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Optimization of Allelic Combinations
Controlling Parameters of a Peach
Quality Model
Bénédicte Quilot-Turion1*, Michel Génard2, Pierre Valsesia2 and
Mohamed-Mahmoud Memmah2

1 GAFL, INRA, Montfavet, France, 2 PSH, INRA, Avignon, France

Process-based models are effective tools to predict the phenotype of an individual in
different growing conditions. Combined with a quantitative trait locus (QTL) mapping
approach, it is then possible to predict the behavior of individuals with any combinations
of alleles. However the number of simulations to explore the realm of possibilities may
become infinite. Therefore, the use of an efficient optimization algorithm to intelligently
explore the search space becomes imperative. The optimization algorithm has to solve
a multi-objective problem, since the phenotypes of interest are usually a complex
of traits, to identify the individuals with best tradeoffs between those traits. In this
study we proposed to unroll such a combined approach in the case of peach fruit
quality described through three targeted traits, using a process-based model with
seven parameters controlled by QTL. We compared a current approach based on
the optimization of the values of the parameters with a more evolved way to proceed
which consists in the direct optimization of the alleles controlling the parameters. The
optimization algorithm has been adapted to deal with both continuous and combinatorial
problems. We compared the spaces of parameters obtained with different tactics and
the phenotype of the individuals resulting from random simulations and optimization in
these spaces. The use of a genetic model enabled the restriction of the dimension of the
parameter space toward more feasible combinations of parameter values, reproducing
relationships between parameters as observed in a real progeny. The results of this
study demonstrated the potential of such an approach to refine the solutions toward
more realistic ideotypes. Perspectives of improvement are discussed.

Keywords: model, optimization, genetic algorithm, QTL, ideotypes, Prunus persica, fruit

INTRODUCTION

Complex phenotypes of plants are not only regulated by both multiple interacting genes and
environmental conditions but also by a series of interactions, competitions and feedbacks
operating at different levels within the plant. In this context, modelers have the ambitions to
synthesize information coming from complex genomics data sets, physiology and biochemistry
with environment responses into mathematical models. Moreover, modeling can help to weave
their way through this complexity and predict phenotypic consequences of changes at different
levels (Hammer et al., 2006). The recently proposed concept of ‘crop systems biology’ that intends
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to bridge the gap between scales can help progressing in modeling
crop genotype-phenotype relationships (Yin and Struik, 2010).
The ultimate application goal of such integrated models is to
better support design and breeding for complex traits in broad or
specific environments. In other terms, the challenge is to optimize
the strong genotype (G)× environment (E) interactions to design
plant ideotypes that meet multiple conflicting breeding objectives
(Martre et al., 2015).

To meet this challenge, several difficulties must be overcome.
The first one consists in successfully integrating the genetic
control in process-based plant models. Various research groups
have worked on this integration for many years (see Yin and
Struik, 2016 for examples), developing in particular a quantitative
trait loci (QTL)-based modeling approach which aims to predict
performance of any genotype in any environment. The principle
is based on (i) the detection of QTL controlling values of the
parameters of the process-based model and (ii) the back injection
of the QTL-based parameter values into the process-based
model. This approach enabled to simulate a simple phenotype of
genotypes obtained via simulated sexual reproduction (Xu et al.,
2012).

Next step concerns the identification of individuals displaying
best performance in given conditions. Depending on the crop,
performance may be described as a set of targeted traits that
may prove to be antagonistic. In this case it is difficult to
forecast which traits or processes to favor in order to get the
best tradeoff. Using process-based models but lacking a dedicated
method, one may run 1000s of simulations, combining values of
parameters in all directions, without ever approaching optima.
Fortunately, optimization algorithms are efficient tools to solve
such problems. In a pioneering work, Hammer et al. (1996)
proposed a general methodology for optimizing simultaneously
the design and management of crop plants. In a case-study
on optimizing maturity and density for a sunflower crop,
they proved the potential power of the concept. Recent works
making the connection of advanced optimization algorithms with
process-based models confirmed that the approach is valuable
to identify trade-off in complex systems (Qi et al., 2010; Quilot-
Turion et al., 2012) and that specific adaptation of genotypes to
local environmental conditions confers an advantage over broad
adaptation (Hammer et al., 2014).

Nature-inspired optimization algorithms (e.g., genetic
algorithms and particle swarm optimization algorithms) are
increasingly used (deVoil et al., 2006; Letort et al., 2008; Qi
et al., 2010; Ould-Sidi and Lescourret, 2011; Grechi et al., 2012;
Kadrani et al., 2012; Quilot-Turion et al., 2012; Memmah et al.,
2015). These algorithms both do not require any derivative
information and enable exploring highly dimensional solution
spaces. Amongst nature-inspired optimization algorithms, the
Multi-Objective Evolutionary Algorithms (MOEAs) are the
most known and effective. These optimization techniques are
iterative, based on natural selection theory. They process a
population of solutions in parallel and generate many feasible
and non-dominated solutions, i.e., best tradeoffs between
conflicting objectives (elements of the Pareto optimal set). Many
MOEAs have been suggested over the last few decades. The
most studied and the best performing variations among the

