
HAL Id: hal-01441583
https://hal.science/hal-01441583

Submitted on 19 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Models to Compose and Execute Interactive
Multimedia Scores in Real-Time

Jaime Arias, Myriam Desainte-Catherine, Camilo Rueda

To cite this version:
Jaime Arias, Myriam Desainte-Catherine, Camilo Rueda. Formal Models to Compose and Execute
Interactive Multimedia Scores in Real-Time. Journée de l’École doctorale de mathématiques et infor-
matique, Oct 2014, Bordeaux, France. �hal-01441583�

https://hal.science/hal-01441583
https://hal.archives-ouvertes.fr

FORMAL MODELS TO COMPOSE AND EXECUTE INTERACTIVE MULTIMEDIA SCORES IN REAL-TIME

Jaime Arias, Myriam Desainte-Catherine and Camilo Rueda

LaBRI - Université de Bordeaux

INTRODUCTION

CONCLUSIONS

Nowadays, the design of interactive multimedia systems based on a written sce-
nario is a challenge that requires to handle dynamic and static events as well as
dynamic and static data. Interactive scores (IS) [8] propose a model to write and
execute interactive scenarios comprised of several multimedia processes. In IS,
multimedia processes are temporal objects, represented as boxes, whose tempo-
ral organization is defined by asserting temporal relations those objects should
obey. IS may also contain interactive points. These are used as triggers to modify
temporal relations during execution. An important requirement of this model is
that the temporal constraints defined by the composer must be preserved during
the execution of the scenario.

Currently, the software i-score implements the model described above in a visual
environment. Its execution model is based on Hierarchical Time Stream Petri Nets
(HTSPNs) [11]. Places and transitions of Petri nets model temporal aspects of the
scenario (i.e., they define a partial order between static and dynamic events) de-
fined during its composition. Such implementation provides an efficient and safe
execution, but implies some limitations: (1) it presents a quite static structure and
doest not support dynamic creation of processes; (2) it does not support condi-
tionals and loops; (3) it cannot handle complex data; and (4) the visual language
complicates the representation of some abstract programming concepts such as
control structures, recursion and variables, and also limits the ability of expres-
sion in the temporal organization of scores. In this poster, we present some ap-
proaches to overcome the above limitations in the execution model of i-score.

ACKNOWLEDGMENTS

The authors would like to thank Carlos Olarte and Sylvain Salvati who helped us
a lot in the development of these ideas. Also, we would like to thank Louis Mandel
for his valuable remarks about the implementation in ReactiveML. This work has
been supported by the OSSIA (ANR-12-CORD-0024) project and SCRIME.

BIBLIOGRAPHY

1. D. Fober, Y. Orlarey, and S. Letz, “An Environment for the Design of Live Music Scores,” in Proceedings of
the Linux Audio Conference, 2012, pp. 47–54.

2. F. Boussinot and R. de Simone, “The SL Synchronous Language,” IEEE Trans. Softw. Eng., vol. 22, no. 4, pp.
256–266, Apr. 1996.

3. J. Arias, M. Desainte-Catherine, and C. Rueda, “Modelling Data Processing for Interactive Scores Using
Coloured Petri Nets,” in Proceedings of the14th International Conference On Applications Of Concurrency
To System Design (ACSD’14), 2014, pp. 186–195.

4. J. Arias, M. Desainte-Catherine, C. Rueda, and S. Salvati, “Executing Hierarchical Interactive Scores in Re-
activeML,” in Actes des Journées d’Informatique Musicale, 2014, pp. 25–34.

5. J. Echeveste, A. Cont, J.-L. Giavitto, and F. Jacquemard, “Operational Semantics of a Domain Specific Lan-
guage for Real Time Musician–Computer Interaction,” Discrete Event Dynamic Systems, vol. 23, no. 4, pp.
343–383, 2013.

6. K. Jensen and L. M. Kristensen, Coloured Petri Nets. Modelling and Validation of Concurrent Systems.
Dordrecht; NewYork: Springer, 2009.

7. L. Mandel and M. Pouzet, “ReactiveML: a Reactive Extension to ML,” in Proceedings of the 7th ACM SIG-
PLAN International Conference on Principles and Practice of Declarative Programming, 2005, pp. 82–93.

