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On Bisimulation Proofs for the Analysis
of Distributed Abstract Machines ?

Damien Pous

ENS Lyon, France

Abstract. We illustrate the use of recent, non-trivial proof techniques
for weak bisimulation by analysing a generic framework for the definition
of distributed abstract machines based on a message-passing implemen-
tation. The definition of the framework comes from previous works on
a specific abstract machine; however, its new presentation, as a para-
metrised process algebra, makes it suitable for a wider range of calculi.
A first version of the framework can be analysed using the standard
bisimulation up to expansion proof technique. We show that in a second,
optimised version, rather complex behaviours appear, for which more so-
phisticated techniques, relying on termination arguments, are necessary
to establish behavioural equivalence.

Introduction

Recently, many calculi encompassing distribution and mobility have been stud-
ied as a basis for programming languages. Examples include Join [4], Nomadic
Pict [11], Kells [1], Ambients [2], Klaim [7], Seals [3]. The expressive power
supplied by the primitives underlying such models raises the question of imple-
mentability in a distributed framework. In [10], a distributed abstract machine
is defined, to implement the Safe Ambient Calculus [6]: the PAN. The main
ingredients in the definition of this machine are locations – where local pro-
cesses are executed – and forwarders, that transmit messages between locations.
In [5], we defined an optimised version of this machine where useless forwarders
can be garbage collected, and less messages are transmitted along the network.
We proved that the resulting abstract machine is weak barbed bisimilar to the
original one; however due to the lack of adequate up-to techniques or composi-
tionality results, this proof is quite tedious, and cannot easily be used as a basis
for further studies.

Motivated by these difficulties, we developed new up-to techniques for weak
bisimulation [8]. These techniques improve on previously known techniques; how-
ever, they are developed in a completely abstract setting and their applicability
has not yet been evaluated beyond rather simple illustrative examples.

Before focusing on behavioural equivalences and proof techniques, we present
the first main contribution of this work, the definition of a framework to rea-
son about distributed implementations of process algebras with mobility. In this

? Author’s version of the paper published by Springer in Proc. TGC’06, available at
http://dx.doi.org/10.1007/978-3-540-75336-0 10.



framework, a network is represented by a set of locations, or hosts, where arbi-
trary local processes are executed. The behaviour of local processes is specified
by a given LTS, whose labels correspond to the following possible actions:

– sending arbitrary messages to other locations,
– spawning local processes, inside new locations,
– migrating to another location.

While this framework is the basis of the PAN abstract machine [10], we dropped
most of the hypotheses that were related to the implementation of an Ambient-
based calculus. Therefore, it should be suitable to analyse a rather wide range
of calculi (this is discussed in Remark 2.1).

We then move to the analysis of this framework, which serves as support
for our second main contribution: illustrating a non-trivial use of recent proof
techniques to reason about a rather complex system.

A forwarder from location h to location k acts like a substitution that re-
places any occurrence of h by k in the whole network: a message sent to h will
actually reach k. Accordingly, we prove that a net with a forwarder expands the
corresponding substituted net (expansion is the standard behavioural preorder
that leads to the correct weak bisimulation up to expansion technique [9]). This
result allows one to abstract over the communication framework when validating
possible optimisations of local processes.

The main drawback of this framework is the creation of forwarder chains,
that slow down the communications between local processes. To address this
inefficiency, we introduce an optimisation, inspired from [5], that consists in
defining a forwarder relocation mechanism, that contracts forwarder chains. Like
in [5], this mechanism breaks the initial proof strategy, as the expansion result
does no longer hold. We show in details how the techniques we developed in [8]
make it possible to give nevertheless a modular proof of correctness, where the
bisimulation candidates that we manipulate remain tractable and express only
local properties of processes.

Being able to work with small bisimulation candidates is quite important:
they are much easier to check, and when a small part of the system is refined,
there is hope that only some of the proofs will need to be updated. Even more
important is the fact that the relations focus on local properties, since this allows
one to write explicitly the slight differences between related processes and to
reason syntactically about these.