MOEAs are the PESA (Corne et al., 2000), PESA-II (Corne
et al., 2001), SPEA (Zitzler and Thiele, 1999), SPEA-II (Zitzler
et al., 2001), NSGA (Srinivas and Deb, 1994), and NSGA-II
(Deb et al., 2002) algorithms. The latter (Non-dominated
Sorting Genetic Algorithm-II) is currently considered as the
reference algorithm in the MOEAs community since it has
proven to be one of the most efficient algorithms for solving
multi-objective problems (Coello et al., 2007). The coupling
of process-based models and MOEAs is progressively used to
design model-based ideotypes. Examples of such approaches
are: Letort et al. (2008) on beech trees, Qi et al. (2010) on
maize, Lu et al. (2012) on wheat, Quilot-Turion et al. (2012)
and Ould-Sidi et al. (2014) on peach, and Ding et al. (2016) on
rice.

However, a major locking point persists on the extension
of the second step to better consider the complex genetic
architecture controlling the model parameters into account
in the optimization scheme. Indeed, in a ‘Gene-to-Phenotype’
modeling approach, the simulations performed by Chenu et al.
(2009) highlighted the importance of genetic architecture in
the generation of real phenotypes. Taking into account the
genetic constraints is the key to hope to actually create the
solutions provided by the optimization procedure. Indeed the
major limitation of the model assisted ideotype design is the lack
of realism of these ideotypes that can never be obtained by a
breeder, simply because they infringe physiological and genetic
constraints.

One way is to include known genetic constraints in the
definition of the space of parameter variation that is explored
during the optimization step. This option is being explored
by Picheny et al. (2016) using an indication of the domain
of potential existence of the traits combinations. Another way
to proceed is the direct optimization of allelic combinations
included in a detailed genetic model taking into account linkage
between close genes along the genome, pleiotropy of genes
involved in the control of different parameters and epistasis
between genes that have a specific effect when interacting. To our
knowledge, this option has never been explored up to now. Only
a first proof-of-concept study has been proposed by Letort et al.
(2008) in this direction, with a reverse methodology of virtual
QTL detection.

The present paper constitutes a first step toward the
complete scheme of integration of process-based and genetics
models associated with an optimization algorithm to design
realistic ideotypes. A multi-objective optimization algorithm
was used to find best allelic combinations to enhance three
traits simulated by a peach fruit quality model. In a framework
of a biparental progeny (two possible alleles at each locus),
seven parameters of the process-based model were estimated
for each of the 159 individuals and QTL detected for all of
them. A genetic model including the allele effect of the wild
parent at each locus for each parameter, pleiotropic effects of
some loci and linkage between loci was developed. For sake
of simplicity, epistasis was not considered in this study. The
genetic model was combined with the ‘Virtual Fruit’ process-
based model and coupled with the NSGA-II algorithm to solve
the continuous (parameter real values) and the combinatorial
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(allelic binary values) optimization problems respectively. We
compared the spaces of parameters obtained with different tactics
and the phenotype of the individuals resulting from random
simulations and optimization in these spaces. The features of
the virtual phenotypes selected from the optimization steps were
compared between the different tactics and discussed in sake of
feasibility.

MATERIALS AND METHODS

The Process-Based Model
The process-based simulation model used is the ‘Virtual Fruit’
model which integrates many sub-models dealing with fruit
growth and quality elaboration (Génard et al., 2007). In this
work we will focus on the sub-model describing the carbon (C)
balance of a fruit-bearing stem. The description of the model is
available in Supplementary Material (Model description S1 and
Supplementary Table S1).

The leaf area is computed as the product of dry weight of
the structural part of leaves and specific leaf area relative to the
structural part of leaves (SLA, m2g−1). The latter is considered
to be independent of tree growth and environment but under
genetic control. The daily available pool of C assimilates consists
of leaf assimilation plus possible C mobilized from reserves. The
leaf photosynthesis rate may be affected by feedback inhibition
through the leaf storage reserves. Fruit carbon assimilation and
respiration are also considered. If required, reserves are mobilized
first from the leafy shoot, then from the 1-year-old stem.
Carbon is allocated according to organ demands and priority
rules.

The incoming carbon flow into the fruit is partitioned into
flesh, stone, and CO2 respiration (Quilot et al., 2005). The carbon
is partitioned in the flesh into sugars and other fruit compounds
globally considered (Quilot et al., 2004a).

The inputs of this model are global radiation, temperature, air
relative humidity and stem water potential fixed to zero (no water
limitation).

Dry Matter Growth
The potential fruit dry matter (DM) growth is modeled in
terms of growing degree-days (GDD) using the following logistic
equation:

DMfruit = DM0 −
A · DMB

0
1+ e−RGRini · (dj0 − P3)

+ (1)

A · DMB
0

1+ e−RGRini · (dj − P3)

where:
DMfruit : is fruit dry mass (g) at date dj,
A and B: are parameters involved in the calculation of the

logistic asymptote fixing final dry mass of fruit; their units are
respectively (g) and (dimensionless),

RGRini: is the initial relative fruit growth rate (GDD−1),
P3: is the date of the inflection point of the curve of fruit

growth (GDD),

dj: is the date (GDD),
DM0: is the initial dry mass of fruit (g),
dj0: is the initial date (GDD) corresponding to DM0.
The values of these parameters are used to calculate the fruit

carbon demand for each genotype.
The stone dry mass (DMstone) is computed as:

DMstone =Wstone · (1− e(−kstone·DMfruit)) (2)

where kstone is a parameter (dimensionless) and Wstone (g) is a
genotypic parameter which corresponds to potential maximal
stone mass (plateau of the curve).

