N

N

Weak Bisimulation Up to Elaboration

Damien Pous

» To cite this version:

Damien Pous. Weak Bisimulation Up to Elaboration. CONCUR, 2006, Bonn, Germany. pp.390 -
405, 10.1007/11817949 26 . hal-01441462

HAL Id: hal-01441462
https://hal.science/hal-01441462
Submitted on 20 Jan 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01441462
https://hal.archives-ouvertes.fr

Weak Bisimulation up to Elaboration*

Damien Pous

ENS Lyon

Abstract We study the use of the elaboration preorder (due to Arun-
Kumar and Natarajan) in the framework of up-to techniques for weak
bisimulation. We show that elaboration yields a correct technique that
encompasses the commonly used up to expansion technique. We also
define a theory of up-to techniques for elaboration that in particular
validates an elaboration up to elaboration technique, while it is known
that weak bisimulation up to weak bisimilarity is unsound. In this sense,
the resulting setting improves over previous works in terms of modularity.
Our results are obtained using nontrivial proofs that exploit termination
arguments. In particular, we need the termination of internal computa-
tions for the up-to techniques to be correct. We show how this condition
can be relaxed to some extent in order to handle processes exhibiting
infinite internal behaviour.

Introduction

Weak bisimilarity (=) is a commonly used behavioural equivalence for the ana-
lysis of concurrent systems. Weak here means distinguishing between visible
actions of a system, that express interactions with its environment, and 7 trans-
itions, that are treated as internal moves, and hence unobservable. To prove a
weak bisimilarity result, one usually exhibits a relation R between states of the
systems being compared, and shows that R is a weak bisimulation relation (we
shall often simply use ‘bisimilarity’ and ‘bisimulation’ in the sequel, and refer
explicitly to the strong version of these relations when necessary).

The crux of a bisimulation proof is often the study of silent transitions, as this
part of the proof expresses the fact that internal calculations do not introduce
unexpected behaviours. Typically, this is where it is shown that an optimisation
is valid, that an encoding is fully abstract, or that some invariant about a data
structure is preserved. Because one has to take into account all possible silent
transitions, this makes bisimulation relations grow a lot, although, intuitively,
many of the 7 transitions being examined are irrelevant from the point of view
of the overall behaviour of the system.

Several up-to techniques have been proposed to alleviate the task of bisim-
ulation proofs. The idea of up-to techniques is to manipulate functions from

* Author’s version of the paper published by Springer in Proc. CONCUR’06, available
at http://dx.doi.org/10.1007/11817949_26. This work has been supported by the
french initiatives “ACI GEOCAL” and “ANR ARASSIA, projet ModyFiable”

relations to relations, that compute a form of closure. These functions are used
in the bisimulation game as shown on the diagram on the left below:

a]j R ifA U:R—RU= X:R=o7m-R=~
* . ~ TR . =T
P FR) W:R—=x~R= ER—-ZR=~

When the symmetric candidate relation R contains a pair (P, @), and P does
a transition to P’ along an action «, @ has to perform the same action, modulo
some internal computation (7 transitions), to yield a process @’. The point is
that the resulting pair (P’, Q') has to belong to F(R) instead of R (bisimulation
is obtained by taking the identity function for F).

For example, if we take for F the function U above, we can use known
facts about &~ when examining the transitions of processes related by R. More
interestingly, function W allows one to apply known bisimilarity laws to trans-
form P’ and @’ in order to obtain a pair belonging to R. Unfortunately, the
technique given by W is unsound, as shown by the following standard counter-
example (written in CCS): consider a process P which is not bisimilar to 0, and
define R = {(r.P,0)}. Since 7.P ~ P, we can use W to repeatedly undo the
silent transition 7.P = P, so that in the game of weak bisimulation up to weak
bisimilarity, we never explore the actual behaviour of P.

P R 0
7y

P ~ 7P R O

P = 7P R 0

To address this difficulty, [10] introduces expansion (), a behavioural pre-
order included in weak bisimilarity, that leads to the up-to technique given by
function X defined above. Unlike W, X yields a correct proof technique, because
expansion expresses a kind of efficiency constraint: intuitively, if P 2~ @, then
Q is ‘faster’ than P, in the sense that P and @ exhibit the same behaviour, but
@ has to require less silent transitions to do so (we define 7~ formally below).

Since P 7 7.P does not hold, X rules out the above counterexample.