8. M. Desainte-Catherine, A. Allombert, and G. Assayag, “Towards a Hybrid Temporal Paradigm for Musical
Composition and Performance: The Case of Musical Interpretation,” Comput. Music J., vol. 37, no. 2, pp. 61–72,
Jun. 2013.

9. M. Erwig and B. Meyer, “Heterogeneous Visual Languages-Integrating Visual and Textual Programming,” in
Proceedings of Symposium on Visual Languages, pp. 318–325.

10. N. Halbwachs, F. Lagnier, and P. Raymond, “Synchronous Observers and the Verification of Reactive Sys-
tems,” in Algebraic Methodology and Software Technology, Springer London, 1994, pp. 83–96.

11. P. Sénac, P. de Saqui-Sannes, and R. Willrich, Hierarchical Time Stream Petri Net: A Model for Hypermedia
Systems, ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg, vol. 935, pp. 451–470.

12. R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, vol. 126, no. 2, pp.
183–235, 1994.

13. T. De la Hogue, P. Baltazar, M. Desainte-Catherine, J. Chao, and C. Bossut, “OSSIA : Open Scenario System
for Interactive Applications,” in Actes des Journées d’Informatique Musicale, 2014, pp. 78–84.

We presented several approaches to overcome the current limitations of the
execution model of interactive scores. Moreover, we extended the model with
some features such as the notion of asynchronous functional composition and a
real-time visualization system. Finally, we introduced a complete framework that
allows to compose, verify and execute (on a physical platform) open scenarios.

We extend the current execution model of interactive scores with the capability
to handle complex data [3]. For that, we used Colored Petri Nets (CPNs) [6] to
model both complex data and the dynamic aspect of the functional composition
of processes.

Multimedia streams are often cut into temporal frames to be carried from one
process to another. Thus, we model frames as colored tokens that are handled by
processes. Our approach provides the notion of asynchronous functional com-
position. This corresponds to the case where the composed processes are not
executed at the same time. Then, it requires to buffer the output data stream of
processes in order to hold data until another process read them.

We used CPN tools for prototyping and simulating our model and we imple-
mented modules for reading, appending and reversing audio files.

COLORED PETRI NETS

The graphical environment of i-score provides composers with a visual environ-
ment to design, create and modify scenarios in an intuitive way. However, in visual
programming the representation of some abstract programming concepts such
as data structures, control structures, functions, recursion and variables is very
hard or sometimes impossible [9]. In addition, in the case of i-score, it also limits
the ability of expression in the temporal organization of scores [13].

Therefore, we introduced a new programming language, called ReactiveIS, that
allows to take advantage and extend the full capacity of temporal organization
during the composition and execution of interactive scores. For that, we present
a clear and extensive syntax, and also the operational semantics of the program-
ming language.

The operational semantics is defined using tree structures and simple operations
on them, which provides a practical and intuitive formalization of the behavioral
and the hierarchical aspects of interactive scores. Moreover, the definition of a
formal semantics will allow a static and dynamic analysis of the written scores.

DOMAIN-SPECIFIC PROGRAMMING LANGUAGE

The current implementation of i-score (version 0.2) includes conditional relation-
ships between boxes. However, this new feature lacks of a well-defined formal
semantics. Timed Automata (TA) [12] have been previously used in music appli-
cations showing to be a powerful model for describing both the logical ordering
of events and also the durations between them [5]. Thus, TA are well suitable for
expressing the timing constraints appearing in interactive scores. In this new ap-
proach, we define interactive scores equipped with conditionals as a network of
timed automata. Moreover, we have preliminary results on modeling loops. Unlike
CPN, TA have a variety of powerful multi-platform tools (e.g., UPPAAL) to design,
simulate and verify real-time systems modeled as TA.

Our aim is to develop a framework that start with the composition of the in-
teractive score in i-score, followed by the translation of the scenario into a TA in
order to verify some important properties such as playability and the maximum
number of boxes executed simultaneously. Finally, the verified model is translated
into an executable code that enables a physical implementation (i.e., a chip). We
pay special attention to the true parallelism offered by a Field Programmable Gate
Array (FPGA). Compared to the operating system based platforms, the FPGA plat-
form is able to achieve a much faster sampling frequency, and it is not affected by
the rather complex behavior of the operating system services.