The stone ratio is then computed using (1) and (2).

Total Sugar Accumulation
The variation in total amount of carbon (g) in the fruit
flesh as sugars (Csugar) is computed from the carbon used for
dry flesh growth rate and the carbon used for synthesis of
other carbohydrate compounds (e.g., starch, acids, structural
carbohydrates, and proteins).

dCsugar

dt
= FCsupp · (1−

α

α+ β
)− ksugar · Csugar (3)

where FCsupp is the flesh carbon supply (gC day−1) and ksugar
(day−1) is the relative rate of consumption of carbon as sugars in
the fruit flesh for synthesis of compounds other than sugars. The
parameters α (gC gDM−1) and β (gC gDM−1) are the respiration
coefficient of fruit growth and the carbon concentration in fruit
biomass, respectively.

The total sugar concentration, SU (g (100 gFM)−1), is
computed as:

SU = 100 · Csugar/(σTS · FMflesh) (4)

where σTS is an average carbon content of sugars (gC/g sugars) for
sucrose, glucose, fructose, and sorbitol. FMflesh is the flesh fresh
mass (g).

The changes in flesh fresh mass are predicted as a function
of turgor pressure by the Lockhart equation. The turgor results
from the balance of water flows. The flow of water to the
fruit is simulated considering full water availability for the
plant. This flow is driven by differences of hydrostatic and
osmotic pressures between stem and fruit and the fruit volume
changes are predicted as a function of turgor pressure by
the Lockhart equation. The flow of water leaving the fruit
(transpiration) is calculated from skin conductance to water
vapor.

The outputs used in this work are three fruit traits: dry
mass of fruit (g), the part of stone in the fruit (in dry mass)
and the total sugar concentration of the flesh. The model is
driven by its parameters, which are constant over time and
supposed independent of the environment. The simulations were
performed for the year 2009 from 87 days after bloom (DAB) to
150 DAB. The parameter values were obtained from the literature
or estimated for peach based on previous studies (Fishman
and Génard, 1998; Lescourret et al., 1998; Génard et al., 2003;
Lescourret and Génard, 2005).
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We selected seven parameters: four involved in the DM
growth, i.e., A, B, RGRini, P3, two involved in the computation
of the ratio between stone and fruit dry mass, i.e., kstone,Wstone
and one involved in the calculation of carbon assimilation
from sources, i.e., SLA (specific leaf area; m2 g−1). The choice
of the first four parameters has been done based on deep
sensitivity analysis of the used model. This choice was made
based on two criteria: the main effect of each parameter on
model outputs and the interaction terms with other parameters.
We used different sensitivity methods and according to their
results, we selected the parameters which show significant effects
on the outputs of the model. The three remaining parameters
were selected as being involved in some important biological
processes.

Simulating the Genotypic Variations of
Fruit Quality in the Progeny
The Progeny
The peach genotypes studied come from a population obtained
by two subsequent back crosses between Prunus davidiana P1908
(D) and Prunus persica cv. ‘Summergrand’ (S) and then cv.
‘Zéphyr’ (Z) as described by Quilot et al. (2004b). In the progeny,
the proportions between the wild D allele and S alleles is expected
to be 1/4 and 3/4 at one locus, one of the two Z alleles being always
present at each locus.

Phenotyping
A total of 159 individuals of the progeny were monitored
along fruit season in 2002 and/or 2005: fruit cheek diameter
was measured once a week from the end of May to fruit
maturity. At maturity, fruit were harvested. The flesh dry
mass (DMflesh) was determined after drying flesh for 72 h
at 70◦C to constant weight. To compute dry fruit, flesh
and stone masses for each monitored fruit, several allometric
relationships between fruit diameter and fruit dry mass, stone
dry mass and fruit dry mass, were used for each genotype
(see Quilot et al., 2005 for details). Fruit flesh samples
held at −80◦C were then used for sugar measurement by
HPLC following the procedure described in Gomez et al.
(2002).

These experiments have enabled the acquisition of a dataset
including kinetics of dry mass of fruit along fruit growth, of
stone ratio in the fruit and of total sugar concentration of the
flesh.

Parameter Estimations for the Progeny
The seven selected parameters of the model considered in this
study were estimated for each individual of the progeny. SLA
was estimated from the measurements of surface and mass of
20 leaves for each genotype. The six other parameters were
estimated by fitting independently the three equations described
in the ‘model section’ to the corresponding observed data
(several fruit per genotype), using the ‘lnme’ R package which
allows fitting non-linear mixed-effects models by maximum
likelihood. This way we obtained a matrix including the values
of the seven parameters for each of the 159 individuals of the
progeny.

