

3.2. Objective Metrics

Following the results of the pilot study, DR and IK were maintained as

metrics and were augmented by another three measures based on the above190

observations - the Area of specular regions, the Contrast and the Colorfulness.

The Area was motivated by the diffuse white thresholds; the Contrast as the

magnitude of the global lightness difference is considered as a crucial factor in

perception; and the Colorfulness since it is directly related to the perceived

brightness of regions with constant luminance.195

The pixel luminance values were first scaled to the display range with the

following equation:

L′ =
L−min(L)

max(L)−min(L)
· (Dispmax −Dispmin) +Dispmin, (1)

where Dispmin = 0.03 cd/m2 and Dispmax = 4250 cd/m2 in our setup. The DR

is then calculated after excluding 1% of the darkest and brightest pixels in the

image, using

DR = log10

max(L′)

min(L′)
, (2)

where L′ is the image with scaled values.

The image key IK ∈ [0, 1], a measure proposed by Aküz and Reinhard [36],

was defined as:

IK =
ln(avg(L))− ln(min(L))

ln(max(L))− ln(min(L))
, (3)
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where the avg(L) was computed as ln(avg(L)) = Σij ln(L(i, j) + δ)/N , with

δ = 10−5 to avoid singularities and N was the number of pixels. Once again,

min(L) and max(L) were calculated robustly, after excluding 1% of the darkest

and the brightest pixels.200

The Area was calculated as:

Area = Σij(L(i, j)), L(i, j) > 2400 cd/m2, (4)

and represents the number of pixels greater than the diffuse white threshold

value. The value of 2,400 cd/m2 was selected as recommended in ITU doc-

ument [33], as discussed in Section 3.1. It is in accordance with the results of

the study by Daly et al. [34], where different thresholds were found for different

levels of user expertise. As participants in our study ranged from naive to tech-205

nical, but not necessarily in this particular domain, it was reasonable to select

a value towards to middle of the interval.

The Contrast measure is an adapted version of the work by Peli [20] and

Rizzi et al. [21]. Let Lj be the image at level j of a Gaussian pyramid, of

size N/2j ×M/2j , obtained by decimating the original image with a Gaussian

low-pass filter, and let N8(Lj) be the 8-neighborhood for a given pixel in Lj .

In this study, three levels were used, j ∈ [2, 4], corresponding to 1.24, 2.47 and

4.95 cycle per degree (cpd), as the peaks of the contrast sensitivity function

(CSF) for different light adaptation luminance lie approximately within that

spatial frequency interval [37]. The cycles per degree were calculated based

on the image dimensions, screen size and viewing distance. The contrast was

computed as:

C =

∑
j∈[2,4]

LCj

3
, (5)

where

LCj =

∑ |Lj
x,y−N8(Lj

x,y)|
8

Lj
W × L

j
H

, (6)

uses perceptually uniform luminance values [38]. Lj
W and Lj

H are the width and

the height of the image L at the j-th scale.
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3.3. Experimental Method210

The main aim of this study was to investigate the correlation between PDR

and the five objective measures, for both achromatic and chromatic images,

and, subsequently, to propose a model for calculating dynamic range based on

these measures. Below, the design, participants, apparatus, stimuli and the

experimental procedure are described.215

3.3.1. Design

In the study, a subjective evaluation of PDR of both achromatic and chro-

matic images was conducted. The participants were asked to evaluate the overall

impression of the difference between the brightest and the darkest part(s) in the

images. The independent variable was the image content, while the dependent220

variable was the reported PDR of the image. The study was conducted in two

separate sessions, one for achromatic and another for chromatic images; at least

one day was allowed between sessions. The sessions were ordered randomly and

equally.

Three possible evaluation methods are typically considered during the de-225

sign of experiments of this type: paired comparison, ranking and rating. Paired

comparisons were ruled out due to their impracticality with large data sets.