However, as experience shows [5,7], there are cases where reasoning up to ex-
pansion does not suffice, because the silent moves one would like to factor out in
a bisimulation proof are not contained in expansion. Typically, this occurs when
the ‘faster process’ has to spend some time at certain points to do some internal
bookkeeping, for instance to update a data structure. To go beyond expansion,
we have proposed in [7] a general and, at least to some extent, modular theory
of up-to techniques for weak bisimulation. [7] introduces a notion of controlled
relation, which guarantees that a given relation can be used in place of expan-
sion. Several sufficient conditions for a relation to be controlled are given, among
which, most notably, a criterion based on a termination property that prevents

the existence of what we call ‘infinite ladders’ like depicted on the diagram above
(which shows an infinite —~ ladder).

Nevertheless, the resulting setting lacks flexibility, essentially because the
property of being a controlled relation is not stable by union. This prevents the
incremental construction of bisimulation proofs, and thus represents a drawback
in terms of modularity: in this setting, extending a proof requires an involved
knowledge of the up-to techniques at work, in order to check that relations
remain controlled along the extension (we discuss this at the end of Sect. 3).

In this paper, we focus on the elaboration preorder, which has been introduced
in [2]. Elaboration, written 7z, is somehow the dual of expansion: informally,
P Z @ means that P performs at least as many silent transitions as @), while
exhibiting the same behaviour. Elaboration strictly contains expansion, and is
in some sense very close to ~. The focus in [2] is on congruence properties of Z
in the setting of CCS, and on the axiomatisation of this relation.

The first result we establish is that Z yields a correct up-to technique for
bisimulation when the system is terminating, that is, when it does not exhibit
infinite sequences of silent transitions. Rather remarkably, this result cannot be
derived by a simple diagram chasing (as is the case for the up to expansion
technique). The proof relies instead on the approach of [7], the termination
hypothesis being used to derive the absence of infinite ‘ladders’.

Our second contribution is to show that % supports the development of a
modular theory of up-to techniques, along the lines of the treatment of up-to
techniques for strong bisimulation presented in [9]. This represents a significant
step forward w.r.t. [7] in terms of modularity, notably because the up to transitiv-
ity proof technique, given by T : R — R*, is shown to be correct for elaboration
(under the previous termination hypothesis). We devote particular attention to
this important result: when applicable to reason about a coinductively defined
relation ~, T provides the powerful techniques given by R — (RU =~)*, or the
more restrictive (but more commonly used) R — ~ R ~. As we show in the pa-
per, an application of the resulting framework is the study of an up to polyadic
contezts proof technique (a polyadic context is a context with possibly many
holes in it). Establishing directly the correctness of this technique can be really
tedious, while correctness of T allows one to derive a modular proof that boils
down to correctness in the — simpler — monadic case.

Although it can be argued that the termination of silent transitions is realistic
in many systems (typically, when silent moves are used to update the internal
representation of a data structure), some programming techniques may be the
source of deliberate infinite internal behaviours, such as busy waiting loops. In
order to be able to handle some of these situations, we move to a setting where
silent transitions are decomposed into two kinds of internal moves, respectively
called the progressive and non-progressive silent transitions (as in [4]). Only
progressive silent transitions are supposed to be terminating. We show that
under this relaxed hypothesis, the previous results can be adapted, by validating
an ‘up to progressive elaboration’ technique for bisimulation, and showing the
correctness of progressive elaboration up to transitivity. While being similar to

the proofs of the results above, establishing the properties for non-terminating
systems involves rather intricate usages of well-founded induction. Beyond this
technical aspect, we believe that the general proof pattern adopted in this paper
exposes an interesting application of rewriting techniques to concurrency.

Outline of the paper. In Sect. 1, we introduce our notations and briefly recall the
results of 7] that will be used in the sequel. In Sect. 2 we define the elaboration
preorder, and establish correctness of the up to elaboration proof technique
when silent transitions of the system are terminating. We develop in Sect. 3 a
theory of up-to techniques for elaboration, and draw a comparison with existing
techniques. We extend these results to non-terminating systems in Sect. 4, and
give final remarks in Sect. 5.

1 Preliminaries

1.1 Labelled Transition Systems, Definitions

We consider labelled transition systems (LTS) (P, £, —), with domain P, labels
or actions in £ and transition relation —C P x £ x P. The elements of P
are called processes and are denoted by P, Q. Except in Sect. 4, £ will always
implicitly contain a distinguished silent action, noted 7. We let «, 8 (resp. a,b)
range over actions, in £ (resp. wvisible actions, in L\{7}). Some examples will be
given using the syntax of CCS, which we suppose known to the reader.