Simulations and Optimization
Using the process-based model described above and this matrix,
we could simulate the kinetics of dry mass growth of fruit, stone
ratio and total sugar concentration.

The model was used to find the set of the seven parameters
allowing the optimization of the three traits of interest:
maximize fruit dry matter mass (DM), minimize the stone
ratio (SR), and maximize the sugar concentration (SU).
This multiobjective optimization problem was formulated as
follows:

{
minx(−DM(X), SR(X),−SU(X))T

subject to X ∈ D

where X = (A, B, RGRini, P3, kstone, Wstone, SLA)T is the vector
of the parameters and D is the domain of variation of these
parameters defined by lower and upper bounds. The negative
sign before DM and SU objectives were introduced to ensure
maximization of these objectives in a formulation based on
minimization.

The Genetic Model
QTL Analysis
The genetic map of the progeny monitoring the polymorphisms
between the D and S genomes was built by Desnoues
et al. (2016) and counts 340 independent loci. A subset of
151 individuals of the progeny which were both genotyped
and phenotyped was used to perform the QTL analysis
using R software (R Development Core Team, 2011, ‘Rqtl’
library).

The Genetic Model
For sake of proof of concept in this study, we kept all
the QTL displaying a LOD score >1 (but only 1 per
linkage group), so as to build a genetic model with a
consequent number of loci. Thus a total of 37 QTL were
kept (Supplementary Figure S1). All of the QTL detected for a
parameter accounted for between 10 and 50% of the observed
variation depending of the parameter (Supplementary Table S2).
For each parameter, the effect of the presence of the D or S
allele at each genetic locus linked to each QTL detected for
the parameter was computed using a linear regression using
‘lm’ function in R. The resulting genetic model includes 31
different loci, since five loci are involved in two or three
QTL of different parameters. This allows taking into account
pleiotropic effect of some loci with contrasting effects on the
different parameters. Those loci are positioned on the eight
linkage groups and they are more or less distant from each
other.

With any combination of alleles (0 or 1) at each of the 31
loci included in the genetic model, it is possible to calculate the
corresponding values of the seven parameters of the process-
based model. Thus, the genetic model was integrated in the
‘Virtual Fruit’ model. The values of the seven parameters
are calculated from the alleles present at the QTL using the
genetic model consisting of the following linear system of
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equations:

SLA = 0.02103− 0.00077× loc[5] − 0.00158× loc[10]
−0.00133× loc[15] − 0.00061× loc[21] − 0.00081× loc[26]
RGRini = 0.00172+ 0.00059× loc[1] + 0.00038× loc[14]
+0.00066× loc[17] + 0.00119× loc[22] − 0.00041× loc[25]+
0.00079× loc[31]
A = 8.29138+ 2.66318× loc[3] − 4.17002× loc[7]+
2.55744× loc[12] + 2.51455× loc[20] + 3.07437× loc[23]+
3.55207× loc[26]
B = 1.17567− 0.25238× loc[9] − 0.20475× loc[27]
P3 = 2695.74− 227.64× loc[14] − 168.95× loc[18] − 260.25×
loc[22] + 129× loc[25] − 278.73× loc[30]
kstone = 0.19725− 0.03115× loc[4] − 0.02533× loc[8]−
0.01754× loc[11] − 0.02218× loc[13] − 0.02466×
loc[16] − 0.00724× loc[28] − 0.01467× loc[31]
Wstone = 3.86701+ 1.33592× loc[2] + 0.92848× loc[6]+
1.83601× loc[14] − 0.22232× loc[19] − 2.02367× loc[24]+
1.33883× loc[29]

where the coefficients correspond to the additive effect of each
QTL, and loc[x], with × from 1 to 31, take the value 0 or
1 depending on the presence of D or S allele at the QTL,
respectively.

Adding Constraints due to Loci Linkage
The probability to dissociate alleles of neighboring genes by
obtaining genetic recombinants decreases gradually as the
physical distance between the genes declines. The detailed
analysis of the QTL results together with the genetic map dataset
revealed the implication in the genetic model of loci closely
linked. To take into account these supplementary constraints
in the optimization step, we considered that distant loci less
than 12.5 cM were inseparable. This led to the addition of 14
constraints and resulted in the definition of haplotypes including
series of loci.

The enriched model (‘Virtual Fruit’ with genetic information)
was used to find the best binary combinations of the 31 loci
optimizing the three traits of interest: maximize fruit DM mass,
minimize the stone ratio, and maximize the sugar concentration.
This multiobjective optimization problem was formulated as
follows:


minloc(−DM(loc), SR(loc),−SU(loc))T

subject to loc ∈ (0, 1)31

∀i ∈ {1, 2, ..., 14}, ε−
∣∣loc(insloc(1, i))− loc(insloc(2, i))

∣∣ > 0
(5)

where loc is the vector of 31 loci, ε is a very small real, i.e., 1e−9

number and insloc is the set of 14 inseparable loci pairs given in
the Table 1. The last formula represents the fact that for each
of the 14 loci pairs, the two loci must take the same value (0 or

1) since they are considered inseparable and inherited from the
same parent.