The efficient pair comparison techniques [39] can be used under certain assump-

tions. However, due to multidimensionality and non-deterministic DR appear-

ance, these assumptions in our case were violated. While the ranking methods230

are straightforward, and quick to conduct, as with pairwise comparisons, they

provide no information on the magnitude of the differences. Therefore, this

method has been designed in order to use the advantages of the three methods:

it permits ranking of the stimuli, a direct comparison between the image pairs,

and it uses the continuous scale for subjective scores.235

The evaluation method was inspired by the Subjective Assessment Method-

ology for Video Quality (SAMVIQ) [12], adapted to static images. The data set

consisted of 36 images, selected from the pool of 137 images, and divided into

three subsets of 12 pseudo-randomly selected images in a randomized order (see
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section 3.3.4). The images thumbnails (422 × 238 px) were presented across a240

3 × 4 grid, with the corresponding subjective scores, initially set to zero, below

each image. The red color of the score indicated that the image had not been yet

evaluated. All thumbnails were tone-mapped [40] for two main reasons: the im-

ages were rather small, thus making it inappropriate for subjective evaluation;

and to discourage ratings based on the thumbnail appearance only.245

The evaluation session was not time constrained. Each subset was evaluated

independently, allowing participants to re-evaluate any image within, but not

across subsets as many times as they wanted. The rating was performed on a 0-

100 vertical continuous scale, divided into five equal intervals with corresponding

labels: very low, low, medium, high and very high, included for general guidance.250

Upon completion, all participants were interviewed, using a short structured

questionnaire as described in Section 3.3.5.

3.3.2. Participants

24 participants volunteered for the study. All of them reported normal or

corrected-to-normal visual acuity and were screened for color blindness using the255

Ishihara test prior to the session with chromatic images. One male participant

(age 49) was found to be color blind before proceeding to the second session

with chromatic images, and therefore his scores for the achromatic stimuli were

discarded and not used in the analysis. From the remaining 23 participants 17

were male and 6 female, with the age ranging from 23 to 40 (with an average260

age of 29). 12 participants were assigned to the chromatic condition for their

first session, while the other 11 first evaluated the achromatic images during

their first session.

3.3.3. Apparatus

All the experiments took place in a dark and quiet room. The stimuli were265

displayed at full HD (1920× 1080 pixels) on an HDR SIM2 HDR47ES4MB 47”

screen that allows for displaying >90% of Rec 709 color gamut [41]. It was uti-

lized in the DVI Plus (DVI+) mode, that allows for directly and independently
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controlling backlight LEDs and LCD pixel values, based on the dual-modulation

algorithm [42]. The ambient illumination in the room was measured between the270

screen and participants at 2.154 lux. The luminance of the screen when turned

off was 0.03 cd/m2. The distance from the screen was fixed to three heights of

the display, with the eyes in the middle of the display, both horizontally and

vertically.

Landscape Portrait

Figure 1: Preprocessing of the two images from the Fairchild’s data set: the landscape image

(left) was first downsized from 4288×2848 to 1920×1275, and then cropped to 1920×1080

pixels; the portrait image (right) was first downsized from 2704×4015 to 1920×2851 pixels

and the three HD images were cropped - top, middle and bottom.

3.3.4. Stimuli275

Initially, all the images from the HDR Photographic Survey [32] were con-

sidered. The landscape images were downsized and cropped to 1920 × 1080

size, while all the portrait images were first downsized to 1920 pixel width and

then three images were cropped out: the top-aligned, the middle-aligned and

the bottom-aligned one, see Figure 1. This resulted in a total of 131 landscape280

HD HDR images. After computing the DR, IK and SI [10], a set of 33 images

was selected for the study; selected to maintain objective measures evenly dis-

tributed across the set. The features used in this study show the same trend 2.

Since most of the images from the Fairchild’s data set are photographs of na-

ture, a single frame from the Market HDR video sequence proposed in MPEG by285
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Figure 2: Image features: pixel-based DR (top-left), IK (top-right), Area (middle-left), Con-

trast (middle-right) and Colorfulness (bottom), all sorted by pixel-based DR.
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507 AirBellowsGap BandonSunset(1) BigfootPass

Bistro BloomingGorse(1) Carousel DelicateFlowers

DevilsTower ElCapitan b Flamingo GoldenGate(1)

HancockKitchenInside HancockKitchenOutside HDRMark JesseBrownsCabin

LabBooth LabTypewriter LasVegasStore Market3

NorthBubble OCanadaNoLights b OCanadaNoLights m OtterPoint

PaulBunyan PeckLake SequoiaRemains t TupperLake(1)