We let R, S, B range over binary relations (simply called relations in the
sequel) between processes. We denote respectively by R*,R=,R* the trans-
itive, reflexive, transitive and reflexive closures of a relation R. PR means
(P,Q) € R. The composition of two relations R and S, written RS, is defined
by RS £ {(P,Q)/PRT and TSQ for some process T}. We also define the in-
verse of a relation: R~ = {(P,Q)/QRP}. T is the identity relation, defined by
T £ {(P,P)/P € P}. We say that R contains S (alternatively, that S is con-
tained in R), written S C R, if PSQ implies PRQ. Given an action «, the set
of transitions along o induces a relation denoted by : %2 {(P,Q)/(P,a, Q) €
—1}. Tts inverse is written using a reversed arrow: <~ = (%)=, and similarly for
other forms of arrows, defined below. Finally, we call function a mapping from
relations to relations.

Definition 1.1 (Termination). A relation R terminates if there is no infinite
sequence (P;);en such that Vi, P;RP;11.

Such terminating relations are also called Neetherian in the literature. They
lead to the powerful technique of proof by well-founded induction on which we
heavily rely in the sequel. We will also make use of lexicographic inductions, that
is, inductions based on lexicographic orders. In our case, such orders will always
consist of the product of a terminating relation R with the standard ordering of
natural numbers: (P,n) > (Q,m) iff PRQ or (P = Q and n > m).

The definitions of behavioural equivalences and preorders will make use of
the following weak transition relations.

Definition 1.2 (Weak transitions).

= * *
& 5 ifa=r1 225875
5 difa=ac L\{T} N SR
. . 7 * + a .
We can remark the following properties: > = 5, &> =5 2 =2 (note in

particular the difference between = and =).

Definition 1.3 (Evolution of relations). Let o be an action and R,S two
relations. We say that R a-evolves to S if whenever PRQ, P = P’ implies

Q 4 Q' and P'SQ’ for some Q'. Given two relations R and S, we say that:

— R evolves to S if R a-evolves to S for all o € L,
— R evolves silently to S if R T-evolves to S,
— R evolves visibly to S if R a-evolves to S for all a € L\{T}.

Definition 1.4 (Bisimulation, Bisimilarity). Let R be a relation. R is a
bisimulation if it is symmetric and evolves to itself. Bisimilarity, denoted by ==,
1s defined as the union of all bisimulations.

1.2 Existing Up-to Techniques for Bisimulation

The following lemma will be useful in the sequel. It states correctness of reasoning
up to transitivity on visible actions.

Lemma 1.5. Let R be a relation. If R evolves silently to itself, and visibly
to R*, then R* evolves to itself.

Proof. By two successive inductions, we show that for any n, R™ evolves silently
to itself, and R™ evolves visibly to R* (R™ is the composition of R with itself,
n times). O

Some important up-to techniques for bisimulation are given by the two following
results which are simple reformulations of [7, Theorems 2.6 and 3.6].

Theorem 1.6. Let R be a symmetric relation. If R evolves silently to = R =~
and wisibly to R*, then R is contained in bisimilarity.

Theorem 1.7. Let B be a relation contained in bisimilarity, evolving to B*, and
such that Bt = terminates. If R is a symmetric relation that evolves silently to
B*R =~ and visibly to R*, then R is contained in bisimilarity.

In both cases, visible and silent transitions are treated differently, and up
to transitivity is allowed on visible actions only. The difference between these
two results is in the up-to technique that is allowed after a silent action: in
the first case, one uses the compression preorder, written = (= will be defined
in Sect. 2.1). This result is essentially already present in [10,11], without the
transitivity on visible actions. In the second case, the up-to technique is given

by a relation B, which has to satisfy a termination property. In [7], the actual
requirement for B is to be a controlled relation 7, Definition 3.1], and it is shown
that the conditions in the above theorem are sufficient for B to be controlled.

The compression, used in Theorem 1.6, is not as involved as the sufficient
condition expressed by Theorem 1.7. On the other hand, as will be discussed
in Sect. 3, the technique given by the former theorem is more amenable to the
incremental development of proofs than the setting of the latter.

2 Elaboration

2.1 Definition and Basic Properties
We now define elaboration, that has been introduced in the setting of CCS in [2].

Definition 2.1 (Elaboration relation, Elaboration). A relation R is an
elaboration relation (in short, an elaboration) if whenever PRQ:

(i) if P P, then Q % Q' with PRQ',
(ii) if Q > Q', then P = P’ with P'RQ’.

Elaboration, denoted by 7, is the union of all elaboration relations.

Note that [2] uses a reversed version of the symbol for elaboration — we adop-
ted this choice to follow the convention in other papers about up-to techniques
and behavioural preorders, notably [10].

The intuition behind elaboration is that if P Z @, then P is able to always
be at least as slow as @, as expressed by clause (i7). In relation to this, we may
remark that divergences blur the difference between elaboration and bisimilarity:
if P~ @, then P|!l7 Z Q. This observation suggests that elaboration is a coarse
relation, rather close to =~ (see also Prop. 2.3 below). Moreover, if we consider
the bisimilarity defined by using clause (i) on both sides, we obtain progressing
bisimulation [6]. On CCS agents, the latter equivalence (which is contained in
%) coincides with the greatest weak bisimulation that is a congruence.