The Optimization Procedures
We used NSGA-II algorithm to deal with both optimization
problems formulated above. We used NSGA-II as it is
considered in the optimization community as the reference
thanks to its performances. Also, NSGA-II allowed us to tackle
both continuous and combinatorial problems using the same
algorithm while others MOEAs were developed especially for
only one type. The NSGA-II algorithm works by randomly
creating a parent population P0 and sorting it based on non-
domination. To sort a population of N individuals according
to the level of non-domination, each solution is compared with
every other solution in the population. All individuals in the
first non-dominated front are thus identified (F1). Then, the
solutions of the first front are temporarily discounted, and the
above procedure is performed again to find individuals for the
next front (F2). The procedure is repeated for subsequent fronts
(F3, F4, etc.) until all individuals are assigned to their ranks.
The fitness is set to a level number: the lower the level the
higher the fitness (F1 is the best). Next, the NSGA-II uses binary
tournament selection, recombination, and mutation operators
to create a child population Q0 of size N. At each subsequent
generation, t, the algorithm merges the parent Pt and the child
Qt populations into a combined population Rt of 2N individuals
and sorts Rt according to non-domination, as described above.
To create the next parent population, the NSGA-II uses the
crowded comparison operator to select only N solutions from
the Rt population. The new population Pt+1 is subsequently used
for selection, crossover and mutation to create a new population
Qt+1 of size N. The above procedure is continued until a
predefined number of generations are created (Ould-Sidi et al.,
2014).

The complexity of NSGA-II is O(MN2) where M is the
number of objectives involved in the optimization problem to
be solved and N is the size of the population. The interested
readers can refer to the above cited references which give
more details on NSGA-II. Parameters’ setting has been achieved
based on the suggestions of the original version of NSGA-II
for some parameters and on authors’ previous works for others.
The NSGA-II parameters used in this paper are presented in
Table 2.

Description of the Stepwise Approach
We explored different spaces of parameters by random
simulations and optimization following a stepwise approach. The
space ‘parameters_progeny-fits’ corresponding to the parameter
values observed in the progeny served as ‘observed’ reference in
the study.

In a first step, we defined a parameter space (‘parameters_obs-
bounds’) whose boundaries were fixed to the observed minimal
and maximal values observed in the progeny. This parameter
space was explored by random draw (500 sets of random values
were drawn for the seven parameters and used to simulate the
three targeted traits) and by an optimization procedure.
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TABLE 1 | Set of 14 inseparable loci pairs corresponding to loci distant of less than 12.5 cM.

Pair number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Involved locus numbers 4 6 7 10 13 14 16 17 18 21 23 24 25 28

5 7 8 11 14 15 17 18 19 22 24 25 26 29

TABLE 2 | Parameters used in the NSGA-II algorithm for continuous and
combinatorial variables.

Algorithm Parameters Values

Continuous variables Population size 100

Max generations 250

Crossover probability 0.9

Mutation probability 0.1

Distribution parameter (for crossover) 20

Distribution parameter (for mutation) 10

Combinatorial variables Population size 100

Max generations 250

Crossover probability 0.9

Mutation probability 0.01

In a second step, a restricted parameter space
(‘parameters_restricted’) was defined by fixing its boundaries to
the minimal and maximal values made possible by the genetic
model. Selecting all the alleles decreasing (increasing) the
values of one parameter, we extracted the minimal (maximal)
boundary of this parameter and defined a space representing
the larger subset of values that one may hope rebuild from allele
combinations. This space was also explored by random draw and
optimization.

In a third step, on the basis of the genetic model we defined
an allele space consisting in a matrix of 31 loci taking the values
of either 0 or 1. This ‘alleles’ space was explored by random draw
and optimization.

In the fourth and last step, linkage between loci was taken
into account considering that loci closer than 12.5 cM could not
be dissociated. This resulted in 14 constraints to include in the
optimization procedure (‘alleles_optim_with-linkage’).

The number of simulations and solutions obtained by the
optimization algorithm are presented in Table 3 and the
boundaries of the different spaces in Table 4. The phenotype
of the individuals resulting from random simulations and
optimization in these spaces were compared.

RESULTS

The quality fruit model was used in this study to simulate the
three targeted traits: fruit dry mass, stone ratio and total sugar
concentration.

Simulating the Variability of a Progeny
On the basis of phenotype measurements, seven parameters
of the process-based model were parameterized for the 159
individuals of the progeny. The parameter values and simulated
traits were compiled in the ‘parameters_progeny-fits’ dataset. The

distributions of the parameter values were sometimes uneven,
especially for kstone and A (Figure 1 _ green dataset). The set
of the seven parameters enabled to simulate the large variability
of phenotypes observed in the progeny for fruit dry mass, stone
ratio, and total sugar concentration.

Exploring the Parameter Space Whose
Boundaries Are Defined by Extreme
Observed Values in the Progeny
Within the ‘parameters_obs-bounds’ space, 500 sets of random
values were drawn for the seven parameters and used to simulate
the three targeted traits (Figure 1 _ gray dataset).

When looking to the stone ratio (Figure 2), part of the
individuals from the ‘parameters_progeny-fits’ dataset was not
reproduced by the ‘parameters_random_obs-bounds’ dataset.
Hence, the individuals with relative large stone were not obtained
by random drawing, suggesting that other parameters of the
process-based model involved in stone elaboration may be
genotype dependent.