URChapel(1) t URChapel(2) b URChapel(2) m WaffleHouse

WillyDesk WillySentinel b WillySentinel m Zentrum

Figure 3: Thumbnails of the images used in the study.
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Technicolor [43] and a frame from both the Carousel and Bistro video sequences

from the Stuttgart HDR Video Database [44] were added to the test data set,

see Figure 3. All 36 images were converted to the corresponding achromatic

images, using BT.709 primaries to compute relative luminance [45]. In order

to reproduce an image on the display, the luminance values should not exceed290

the range of the display. Values in excess of the maximum display brightness,

for both the chromatic and achromatic images, were first clipped to the diplay’s

peak luminance value of 4250 cd/m2, and the images were then processed using

the algorithm developed by Zerman et al. [42] and displayed as RGB images in

DVI+ mode.295

From the set of 36 test images, six images with the lowest and six with

the highest pixel-based DR were selected in two new subsets: imagesLow and

imagesHigh. When generating each session for the experiments, each subset of

12 images was composed of two randomly selected images from the imagesLow

subset, two from imagesHigh and the rest from the remaining 24 images. This300

preserved the consistency of measures among the subsets.

Your task is to evaluate

the overall impression of

the difference between

the darkest and the

brightest part(s) of

the presented images.

Figure 4: The abstraction of the attribute to be evaluated.

3.3.5. Procedure

Upon entering the experimentation room, the participants were first given

the instructions to read and asked if they had any questions about the nature of
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the experiment and their task. This was followed by a training session, where305

the task was first explained using feature abstractions, inspired by the study by

Aydin et al. [8], see Figure 4. They were told that in this example the magnitude

of the feature increases from minimum in the first gray block to maximum in

the last, black and white block. After this, the simulation of the experimental

framework was displayed with three images with high, low and average pixel-310

based DR range on each screen. The first three images were evaluated by the

experimenter explaining that they correspond to the top, bottom and the middle

of the rating scale respectively, and the rest of the images by the participant

in order so stabilize their opinion. None of the six training images were part

of the test data set. In both the written and verbal instructions, they were315

asked to evaluate the overall impression of the difference between the brightest

and the darkest part(s) of the images. If the participants demonstrated a full

understanding of the experimental task, they were asked to fill in the basic

information form and the corresponding session commenced.

The images in each subset were evaluated independently; once the partic-320

ipant selected the next subset the results of the previous one could not be

changed. However, they could evaluate all the images in the current subset in

any order and as many times as they needed. This allowed for multiple com-

parisons between the images and fine adjustments of the scores. In order to

evaluate an image, the participant had to click on the thumbnail. The selected325

HDR image was displayed full screen for evaluation. Once the participant was

ready to give a rating they clicked on the presented image and a rating scale

was produced. The scale appeared in the far right side of the screen. After

the score was given, the initial thumbnail preview of the current subset was re-

displayed with the updated score for the evaluated image, see Figure 5. After330

the completion of the test, the experimenter had a short structured discussion

about the test with all the participants. The questions used in the experiment

were:

1. On a scale 1-10, how tiring was the experiment in terms of visual comfort

17
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Figure 5: The illustration of the test procedure.
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and fatigue?335

• Have you been bothered by some particular images?

2. On a scale 1-10, how difficult did you find it to evaluate the images?

• What did you find difficult? Why? Which (type of) images?

3. With how many ratings are you confident (you think your score is correct)?

4. Would you change anything in the experiment?340

• If so, what? How? Why?

5. Is there anything else you would like to comment on?

6. Was it easier to evaluate grayscale or color images? 2

4. Results

Results were analyzed with a series of statistical tests to form a better un-345

derstanding of the captured data. This section presents results across the par-

ticipants testing for group, image and chromatic conditions and correlations

comparing MOSs with the objective measurements.

4.1. Overall Results Across Participants

The effect of the independent variables on the PDR scores provided by the350

participant was analyzed in a 2 (session) × 2 (color) × 36 (scenes) facto-

rial design. session is a between-participants variable reflecting the order of

chromatic-achromatic presentation whereby 12 participants were first presented

with the chromatic condition and the other 11 with the achromatic condition

on their first session. color is a within-participants variable that corresponds to355

the chromatic and achromatic results and scenes is also a within-participants

variable corresponding to the 36 images presented to the participants.