To draw a comparison between % and other behavioural preorders, we recall
the definition of ezpansion [10,11] (called efficiency preorder in [1]). A slightly
coarser definition of expansion appears in [3,7], here we call it compression in
order to avoid confusions. The difference has consequences as far as up-to tech-
niques are concerned, as will be explained in Sect. 3.

Definition 2.2 (Expansion, Compression).

Expansion, denoted by =, is the largest relation such that whenever P = Q,

— if P35 P!, then Q 3 Q' with P' = Q,
—if Q5 Q' then P = P’ with P' 2 Q'.

Compression, denoted by 3=, is the largest relation such that whenever P = @,
— if PS5 P, then Q > Q' with P = Q’,

—if Q3 Q' then P2 P with P' = Q'

In contrast with I, P 77 @ intuitively captures the fact that @Q is able to be
always faster than P (and similarly for P = Q).

Proposition 2.3. In any LTS, we have ~ C 77 C L C = and 7, C = C =~.

=

Moreover, in CCS, alt _ T.a and a 7 alr.
~

As shown by the examples above, elaboration and compression are not compar-
able in general. These examples can be used to make the same observation with
almost weak bisimulation [10] or relazed expansion [7] instead of compression.

2.2 Bisimulation up to Elaboration

In order for elaboration to yield a correct up-to technique, we need a termination
hypothesis, for which we introduce the following terminology.

Definition 2.4 (a-terminating LTS). Let S = (P,L,—) be an LTS, and
a € L a label of S. We say that S is a-terminating if = terminates.

Lemma 2.5. Let a be an action and R a relation such that R=>C=>R. If =
terminates, then so does R =.

Proof. First we prove ¢ : Vn, R" = C = R". Then, suppose that R = does not
terminate: there exists an infinite sequence (Q;);>0 such that Q; R 2 Qg1
Using ¢, we can define by induction an infinite sequence (P;);>o such that P; =
P, ;1 and P;RQ;. This sequence is contradictory with the termination of 2. 0

Theorem 2.6 (Bisimilarity up to Elaboration). In a 7-terminating LTS,
any symmetric relation R that evolves silently to 2 R =~ and visibly to R* is
contained in bisimilarity.

Proof. We show easily 5 = C = Z, so that S=> terminates by Lemma 2.5. Then
we check that T and R satisfy the hypotheses of Theorem 1.7. O

We make some comments about this result and its proof.

We have = = l>+, so that the 7-termination is actually the termination of <
(a property called convergence in [4]). Without this hypothesis, up to elaboration
fails to be correct: in CCS, we have !7|a Z !7|7.a, and hence the (symmetric)
relation R = {(!7|7.a,0); (0,!7|7.a)} evolves to T R, but R Z~. We show in
Sect. 4 how to relax the 7-termination requirement in some cases.

Theorem 2.6 is an application of the results proved in [7] — summed up in
Theorem 1.7 — that exploit the termination of ladders (that is, sequences of pro-
cesses related by BT =). Remarkably, we are able to require here a termination
property that does no longer involve the relation of interest (). This is achieved
by using the right-to-left part of the elaboration game: as shown in the proof
of Lemma 2.5, and depicted on the left diagram below, we use this part of the

elaboration game in order to transform any infinite ladder into an infinite se-
quence of 7-transitions, that would contradict the 7-termination hypothesis. By
contrast, when considering ~ instead of Z, the same argument does not hold,
as shown on the right diagram, which recasts the counterexample seen in the
introduction: in a bisimulation game, the left hand side process is allowed not
to move and hence an infinite ladder may yield a finite sequence of T-moves.

= a =~ Ta

2! ﬂr i .

= = a = A Ta
. ﬂf |
v
% = a = a =~ Ta
T HT \LT
v
a a

We can moreover remark that Lemma 2.5 actually entails that I can be
used in the general setting proposed in [7] (it is a controlled relation — cf. [7]).
In particular, in systems where Z is a precongruence, up to elaboration can
be combined with the ‘up to context’ technique, yielding a powerful tool for
bisimulation proofs.

3 Up-to Techniques for Elaboration

We now present some techniques that can be used to establish elaboration res-
ults, which in turn can be used for bisimulation proofs, by Theorem 2.6. We
develop a theory of up-to techniques for elaboration along the lines of the study
of up-to techniques for strong bisimulation in [9].

Definition 3.1 (Progression). Let R, S be two relations. We say that R pro-
gresses to S, denoted by R ~» S, if whenever PRQ),

— f PSP, then Q2 Q' with P'SQ’,
—if Q3 Q', then P2 P' with P'SQ’.