TIMED AUTOMATA

A disadvantage of the model based on Petri Nets is that the model is very static
and modeling new features would require a complete redesign of the network or
sometimes they cannot be expressed. Additionally, a problem of i-score is that it
does not provide a good visual feedback in real-time of the execution of the sce-
nario. Therefore, we explored a new way to define and execute interactive scores
aiming at a more dynamic model [4].

For this purpose, we used ReactiveML [7], a functional programming language for
implementing interactive systems (e.g., video games and graphical user interfaces).
This language is based on the synchronous reactive model of Boussinot [2], then
it provides a global discrete model of time, clear semantics, and unlike Petri nets,
synchronous and deterministic parallel composition and features such as dynamic
creation of processes.

We took advantage of the synchronous model of ReactiveML and developed a vi-
sualization system in INScore [1] that behaves like a synchronous observer of our
interpreter [10]. Therefore, it listens the events emitted by the interpreter and
changes the temporal organization of the score in the graphical interface.

REACTIVE PROGRAMMING LANGUAGE

Declarations

colset TIME = time;
colset UNIT = unit;
colset INT = int;
colset BOOL = bool;
colset DATA = INT;
colset DURATION = TIME timed;
colset FILE = product INT*DATA;
var f_dur : TIME;
var e : BOOL;
var n_max : INT;
var n : INT;
var f : DATA;

TIME

frame
duration

start

INT

max
number
frames

f_dur

n_max

f_dur get
frame

DURATION

f_dur

f_dur@+f_dur

max
num

INT

n_max

n_maxn_maxfile

FILE (n,f)

continue

stop

next
frame

INT

n+1

n

receive
frame

FILE

[n <= n_max]

(n,f)
(n,f)

n_max

n_max

1

if (n = n_max)
then 1`()
else empty

(n,f)

end

EOF

wait
sync

next
frame

f_dur

R
E
A
D

limit

if (n = n_max)
then 1`()
else empty

if (e = true)
then 1`()
else empty 2`()

n

frames
read

n-1

INT

stop
enabled

BOOL

output

FILE

e

1`falsee

1`false
true

Conditions

start: True

stop: EndScenario

Conditions

start: WaitFromEnd (A, 5, 5) ^ WaitFromEnd (B, 3, 3)

stop: WaitFromEnd (C.D, 1, ∞) ^ WaitFromEnd (C.E, 1, ∞)

 C

Conditions

start: WaitFromStart (ε, 3, 3)
stop: WaitFromStart (B, 2, 2)

Messages

start: /light/2 on

stop: /light/2 off

 B

Conditions

start: WaitFromStart (ε, 1, 1)
stop: WaitFromStart (A, 2, 2)

Messages

start: /light/1 on

stop: /light/1 off

 A

Conditions

start: WaitFromStart (C, 1, 1)

stop: WaitFromStart (C.E, 2, 2)

Messages

start: /sound/2 on

stop: /sound/2 off

 E

Conditions

start: WaitFromStart (C, 2, 5) ^ WaitEvent (/mouse 1)

stop: WaitFromStart (C.D, 1, 1)

Messages

start: /sound/1 on

stop: /sound/1 off

 D

Composition

IS2UPP

Verification
Property
Checking

C/C++ Code VHDL/System
Verilog Code

UPP2C UPP2HDL

i-score
scenario

UPPAAL
model

Interpretation

Example of an interactive score with five process boxes and two hierarchical
boxes (Box. 5 and the whole scenario). Box.3 has an interaction point at the
end whereas Box.5 has two interaction points.

CPN module for reading an audio file. Reading audio files consists in acquiring audio frames from a file
with a determined frequency (i.e., duration between frames).

Graphical interface in INScore. Colored boxes represent the
boxes that are currently executing.

Tree representation of a scenario wrote in ReactiveIS. Nodes with messages represent process boxes while
the others represent hierarchical boxes. Each node has both a condition to start and a condition to stop.

Framework flow: composition, verification and re-
al-time execution.