Results were analyzed using a mixed-model factorial ANOVA. The main

effect of session was not significant F(1, 21) = 2.06 , p = 0.17. This indicates

that the session ordering did not have a significant effect on the results.360

2This question was asked only upon completion of the second session.
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The main effect of color was also insignificant, F(1, 21) = 0.40 , p = 0.40.

Again this indicates that there was no significant difference between the scores

for the chromatic and achromatic set. Further analysis of the chromatic and

achromatic results is given below.

The main effect of scenes was significant F(35, 735) = 98.73 , p < 0.01 as365

expected. Analysis of the differences and correlations with objective measure-

ments will be given below.

In order to analyze the agreement across participant scores, Kendall’s coef-

ficient of concordance W was employed. W reports a value of 1 for absolute

agreement across all judges and 0 for complete disagreement. For the achro-370

matic condition, Kendall’s coefficient of concordance was significant (W = 0.81,

p < 0.01) and similarly for the chromatic condition (W = 0.76, p < 0.01). These

results indicate a very strong agreement across participants’ allocated scores.

4.2. Correlations of MOS

In order to analyze the correlations among the PDR values provided by the375

participants per scene, results were collapsed into a mean opinion score (MOS)

per scene. The MOSs are correlated with the four (five for chromatic) objective

measures presented in Section 3.2. The scatter plots for each of the five objective

measures are provided in Figure 6 and Figure 7.

Since the calculated measures were on different scales, they were scaled using380

the equation:

x′i =
xi − 1

n

∑n
i=1 xi

max(X)−min(X)
(7)

so that they are all represented with the same order of magnitude. The results

of the correlation between the MOS values and objective measures can be seen

in Table 2.

Initially, when comparing the Pearson’s (r) and Spearman’s (rs) correlation

coefficients, the only substantial difference was found for the Area measure

(r = 0.64 and rs = 0.87 for achromatic, and r = 0.64 and rs = 0.88 for

chromatic stimuli). By observing the correlation scatter plots (Figures 6 and

20



Dynamic range (DR)
0 1 2 3 4 5

M
O

S

0

20

40

60

80

100

Image key (IK)
0.2 0.4 0.6 0.8

M
O

S

0

20

40

60

80

100

Area #104
0 5 10 15

M
O

S

0

20

40

60

80

100

Contrast (C)
0 0.1 0.2 0.3 0.4

M
O

S

0

20

40

60

80

100

Figure 6: Achromatic MOS across the four objective measures (top-left to bottom-right):

pixel-based DR, IK, Area and Contrast.
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Figure 7: Chromatic MOS across the five objective measures (top-left to bottom-right): pixel-

based DR, IK, Area, Contrast, Colorfulness.
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7), an evident trend of the root function was noticeable for this measure. A

number of root functions were tested in order to linearize the data and the best

was found to be:

Area′ =
4
√
Area. (8)

With the fitted data (Area′) the Pearson’s correlation coefficient was almost385

identical to the Spearman’s (see Table 2), which eventually resulted in a more

robust predictor model, see Section 5.

The correlations between the chromatic MOS and achromatic MOS were r

= 0.99 and rs = 0.98, both significant at p < 0.01, indicating the chromatic and

achromatic scores were very highly correlated.390

Table 2: Pearson’s r and Spearman’s rs correlation coefficients between MOS values for both

achromatic and chromatic images and five objective measures: DR, IK, Area, C and Col. *

denotes significance at p < 0.01.

MOS Achromatic Chromatic

Measure DR IK Area’ C DR IK Area’ C Col

r 0.87* -0.60* 0.87* -0.19 0.84* -0.61* 0.87* -0.22 -0.47*

rs 0.87* -0.55* 0.89* -0.24 0.84* -0.57* 0.90* -0.27 -0.43*

In Figure 8, the extended box plot depicts the distribution of the perceived

DR scores, with the corresponding mean and median values, confidence intervals

and outliers. In addition, the pixel-based DR is also presented to visually display

the correlation between the subjective and objective scores.

4.3. Post-experimental Inquiry395

The comments obtained upon completion of each session of the study were

fairly consistent across all the questions. The average score of the answer to

the first question was 3.93, which means that there were instances which were

slightly annoying to observe. Around 60% of participants reported that the

brightest images with the visible sun or light sources were uncomfortable to400

look at.
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Achromatic images (23 participants)
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Chromatic images (23 participants)

Figure 8: Extended boxplot diagrams for achromatic (top) and chromatic (bottom) images.