The ‘parameters_obs-bounds’ parameter space was also
explored thanks to the optimization procedure in order
to find solutions which enhanced the three targeted traits
(‘parameters_optim_obs-bounds’ dataset): 1193 distinct
solutions were found. Four of the seven parameters had
values nearly fixed toward one boundary of the parameter space,
although the three other ones were distributed in a more or less
large range of the space (Figure 1 _ black dataset).

The optimization procedure allowed the detection of 1193
distinct individuals very similar in terms of phenotypes
(Figure 2) but all better than the individuals obtained by
random drawing of parameters. This emphasized the benefit
of the optimization step to design combinations of parameters
resulting in good phenotypes. It would require a very high
density of random points to get individuals in this area.
Indeed, best phenotypes stood in a zone hardly explored by
random exploration suggesting highly refined combinations of
parameters (Figure 3). The very large number of different
parameter combinations compared to the very low variability
of the resulting phenotypes pointed out the tight relationship
between the parameters A and B (Figure 4), and the
low influence of the parameter SLA on the targeted traits.
In contrast the parameters Wstone, kstone, RGRini, and P3
appeared as prevalent in the determination of the targeted
traits.

The best individuals of the random dataset and even more the
optimized solutions were better than the observed individuals
of the progeny. Indeed in this approach not one constraint was
taken into account, neither physiological nor genetic, probably
leading to unrealistic combinations of parameter values and
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TABLE 3 | Description of the eight datasets including parameter or allele values and the corresponding simulated phenotypes.

Model Dataset Exploration space Boundaries Number of data

Process-based model parameters_progeny-fits 447 fruit from 159 genotypes

parameters_random_obs-bounds Parameter space Minimal and maximal values
from the progeny

500 distinct individuals

parameters_random_restricted Parameter space Minimal and maximal values
possible with the genetic model

500 distinct individuals

parameters_optim_obs-bounds Parameter space Minimal and maximal values
from the progeny

1193 distinct individuals

parameters_optim_restricted Parameter space Minimal and maximal values
possible with the genetic model

1370 distinct individuals

Integrated process-based
and genetic models

alleles_random Allele space 0 and 1 for all alleles 500 distinct individuals

alleles_optim Allele space 0 and 1 for all alleles 170 distinct individuals

alleles_optim_with-linkage Allele space 0 and 1 for sets of linked alleles
(haplotypes)

14 distinct individuals

TABLE 4 | Values of the boundaries of the parameter spaces and the allele space for the seven parameters.

Dataset Boundary Wstone kstone RGRini P3 A B SLA

G Dimensionless GDD−1 GDD g Dimensionless mg−1

parameters_obs-bounds∗ Minimum 2.355 0.036 0.001 1203.528 0.771∗ 0.01 0.013

Maximum 12.885 0.378 0.008 2991.884 64.147 2.348 0.021

parameters_restricted Minimum 1.62102 0.05448 0.00131 1760.17 4.12136 0.71854 0.01593

Maximum 9.30625 0.19725 0.00533 2824.74 22.65299 1.17567 0.02103

alleles Minimum 1.62102 0.05448 0.00131 1760.17 4.12136 0.71854 0.01593

Maximum 9.30625 0.19725 0.00533 2824.74 22.65299 1.17567 0.02103

∗ In the parameters_optim_obs-bounds dataset, minimal value for parameter A was fixed to seven to avoid numerical problems.

outrageous phenotypes located in an unrealistic zone (Figure 5
_ black empty circles compared to green points).

Restraining the Parameter Space Thanks
to the Genetic Model
The parameter values of the ‘parameters_progeny-fits’ dataset
were used to detect QTL and define a genetic model including
the wild D allele effect on each parameter, linkage information,
and pleiotropic alleles. Because the QTL detected did not account
for 100% of the observed variations of the parameters, the
‘parameters_restricted’ subset was generally included in the
‘parameters_obs-bounds’ space and smaller than it and thus it
dramatically reduced the range of parameter combinations.

The random individuals from this parameter space were very
similar to the individuals observed in the progeny for the three
targeted traits (Figure 2 _ light blue versus green datasets).
The optimization procedure ended up again on a large number
of very similar individuals. Comparing the 1370 optimized
individuals obtained (Figure 2 _ dark blue dataset) to the
corresponding random landscape, similar conclusions to those
stated previously on the strength of the optimization procedure
can be drawn. Compared to the solutions obtained previously
(‘parameters_optim_restricted’ versus ‘parameters_optim_obs-
bounds’), the solutions were closer to the space explored by the
“parameters_progeny-fits” dataset (Figure 3). Thus, the benefit

procured by this step is the elimination of extreme individuals
that may never be obtained.

Considering Allelic Combinations Rather
Than Parameters
The genetic model was combined to the process-based model in
order to calculate the parameter values from allelic combinations.
The ‘allele space’ consisted in a matrix of 31 loci taking the values
of either 0 or 1. This way we switched from a continuous space
of parameter values to a sparse space built from binary values of
allele occurrence. In addition, the genetic constraints consisting
in the pleiotropic effect of loci involved in the control of various
parameters were respected.