This notion of progression is the counterpart of evolution (Definition 1.3) where
an ‘elaboration game’ replaces the ‘simulation game’. In particular, R is an
elaboration iff R progresses to itself.

First we show that like strong bisimilarity, elaboration validates the powerful
up to transitivity technique. As a corollary, elaboration up to elaboration is a
correct technique: this means in particular that the elaboration preorder does
not suffer from the irregularities of weak bisimilarity.

Theorem 3.2 (Elaboration up to transitivity). In a 7-terminating LTS, if
R is a relation that progresses to R*, then R is contained in elaboration.

Proof. We show that R* is an elaboration relation. For a € L, let ¢o (P, n)
denote the predicate: “for any Q' such that PR" = @', P = R*Q"”. We
prove R* = C = R* (1) by a lexicographic induction based on the termination
of =, with the predicate ¢,. The argument for the non-trivial case is sketched
on the left diagram below:

P R Q. R Q P R Q P R" R Q
@ yroan 2w r] @y o @
P R Q, R* P R R* R*
A TS R L N YO N CR M B
A o |-
P/ R* Q/

Then we prove R* = C = R* (2) by a second lexicographic induction with the
predicate ¢,. The two diagrams on the right above give the interesting cases.
Finally, by applying Lemma 2.5 to R* and (1), we obtain the termination of

R* ., that leads to &£R* C R* & using [7, Theorem 3.12]. O

We now introduce a class of functions corresponding to correct up-to tech-
niques, that enjoys nice compositional properties.

Definition 3.3 (Safe function). A function F is safe if for any relations R
and S,

L[RCS F(R) C F(S)
{R2% e {FR5E

This definition corresponds to [9, Definition 2.5]. The main difference is that we
consider progressions to the reflexive transitive closures of relations. As shown
in the following theorem, using Theorem 3.2, this makes it possible to use safe
functions ‘up to transitivity’.

Theorem 3.4 (Correctness of safe functions). Let F be a safe function. In
a T-terminating LTS, if a relation R progresses to F(R)*, then it is contained
in elaboration.

Proof. Let Ry =R, Rypy1 = RoUF(Ry), Row =U,, Rn. We show by induction
Vn, Ry ~» Ry, Hence Ry, ~ Ry, and finally R, € T using Theorem 3.2. O

The main point of safe functions is that they can be combined in a modular
way: given two safe functions F and G, their union FUG : R — F(R) UG(R)
and their functional composition F o G : R — F(G(R)) are safe. Hence, we
can define correct up-to techniques incrementally (see for example the proof of
Corollary 3.7). By contrast with [9], composing functions using the chaining
operator F—G : R — F(R)G(R) does not preserve safety, essentially for the
same reasons as in the weak bisimilarity case [11] (in particular, 7-termination
does not help). However, chaining can be ‘emulated’ since we are allowed to use
safe functions up to transitivity: instead of F G, we can work with (F U G)*,
which we believe provides enough flexibility for actual elaboration proofs.

Elaboration up to context. We further enrich the set of up-to techniques for
elaboration with an up to context technique. We call context a mapping from
processes to processes (like in 7], we adopt an approach that allows us to abstract
over the details of the underlying syntax). We denote by C[P] the application
of a context C' to a process P. In the following technical definition, both < and
= are synonyms for the identity relation Z (we suppose € ¢ L).

Definition 3.5 (Faithfulness). Let C be a family of contexts. We say that C is
faithful if for all C € C, whenever C[P] % R, there are C' € C, P' € P and

0 € LU {e} such that R = C'[P'] and P % P, and for any Q,Q’ such that
Q3 Q. ClI= CQ).

This is the direct adaptation to the weak case of the notion of faithfulness found
in [9]. In CCS non-degenerate contexts [11] are faithful; in the m-calculus, non-
input guarded contexts are faithful. The following proposition shows that these
families of contexts yield correct up-to techniques for elaboration. The proof is
very similar to the proof of the corresponding result in [11].

Proposition 3.6 (Safety of faithful families of contexts). Let C be a faith-
ful family of contexts; the following closure up to C function is safe:

C:Rw {(C[P],C[Q]) / C €C and PRQ} .

The following corollary sums up all previous results, yielding a powerful up-
to technique for elaboration. It appears that the theory of up-to techniques for
elaboration is as smooth as that for strong bisimilarity. Also notice that while
we considered only monadic contexts in Prop. 3.6, Theorem 3.4 allows us to use
C transitively, thus validating the up to polyadic contexts technique.