Blue circles = MOS; Red horizontal lines = median values; Blue boxes = the interquartile

ranges; Whiskers = adjacent values; Red crosses = outliers; Red line: pixel-based DR values

(scaled as DR = DR
max(DR)

· 100). The scores are sorted by the mean value.
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The average score to the second question was 4.17. Several participants

reported that the images with “very small but very bright portions of the image”

were more difficult to evaluate and that the area of the brightest parts (i.e.

light sources, sun) could have an affect on the perception of DR. A number of405

participants mentioned that they think that the PDR varies depending on the

proximity of the brightest and the darkest parts in the image. For example, if

there is the sun in one corner of the image and a part of the scene in shadow

in the other corner (e.g. OtterPoint) versus if there is the sun behind the tree

(e.g. DevilsTower).410

It was reported that the user confidence for the given scores (question 3; i.e.

images that were relatively easy to evaluate and to which they think they gave

an objective score) was 70.74%. The images constituting the remaining 29.26%

correspond to the images with a medium DR, which was in accordance with the

increased confidence interval for these images, see Figure 8.415

Generally, all the participants liked the experimental design and there were

no major complaints regarding the framework (question 4). One participant

suggested that it might be better to have more than 12 images in a subset.

Initially, there were two subsets, each consisting of 20 images. However, the pilot

study revealed that it might be too difficult to perform comparisons among that420

many images. Furthermore, ten images are used in the SAMVIQ methodology,

upon which this framework had been developed.

In the general comments section (question 5), the participants reported that

the possibility of re-evaluating images was very helpful and liked the fact that

they could evaluate images in any order without time constraints. They also425

reported that the overall image brightness might be affecting the PDR.

The responses to the last question revealed that it was slightly easier to

evaluate achromatic images (60.87% of participants) as opposed to chromatic

(26.09%). 13.04% of participants reported that it was the same in terms of

difficulty. Most of the participants from the first group (i.e. the 60.87% who430

found achromatic easier) reported that this could be due to the extra chromatic

information which compounded the complexity of the choice.
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These comments were a valuable input to the study and were considered

when choosing the predictors in the regression model (see Section 5).

5. PDR Predictor Model435

This section looks into producing a model that can predict PDR based on

the results of the experiment. To achieve this, multivariate linear regression is

employed and analyzed.

5.1. Creating the Model

The results from the pilot study [10] and the previous section indicate that440

the pixel-based DR is a generally good predictor of the PDR, but there are

cases where it fails (see Section 6), and that it could be potentially improved if

other measures are considered. The results were also used as an indication of

the measures that could be used as variables for predicting the outcome in the

multiple regression analysis. In particular, a model is fit to the data and used445

to predict values of the outcome from several predictors.

Miles and Shelvin [46] suggest that when expecting a large effect size, a

sample size of around 40 is sufficient for two to four predictors. This is close to

our initial sample of 36 images. Prior to employing the regression, the data for

the Area measure was linearized using the Equation 8, and all the measures were450

feature-scaled using Equation 7. The hierarchical method was utilized in order

to see the behavior of the model with new predictors. Since pixel-based DR

was known to be a good predictor of the perceived DR, it was selected for the

first block in the hierarchy. The forced entry method was selected for DR. All

other predictors (IK, Area’, C and Col) were added to the second block. For this455

block, the forward method was used. This method calculates the contribution of

each predictor by looking at the semi-partial correlation with the outcome. The

model summary with the corresponding R, R2, adjusted R2 and the significance

of the F change values are presented in Table 3.

The R values show the multiple correlation coefficients between the predic-460

tors and the outcome. In the first case where there is only one predictor (DR),

26



Table 3: The summary of the model with R, R2, adjusted R2 and F change significance values

for both achromatic and chromatic images, presented across the hierarchies.

Achromatic Chromatic

Model R R2
adj.

R2

sig. F

change
R R2

adj.