Random drawing of allele combinations in this space allowed
us to build the ‘alleles_random’ dataset. The more loci involved in
the definition of a parameter, the more the resulting distribution
of the values of this parameter was quantitative (Figure 1 _ coral
dataset). Hence the parameter B, controlled by only two loci
in our genetic model may take four different values, whereas
the parameter kstone controlled by seven loci displayed a quasi-
continuous distribution. When regarding the distributions of the
three traits, the random individuals were very diverse, almost
as much as the ones from the ‘parameters_random_restricted’
dataset (Figure 2 _ coral versus light blue datasets). Hence, the
switch from a ‘parameter space’ to an ‘allele space’ did not reduce
drastically the range of phenotypes.
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FIGURE 1 | Schematic representation of the distribution of the individuals from the different datasets within the spaces of the seven parameters of
the process-based model. Colors represent the different datasets organized along the x-axes. Width of each dataset depends on the number of individuals in the
dataset. Colored dotted lines represent the boundaries (minimal and maximal parameter values) of the spaces respectively to each dataset.

The optimization procedure explored in record time this
allele space of more than 2 billion solutions (231). In
contrast with the two previous datasets obtained from the
optimization of the values of the parameters, the resulting distinct
individuals were few, only 170 (‘alleles_optim’). The latitude of
possible solutions was very narrow; however, those individuals
outranged again the corresponding random landscape for
the three targeted traits (Figure 2 _ fuchsia versus coral
datasets).

Incorporating Linkage between Alleles
A step further in the approach was to include in the combined
approach the information concerning the linkage between the
loci controlling the parameters. As a first simple way, we
considered that loci closer than 12.5 cM could not be dissociated,
leading to a reduced number of possible combinations in the
‘allele space.’

The resulting solutions were very few, only 14
(‘alleles_optim_with-linkage’), and, as expected, they were worse
than the ones from the ‘alleles_optim’ dataset, especially for the
stone ratio (Figure 2 _ purple versus fuchsia datasets). Compared
to observed individuals from the ‘parameters_progeny-fits’
dataset (green), these optimized individuals reached another
compromise of the three targeted traits: they displayed lower
values than best observed values for dry fruit mass and total
sugar concentration but part-cons lower values of stone ratio.

DISCUSSION

Process-Based Models Generate
Phenotypic Landscape
Using process-based models to generate the targeted traits is
an excellent way to take into account physiological constraints
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FIGURE 2 | Schematic representation of the distribution of the values of the three target traits taken by the individuals from the different datasets.
Colors represent the different datasets organized along the x-axes. Width of each dataset depends on the number of individuals in the dataset.

between interacting processes and the influence of environmental
factors on the expression of the phenotypes.

As an illustration, the peach fruit quality model transformed
clouds of parameter values (Figure 3) into a very shaped
landscape (Figure 5) which draws the space of possible
solutions with a physiological point of view, constraining traits
with compromises. Although, the individuals from the three

random datasets looked nested with the ‘parameters_progeny-
fits’ dataset in terms of values of parameters, they proved
to be quite different when looking to the simulated traits
resulting from the model. But they all aligned along borders
that look impenetrable and which, without any doubt,
mark physical, and/or physiological limits driving the fruit
system.
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FIGURE 3 | Correlation plots of the seven model parameters for the first two principal components of a PCA analysis performed on the whole of the
eight datasets.

In this study, we did not explore the impact of environmental
factors on the realization of the phenotypes. Next interesting step
would be to compare the parameters of best individuals obtained
in contrasting growing conditions and thus reproduce and solve
Genotype× Environment interactions.

Adding Genetic Constraints to Improve
Ideotype Realism
The genetic model built from QTL controlling the parameters of
the process-based model enclosed different kind of information:
allele effects, loci linkage, and pleiotropy. The combination of
this genetic model with the ‘Virtual Fruit’ model enables the
simulations of the phenotypes of virtual individuals with any
combination of alleles at the loci controlling the parameters of
the model, as done here in the ‘alleles_random’ dataset.

The genetic model allowed us to reproduce somehow the
genetic links between the parameters that were observed in
the progeny, which resulted in a reduction of the realm of
possibility. Indeed, the relationship between RGRini and P3
observed within the ‘alleles_random’ dataset (coral dataset)

reproduced quite well the tendency observed in the real progeny
(green dataset), illustrating the strength of the genetic model
(Figure 4). As for the relationship between A and B, the number
of QTL detected for B did not allow reproducing properly the
relationship. Hence, the switch from the ‘parameters_restricted’
space to the ‘allele space’ possibly added interesting effects on
the reproduction of biological constraints conducting to the
construction of more realistic phenotypes. Regarding data from
the ‘parameters_optim_obs-bounds’ dataset (black dataset), they
appeared out of the bounds of the observed relationships. In
particular, due to the remoteness from the observed space for
RGRini and P3, and due to the shift of the relationship between
A and B, the optimized individuals seemed unconceivable.