Corollary 3.7 (Elaboration up to context and transitivity). Let C be a

faithful family of contexts and R a relation. If 5 terminates and R progresses
to (C(R)U Z)*, then R is contained in elaboration.

Proof. The functions R + g and C are safe, hence so is R — C(R)U . O

Up to deterministic transitions. Let us finally mention a corollary of The-
orem 3.2, that extends a technique which has been introduced in [3, Chap. 4]
in the setting of barbed bisimilarity. Together with Theorem 2.6, this result
gives the possibility, when — is terminating and deterministic, to normalise pro-
cesses w.r.t. — along a bisimulation proof. Notice that [3] does not suppose

T-termination, but requires the stronger commutation hypothesis &2 C 5.

Corollary 3.8. If 5 terminates and for all a € £, &5 C :?><8£, then =

QY

Proof. We remark that -5 C = C 2= so that relation — satisfies the require-
ments of Theorem 3.2, and hence is an elaboration up to transitivity. O

10

On Modularity Properties of Up-to Techniques. Introducing the up to
elaboration proof technique enriches the existing landscape of up-to techniques
for bisimulation. We have seen that this behavioural preorder enjoys nice prop-
erties, allowing one to develop elaboration proofs in an incremental and modular
fashion. We now study other up-to techniques from this point of view.

On the use of compression. As shown in [3,7], compression also yields a correct
up-to technique. By Proposition 2.3 above, elaboration and compression are
not comparable. The following example in CCS shows that they are neither
compatible, in the sense that they cannot be used in the same bisimulation proof.
Let P = r.7.a and Q = 7.(7.7|a); we have P 5 7.a = Q > 7.7|a I P so that the
symmetric relation R = {(P,0); (Q,0); (0, P);(0,Q)} evolves to (= U Z)R, but
obviously R Z ~.

Another observation we can make about compression is that unlike elabora-
tion, compression result cannot be proved up to transitivity, even when the LTS
is 7-terminating. Indeed, the relation {(0, 7.a); (1.a,a); (0, 0); (a,a)} over finite
CCS processes is a ‘compression up to transitivity’, but it is clearly not contained
in bisimilarity, and thus neither in compression.

Incrementality in the setting of [7]. Stability by union for up-to techniques
provides a form of modularity, since it allows one to extend an existing proof
by simply adding new behavioural laws. This property is immediate for coin-
ductively defined relations such as Z, 77 or »=. On the contrary, the setting of [7]
lacks this facility: in order to extend a bisimulation proof up to Bj using a rela-
tion Bz (By and Bs are supposed to satisfy the hypotheses of Theorem 1.7), one
needs to prove the termination of (B; UBs)T =, which involves some knowledge
about B;. To illustrate the difficulties, consider the following example in CCS:
B

B B
By ={(a+a,r.1.0a),(r.1.0,7.0)} a a+a— T.T.a/mra

By ={(a,a+a)} T —

These relations satisfy the required property: for ¢ € {1, 2}, B; evolves to B} and
B & terminates. But (B; U By)T contains the pair (a,.a), and hence B; U By
does not qualify to apply Theorem 1.7. We return to this question in Sect. 5.

4 The Case of Non-Terminating Systems

We now show how the results from the two previous sections can be adapted to
cases where the 7-termination assumption is not satisfied. Before moving to the
formal definitions, we make a few remarks on the 7-termination requirement. It
should be noticed that for the up to elaboration technique to be applicable, the
whole LTS does not necessarily need to be 7-terminating. What we need is rather
a transition closed subset of (pairs of) processes for which this condition holds.
For instance, we might want to represent a system in CCS, a calculus where
divergences are of course expressible, but the processes used for the modelling
do not exhibit 7-divergences.

11

If, on the contrary, the system we would like to reason about does contain
divergences, a first approach could be to ‘tag’ non-terminating silent moves and
treat these as visible. However, such visible transitions must be mapped to some
visible actions on the other side of the elaboration game, in order to play these
in one-to-one correspondence. This of course might be too demanding in some
cases, typically when divergences arise because implementing a given behaviour
introduces some loops (that are not present in the original specification). In
order to address such situations, we adopt an approach from [4], which consists
in isolating a subset of the 7 transitions that are terminating, while still treating
all 7 moves as silent.

In the following we consider a LTS where silent moves are split into two
special actions: {r~,7=} C L. Transitions 3 and 55 will respectively be called
progressive and non-progressive silent transitions. Silent transitions, written —,
are defined by 25 U 5. Coherently, a,b will range over £\ {r>,7—}. We
recall our notations for weak transitions (Definition 1.2) below.