R2

sig. F

change

DR .866 .750 .743 .000 .839 .704 .695 .000

DR, Area’ .945 .893 .887 .000 .932 .868 .860 .000

this is a simple correlation between MOS and this measure. In case of achro-

matic images, the R value increases from .866 with DR only, to .945 with DR

and Area’ measures. Similar R values can be observed for the chromatic images

(R = .839 for DR and R = .932 for DR and Area’ measures).465

In the stepwise regression, at each iteration, the BetaIn value is estimated for

each predictor that has not been included into the model, as if it were entered

into equation at this stage. The standardized b-value, BetaIn, indicates the

number of standard deviations that the outcome will change as a result of one

standard deviation change in the predictor. Based on this value, the t-statistics470

for these values are computed and based on its significance the next predictor

is entered, until there are no predictors with significant value less than 0.05, see

Table 4.

5.2. The Model Parameters

After finding the independent variables that significantly improve the pre-475

diction of the outcome variable, the model coefficients, for the model using DR

and Area’ were calculated, see Table 5.

Therefore, the regression model for the achromatic images is defined as:

MDR ≈ 0.573DR+ 0.448
4
√
Area (9)

while for the chromatic images it is:

MDR ≈ 0.506DR+ 0.471
4
√
Area (10)
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Table 4: Estimated BetaIn value, t-statistics and its significance for each predictor. For both

achromatic and chromatic models the Area’ predictor has the highest (significant) t value,

and was therefore included in the model. In the following iteration none of the remaining

variables (IK, C and Col for the chromatic model) had significant t value, and thus were not

included into the model.

Achromatic Chromatic

Model BetaIn t Sig. BetaIn t Sig.

IK -.137 -1.303 .202 -.181 -1.610 .117

Area’ .516 6.657 .000 .553 6.418 .000

C -.113 -1.325 .194 -.150 -1.640 .110

Col -.219 -2.362 .024

IK .069 .889 .381 .031 .361 .720

C -.049 -0.838 .408 -.082 -1.291 .206

Col -.116 -1.725 .094

Table 5: Model parameters for the achromatic and chromatic images.

A
ch

ro
m

a
ti

c Model B
Std.

Error
Beta t Sig. VIF

(Constant) 6.221e−6 .017 .000 1.000

DR .573 .086 .515 6.647 .000 1.859

Area’ .448 .067 .516 6.657 .000 1.859

C
h

ro
m

at
ic

Model B
Std.

Error
Beta t Sig. VIF

(Constant) -1.795e−6 .018 .000 1.000

DR .506 .094 .463 5.383 .000 1.859

Area’ .471 .073 .553 6.418 .000 1.859
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In Figure 9 the observed scores (MOS), pixel-based DR and MDR values are

displayed for each scene. A significantly higher correlation between the MOS480

and MDR than between the MOS and pixel-based DR is evident. The cases with

the highest discrepancy between the latter will be further discussed in Section

6.

In order to verify whether the model fits the data or if it is skewed by a few

extreme cases (outliers), the standardized residuals (SR), obtained by dividing485

the residual by an estimate of their standard deviation, were examined. In ad-

dition, Cook’s distance (CD) was calculated in order to check for the influential

cases [47]. This test analyzes whether the regression model is stable across the

sample, by calculating the overall influence of a particular case on the model.

Based on the findings by Cook and Weisberg [48], values greater than 1 may be490

cause for concern. Computing the residual statistics on a case-wise basis, the re-

sults revealed that there were no cases with the absolute value of the SR greater

than 3.29. For three achromatic images: HancockKitchenInside, OCanadaNo-

Lights bottom and SequoiaRemains top this value was −2.25, −2.441 and 2.238

respectively. In the case of chromatic images there was only HancockKitchenIn-495

side image for which the SR value was −2.748. Cook’s distance (CD) for the

three achromatic images was .170, .167 and .087 respectively, while for the Han-

cockKitchenInside chromatic image this value was .253 respectively. Therefore,

based on these results, the sample represents an accurate model.