As previously mentioned, four parameters have been selected
based on their main effects and interaction terms using sensitivity
analysis. Three parameters have been selected as being involved in
some important processes from agronomic and genetic points of
view. Doing so, dependencies among parameters were expected.
We actually identified correlations between A and B on one hand
and RGRini and P3 on another hand. In addition, our results
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FIGURE 4 | Relationships between parameters for the eight datasets.
(A) Relationship between P3 and RGRini . (B) Relationship between A and B.

showed sometimes clear monotonic relationships between one
trait to optimize and a parameter. In the absence of antagonist
effect of the parameter on another objective, the optimization
step rationally resulted in parameter values heading to the
boundaries. However, we chose to keep working with the seven
parameters (instead of proceeding to parameter reduction) as we
were investigating the genetic architecture and effect of the QTL
controlling these parameters. The QTL controlling dependent
parameters were indeed not completely similar and reducing the
model at this stage, as done by Ravi Kumar et al. (2009) could lead
to disregard some potentially important QTL.

Taking into account the genetic model allowed restraining the
space of solutions from an unrealistic landscape (gray dataset) to
a more feasible one (coral dataset), and thus designing optimized
solutions that are more likely to be obtained (purple versus black
individuals).

Similar results were obtained by Chenu et al. (2009) when
simulating the QTL impact on maize yield using a ‘Gene-to-
Phenotype’ modeling approach. Indeed, considering pleiotropic
effects of some QTL in their analyses resulted in substantial

modifications of simulated yield and enhanced results compared
to observed data. Subsequently, the authors underlined the fact
genetic architecture is an important constraint that plays a key
role in the generation of real genotypes. They largely discussed
the importance of developing more complex genetic models to
enhance the predictive capacity of the general approach. To
improve the realism of these virtual genotypes, it is of course
crucial that the genetic model is both complete and accurate,
to better reproduce the continuing values of the parameters and
enable rebuilding extreme values of the parameters.

One of the main difficulty to progress in this sense persists to
be the estimation of the parameter values for 100s of individuals
despite the elaboration of phenotyping platforms (Parent and
Tardieu, 2014). Indeed, this is usually much more difficult than
phenotyping macro-traits like fruit mass for example. However,
this is needed to describe in a detailed manner the genetic
architecture of the loci controlling the parameters, including
complex effects such as pleiotropic and epistatic effects and even
QTL× environment interactions.

The Optimization Procedure to Identify
Best Combinations
The optimization procedures used in this study proved to be very
efficient to converge in the zones of the spaces explored that
resulted in phenotypes outranging the corresponding random
landscape, located at the margin of what could be impenetrable
frontiers.

Finally, the solutions in terms of parameter values that
appear most probable (‘alleles_optim_with-linkage’) fell into
a space which was explored both by random individuals
(‘alleles_random’) and real observed individuals. This is quite
promising for the chance to be able to obtain them by crossing.

Toward More Realistic Genetic Control of
Parameters
The consideration of a bi-allelic progeny as the basis of
the development of the genetic model is a simple case
that dramatically reduces the genetic diversity taken into
consideration. Especially in this case-study, only the effect of
the presence or not of the wild allele was estimated. The case
of an F2 population, for example, would at least add a little bit
more of complexity in the genetic model, with three types of
genotypes (two homozygotes and one heterozygote) and the issue
of dominance versus additivity effects to consider. The latter issue
was taken into account in Letort et al. (2008). An additional step
will be to enlarge the diversity considered to develop an efficient
breeding tool to select the best genitors for crossing.

Unraveling the Difficulty to Obtain
Desirable Combinations of Alleles
Finally, the study proposed here is imperfect since it did not
take into account the probabilistic character of the linkage
between loci. Thus, a further step to progress toward assisting
plant breeding would be the development of an optimization
procedure based on probabilistic rules that would allow building
allele combinations according to distances between loci and thus
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FIGURE 5 | Correlation plots of the three target traits for the first two principal components of a PCA analysis performed on the whole of the eight
datasets.

rank the solutions according to the chance to obtain them.
For this purpose and to develop a full breeding optimization
system, two main ideas will be investigated in our future
work. The first one will consist in integrating the stochastic
(probabilities) constraints on loci linkage into the genetic model
itself. Thus the values of the parameters predicted by the
genetic model would take into account the linkage constraints.
This is the option followed in quantitative genetics simulation
systems as developed by Podlich and Cooper (1998) that can
be applied in integrated approaches as done by Chapman
et al. (2003) in a theoretical study for sorghum. Messina
et al. (2011) applied this methodology within an operational
breeding program in order to unravel best trajectories in breeding
maize.

The second one will be to consider those constraints in the
optimization step (mathematical formulation of the problem)
and to deal with the new stochastic optimization problem under
constraints of equality of alleles between near loci. The resulting
problem will be harder to solve and will need specific tools
(algorithms adapted for stochastic optimization problems) and
techniques (constraints relaxation for example) to deal with.

CONCLUSION

Developing an efficient tool to predict GxE environment and
design ideotypes adapted to particular environmental conditions
that the breeder has good chance to succeed to create is one
important challenge for the coming years. The use of a process-
based model combined with a genetic model and associated with

an efficient optimization procedure is a promising path provided
that the two models are robust and accurate.
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