SR S A AN SR A A
In this setting the notions of bisimulation and bisimilarity ignore the distinction
between the two kinds of silent transitions (in particular, these relations do
not coincide with what we would obtain by treating 7— as visible actions). The
definition of elaboration is adapted so as to control progressive transitions only:

Definition 4.1 (7--Elaboration). 7--Elaboration, denoted by >, is the
largest relation such that whenever P 2> Q,

(i) if P P then Q 4 Q' with P 2> Q', for any a € L,
(ii) if Q = Q' then P = P with P' 5> Q', for any o # 7>,
(iii) if Q 5 Q' then P 3 P’ with P' 5> Q'.

Ts-expansion is the ‘progressive elaboration’ we alluded to in the introduction.
Clause (i) corresponds to bisimulation, while when playing from right to left,
we ensure that progressive silent transitions are ‘preserved’ (iii). We can easily
check that 2> is a preorder, and that we have ~ C > C ~.

This adaptation leads to the following theorem, where the termination hy-
pothesis concerns progressive silent transitions. As expected, up to transitivity
is allowed on visible transitions (7), and up to 7-elaboration is supported only
on progressive silent transitions (i7). Clause (#44) for non-progressive transitions
does not allow up-to reasoning on the left of R. We show in [8] how to relax this
condition by using an adapted version of expansion. We omit this development
here for the sake of simplicity.

Theorem 4.2 (Bisimulation up to 7--Elaboration). Let R be a symmetric
relation. If the following conditions hold whenever PRQ:

(i) if P% P’ then Q = Q' with P'R*Q’,
(i) if P53 P’ then Q = Q" with P' 5> R~ Q', and

12

(iii) if PS5 P’ then Q = Q' with P'R ~ Q/,
and the LTS is 7 -terminating then R is contained in bisimilarity.

Proof. We first prove the termination of > = using Lemma 2.5. Then we show
that the symmetric relation (RU=)* is a bisimulation. Let S = 2> R ~; we
remark that (R U=~)* = ~ §*, so that it is sufficient to show that S* evolves to
itself. This is established by proving successively the following inclusions:

1) EERcR~L (2 £ScSL (3 L£Scs &
We obtain (1) from (i74) and a simple induction over the sequence 57 We
prove (2) by well-founded induction using the termination of > and the
predicate ¢(P): “for any P’, @ such that P Z P’ and PSQ, we have P'S z Q7.
This leads to the diagrams below, where we reason by cases according to whether

there is a progressive silent transition between Py and P} or not. In the former
case, P Z>= P; so that ¢(P;) holds. Otherwise, we just use (1).

P > P R ~ Q P > P R ~ Q
S ?ﬂ
* R 7 7 = L 7 7
7 T>¢ (1) ?ﬂ . H
P S ~ P Z> P, R~ ~ Q'
) (p(P1)) ﬂ?
P > P} S Q'

Then we prove (3) by well-founded induction using the termination of §>3
and the predicate ¥(P): “for any P’,Q such that P % P’ and PSQ, we have
P'S* &£ Q7. As depicted in the following diagrams, if there is a progressive
silent transition transition between P, and P;, we use the induction hypothesis,
otherwise, (1) is sufficient to close the diagram.

P - P R ~Q P - P R ~Q
> @ ﬂ? T:¢ (Y ﬂ?
P S R~
a a\L ((P1)) \U]a Ma a a\L (i) \U]a a
S* R =~
’fr‘\ﬂ/ (2) \U/? ?ﬂ’ (2) \U/?
P g> S* ~ Q' P g> S* ~ Q'

Finally, we apply Lemma 1.5 with (2) and (3) so that S* evolves to itself. O

We now show that 7 -elaboration validates the powerful up to transitivity
proof technique on visible and progressive silent actions.

Theorem 4.3 (7--Elaboration up to Transitivity). Let R be a relation. If
the following conditions hold whenever PRQ:

(i) if P55 P then Q Xy Q' with P'R*Q’, for any o # 17—,

13

(ii) if P 5 P' then Q = Q' with P'RQ’,
(iii) if Q % Q' then P = P’ with P'R*Q’, for any o # 17—, and
(iv) if Q5 Q' then P = P' with PRQ',

and the LTS is T~ -terminating then R is contained in T -elaboration.

Proof. We show that R* is a 7~ -elaboration relation by successively establishing
the following properties.

*

RE"CER (1) R* 3 terminates (5)
RS CERY (2 E'RCRE (6)
RFEcZR (3 LR CcR* L (7)
R*ZCSRY (4) LR CRE)

A simple induction and (iv) yields (1), we prove (2) and (3) simultaneously by a
lexicographic induction, using the termination of = and ¢(P,n): “for any Q, Q'

such that PR"Q, if Q Y Q' then P Z R*Q’, and if Q 3 Q' then P = R*Q"”.
The non-trivial cases are respectively depicted on the two diagrams below.