Multicollinearity between predictors makes it difficult to assess the individ-500

ual contribution of a predictor. If the two predictors are highly correlated, there

is a high possibility that each accounts for similar variance in the outcome. Mul-

ticollinearity was tested by using the variance inflation factor (VIF), see Table

5. As argued by Myers, a value greater than 10 indicates a potential prob-

lem [49]. In addition, values less than 0.2 indicate a potential multicollinearity505

and should be further investigated [50]. As VIF values for both achromatic and

chromatic models were 1.859, there is no indication of multicollinearity between

the predictors in the models.
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Figure 9: Graphical representation of the MOS (blue), pixel-based DR (red) and MDR (green)

values for achromatic (top) and chromatic (bottom) images on feature-scaled values computed

using Equation 7. There is a high correlation between the MOS and MDR, and significant

deviations in some cases of traditional DR computation. The scores are sorted by the MOS

value.
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5.3. Calculating Model Generalizability

The R2 values show how much of the variability in the MOS is accounted510

for by the predictors. For the achromatic images using only DR as a predictor

R2 = .75, while for the same model with chromatic images R2 = .704, which

means that DR accounts for 75% and 70.4% of total variation of the MOS

respectively. Adding Area’ as the second predictor, this percentage rises to

89.3% for achromatic, and 86.8% for chromatic.515

Finally, for assessing how well the sample represents the entire population,

that is how accurately the model can predict the outcome in a different sample,

a cross-validation of the model was performed. If the prediction on another

sample is similarly correct, then the model can be generalized. Cross-validation

was calculated by adjusting the R2 values by estimating how the R2 values were520

derived from the population from which the sample was taken. The adjusted R2

values give an indication of how well the model generalizes. The closer the values

to the R2 ones are, the better the prediction from the sample is. For example,

the difference between the R2 and the adjusted R2 values for the achromatic

model with two predictors is 0.893 − 0.887 = 0.006, which means that if the525

model was derived from the population, instead of from the sample, it would

account for 0.6% less variance in the MOS. The values presented in Table 3

indicate a very good cross-validity of the model.

Calculating the change statistics, the significance of the change in R2 by

adding new predictors can be calculated. This is usually done by calculating530

the F-ratio by using the following equation:

F =
(N − k − 1)R2

k(1−R2)
(11)

where N is the number of cases, and k is the number of predictors in the model.

In Table 3, a significance of the F change is provided. In both the achromatic

and chromatic image models, there was a significant change in R2 value for

addition of the Area’ (p < .001).535
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6. Analysis of High Discrepancy Scenes

As was shown in Section 4, a straightforward metric such as pixel-based DR

can be a good predictor of dynamic range for many of the images. However,

there are some particular cases where it fails to truthfully predict the PDR. In

this section the scenes with highest discrepancies between pixel-based DR and540

MOS values are investigated, for both the achromatic and chromatic images.

Two subsets of eight scenes with the highest discrepancies were selected, see

Figure 10. The values obtained by taking the absolute value of the subtracted

feature-scaled scores are presented in Table 6.

DevilsTower HancockKitchenIn HancockKitchenOut OCanadaNoLights b

OCanadaNoLights m OtterPoint TupperLake(1) WillyDesk

507 Bistro DevilsTower HancockKitchenIn

HancockKitchenOut OCanadaNoLights b OCanadaNoLights m WillyDesk

Figure 10: Achromatic (top) and chromatic (bottom) high discrepancy images used in the

analysis.
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Table 6: Eight achromatic (top) and eight chromatic (bottom) scenes with the highest dif-

ference between the MOS and pixel-based DR, along with the differences between the MOS

scores and predicted perceived dynamic range by the proposed model (MDR). The scores are

calculated as the absolute difference between the feature-scaled values obtained using Equation

7), and multiplied by 100 for better readability.

Scene |MOS-DR| |MOS-MDR|

A
ch

ro
m

a
ti

c

DevilsTower 23.148 0.136

HancockKitchenInside 18.495 22.350

HancockKitchenOutside 22.515 9.251

OCanadaNoLights b 37.795 24.263

OCanadaNoLights m 28.548 2.277

OtterPoint 19.377 4.977

TupperLake(1) 18.745 10.167

WillyDesk 21.325 1.539

C
h

ro
m

at
ic

507 22.590 5.074

Bistro 18.622 10.155

DevilsTower 31.579 7.605

HancockKitchenInside 27.317 29.778

HancockKitchenOutside 28.914 14.788

OCanadaNoLights b 35.600 21.639

OCanadaNoLights m 27.772 4.854

WillyDesk 18.280 3.838
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These results demonstrate that in 14 out of the 16 cases the model predicts545

the PDR better than the pixel-based DR measure. Table 7 shows the correla-

tions between the MOS scores and both pixel-based DR and MDR, performed

on these subsets. For both achromatic and chromatic scenes, the correlation

between the MOS and DR is not significant (p > 0.05). Nevertheless, the

correlation between the MOS and predicted perceived dynamic range (MDR)550

is significant in all cases. These chosen cases demonstrate why the predictive

method can be considered superior to the DR method when predicting PDR.

Table 7: The Pearson’s r and Spearman’s rs correlation coefficients between MOS values and

both pixel-based DR and MDR for achromatic and chromatic scenes. *Correlation significant

at p < 0.01; **Correlation significant at p < 0.05.

MOS Achromatic Chromatic

Measure DR MDR DR MDR

r 0.584 0.912* 0.354 0.881*

rs 0.429 0.833** 0.357 0.762**

7. Conclusions and Future Work

While traditional dynamic range measures can be an acceptable predictor

of PDR, they can also be inaccurate in some cases. In order to develop a555

generic model that can truthfully predict PDR, sensory and cognitive processes

involved in extraction of this attribute from complex stimuli need to be taken

into account. Previous research has shown that the area of the brightest patches

and the image topology affect the perception of lightness and contrast [17, 19,

26], and therefore should be considered in constructing such a PDR model.560

Furthermore, image contrast and colorfulness are important factors in visual

perception and, based on previous findings [8, 11, 24, 25], could be involved in

the process related to the extraction of observed image attributes.

In this study a new experiment for subjective evaluation of perceived dy-

namic range in HDR images has been designed and conducted. The results565
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were used to generate a subjectively annotated data set of 36 HDR images,

with both MOS scores for achromatic and chromatic data. This data set can

be used in future HDR content studies on algorithm or metric validation and

aesthetic attribute analysis and modeling. This is, to the best of the authors’

knowledge, the first study on perceived DR using complex stimuli and HDR570

conditions.

The results of the Kendall’s coefficient of concordance show that there was a

high agreement between participants’ scores in both sessions. Using the mixed

model factorial ANOVA the effect of scenes was found as significant, while

neither the session order nor chromaticity of the data were found to produce575

significant differences in the results. In addition, the correlation between the

chromatic and achromatic MOSs was computed, and the results demonstrated

very high correlations. Furthermore, the correlations between the PDR and five

objective measures were computed. All correlations, except for the contrast (C),

were found as significant for both achromatic and chromatic images, with very580

small discrepancies between the two conditions.

Models that can predict PDR of both achromatic and chromatic images were

generated using multivariate linear regression. The regression model revealed

that only pixel-based DR and linearized Area measures had significant contri-

bution to the predictor model. Cross-validation of the model showed that the585

model could accurately predict the outcome in a different sample, i.e. the model

can be generalized.

Finally, eight scenes with the highest discrepancies between the MOS and

pixel-based DR values were selected from both achromatic and chromatic sets.

The statistics showed that the PDR prediction was significantly improved when590

the Area predictor contributed to the model.

Although the results show that, in the overall, the PDR prediction with

the proposed model is closer to the MOS it is likely that there will be images

where this is not the case due to the excessive complexity of the HVS and the

related processes in the perception of such visual attributes. Therefore, in the595

future, we would like to further investigate this topic by looking at these and
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other perceptual factors that could be involved in this process at a lower level.

Furthermore, the existing objective metrics have to be redesigned and, possibly,

novel ones developed targeted directly at HDR content. While this is beyond

the scope of this paper, it was evident that a gap exists in this area. Another600

direction at which we would like to expand this work is the analysis of aesthetic

attributes. Finally, we are interested in extending this work to video content

and investigating the temporal aspects. In the case of video, the perceptual phe-

nomena behind the perception of dynamic range can be more complex. While,

for a static image, the luminance range reproducible by an HDR display matches605

the steady-state dynamic range of the HVS, temporal variations of this range,

e.g., due to a change from a bright to a dark scene, can span a much broader

interval of luminance than the HVS could process at a given adaptation level,

causing maladaptation phenomena and visual discomfort [37]. It is known that

light/dark adaptation is not instantaneous, which results in higher masking for610

larger temporal variations of the luminance range. This entails a loss of contrast

sensitivity in the maladaptation phase, but could enhance the overall percep-

tion of bright-dark differences on short time segments. Therefore, initial studies

will be conducted with a similar methodology, using short clips, and the scores

will be correlated with dynamic range models similar to those discussed in this615

work.
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