P R* S R Q P R R

Q
o -

?H (e(Pn)) “? 1 T= > || (e(Pn)) R *
ﬂ/7> (411) J/T>

P RS R OQ P, R R*
A (¢(P1) >
P/ R* Q/

We prove (4) with another lexicographic induction, with the predicate (P, n):
“for any Q' if PR™ = Q' then P & R*Q'”. Depending on the existence of a
progressive silent transition before the visible action of the transition Q = @',
we close the diagrams as depicted below.

P R Q P R R @

"'>\H, (3) M]"’>

P R* all (¥(Pm)) R

|

H la \M/a (iii) la
all (¢(P1,-) R* R*

e - e 4l

P/ R* Q/ P/ R* Q/

)
-

We obtain (5) by applying Lemma 2.5 to R* and (3). A simple induction and (i7)
give (6). We show (7) with a lexicographic induction using the termination of

R* 3 and the predicate &(P,n): “if PR"Q and P = P’ then P'R* & Q.

14

P R R P Rn R
j/r: (6) ﬂ? A (@(Pn)) iT: © s
SR P R R
A @y o ﬂ?
P R I

?U (2(Py,-))
R* R* Q

The proof of (8) follows the lines of (7). O

P/

5 Concluding Remarks

We have proposed the new up to elaboration proof technique for bisimulation as
an alternative to existing approaches. The proofs in this paper demonstrate how
nontrivial termination arguments can be used to validate sophisticated proof
techniques for bisimulation.

We have argued that up to elaboration offers advantages with respect to ex-
isting up-to techniques, in terms of expressiveness, flexibility or modularity. Our
hope is that this technique can help addressing more complex weak bisimulation
proofs. That it could be the case is suggested by the mathematical elegance of
the framework we obtain, which opens the way for modular and incremental con-
struction of proofs. This should nevertheless be confirmed by actual experiments
in the study of systems involving manipulation of large bisimulation relations.

Several results in this paper suggest directions for future investigations. To
enhance further our framework, it would be interesting to study how to integrate
different kinds of methods in order to guarantee 7-termination, which is necessary
for the results in Sect. 2. A possible approach would be to provide a measure
together with the LTS, or to adopt syntactical criteria when the LTS is given by
a calculus (a process algebra). Another interesting idea in this direction is given
by type systems for termination. In Sect. 4, we proposed a way to handle the
case of non terminating systems. We can however think of other approaches; in
particular, we would like to study LTS where non-termination of - comes from
cycles only, or where any state has a finite number of derivatives.

Finally, we would like to have a better understanding of the main problem of
the setting of [7] (to which this paper proposes an alternative solution), namely
the fact that controlled relations are not stable by union. An interesting direction
would be to look for connections with the question of termination of the union
of terminating rewrite systems, that has been widely studied in rewriting theory.

Acknowledgements. We are very thankful to Daniel Hirschkoff for his numerous
comments and suggestions, and his great help during the redaction process. We
would also like to thank an anonymous referee for pointing out an incorrect
proof.

15

References

1.

2.

10.

11.

S. Arun-Kumar and M. Hennessy. An Efficiency Preorder for Processes. Acta
Informatica, 29(9):737-760, 1992.

S. Arun-Kumar and V. Natarajan. Conformance: A Precongruence Close to Bisim-
ilarity. In Proc. Struct. in Concurrency Theory, pages 55—68. Springer Verlag, 1995.
C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, 1998.

J. Groote and M. Reniers. Algebraic Process Verification. In Handbook of Process
Algebra, pages 1151-1208. Elsevier, 2001.

D. Hirschkoff, D. Pous, and D. Sangiorgi. A Correct Abstract Machine for Safe
Ambients. In Proc. COORD ’05, volume 3454 of LNCS. Springer Verlag, 2005.
U. Montanari and V. Sassone. Dynamic Congruence vs. Progressing Bisimulation
for CCS. Fundamenta Informaticae, 16(1):171-199, 1992.

D. Pous. Up-to Techniques for Weak Bisimulation. In Proc. 32th ICALP, volume
3580 of LNCS, pages 730-741. Springer Verlag, 2005.

D. Pous. Weak Bisimulation up to Elaboration. Long version of this paper, with
full proofs — available from http://perso.ens-lyon.fr/damien.pous/upto, 2006.
D. Sangiorgi. On the Bisimulation Proof Method. Journal of Mathematical Struc-
tures in Computer Science, 8:447-479, 1998.

D. Sangiorgi and R. Milner. The problem of “Weak Bisimulation up to”. In Proc.
8rd CONCUR, volume 630 of LNCS, pages 32—-46. Springer Verlag, 1992.

D. Sangiorgi and D. Walker. The m-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

16