We actually allude in [8] to an example derived from [5]. It turned out that
the development made in a corresponding technical report missed a crucial step
in the proof, and, more importantly, contained a mistake. Moreover, the proof
presented here for the optimised system is less specific and aims at giving a
better illustration of the benefits given by the general techniques of [8], and of
their flexibility.

Outline of the paper. In Sect. 1, we introduce our notations and the notions used
in the sequel. We define the initial framework in Sect. 2, and we analyse it in
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Sect. 3. Section 4 is devoted to the definition of the optimisation, and to the
corresponding correctness proof. We conclude with some remarks in Sect. 5.

1 LTS, Bisimilarity

We consider labelled transition systems (LTS) 〈P,L,→〉, with domain P, labels
or actions in L and transition relation → ⊆ P × L × P. The elements of P are
called processes and are denoted by P,Q in this section. L will always implicitly
contain a distinguished silent action, noted τ . We let α, β (resp. a, b) range over
actions, in L (resp. visible actions, in L\{τ}).

We let R,S,B, E range over binary relations (simply called relations in the
sequel) between processes. We denote respectively by R+,R=,R? the transi-
tive, reflexive, transitive and reflexive closures of a relation R. PRQ means
〈P,Q〉∈R. The composition of two relations R and S, written RS, is defined by
RS , {〈P,Q〉 /PRT and TSQ for some process T}. We also define the inverse
of a relation: R−1 , {〈P,Q〉 /QRP}. I is the identity relation, defined by I ,
{〈P, P 〉 /P ∈ P}. We say that R contains S (alternatively, that S is contained
in R), written S ⊆ R, if PSQ implies PRQ. Given an action α, the set of tran-

sitions along α induces a relation denoted by
α→:

α→, {〈P,Q〉 / 〈P, α,Q〉 ∈ →}.
Its inverse is written using a reversed arrow:

a← = (
a→)−1, and similarly for other

forms of arrows, defined below.

Definition 1.1 (Termination). A relation R terminates if there is no infinite
sequence (Pi)i∈N such that ∀i, PiRPi+1.

The definitions of behavioural equivalences and preorders will make use of
the following weak transition relations.

Definition 1.2 (Weak transitions).

α̂→ ,

{
τ→

=
if α = τ

a→ if α = a ∈ L\{τ}

α⇒ , τ→
? α→ τ→

?

α̂⇒ , τ→
? α̂→ τ→

?

We can remark the following properties:
τ̂⇒=

τ→
?
,
τ⇒=

τ→
+

,
â⇒=

a⇒ (note in

particular the difference between
τ̂⇒ and

τ⇒).

Definition 1.3 (Evolution of relations). Let α be an action and R,S two

relations. We say that R α-evolves to S if PRQ, P
α→ P ′ implies Q

α̂⇒ Q′ and
P ′SQ′ for some Q′. We say that R evolves silently to S when R τ -evolves to S,
and that R evolves visibly to S when R a-evolves to S for any a ∈ L\{τ}.

Definition 1.4 (Simulation, Bisimulation, Bisimilarity). Let R be a re-
lation. R is a simulation if it evolves to itself. A bisimulation is a symmetric
simulation. Bisimilarity, denoted by ≈, is the union of all bisimulations.
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2 A Framework for Distributed Computation

We let h, k range over a given set of locations. We denote by [k/h] the function
that replaces location h by location k. We let σ range over such substitutions,
that are naturally extended to the various syntactical categories defined in the se-
quel. We furthermore assume two sets of (local) processes and messages, denoted
respectively by P,Q and M,N . Processes may contain messages, and vice-versa.
In order to represent this, we require two operations on these sets:

– the addition of a message M to a process P , denoted by “P | {M}”,
– the embedding of a process P into a message, denoted by “reg P”.

These operations are supposed to satisfy the following equations:

(P | {M}) | {N} = (P | {N}) | {M} (1)

P | {reg (Q | {M})} = (P | {reg Q}) | {M} (2)

(P | {M})σ = Pσ | {Mσ} (3)

Nets combine localised processes and messages with a destination:

U ::= 0 (empty net) | h[P ] (process located at h)

| U ‖ U (parallel composition) | h{M} (pending message)

| (νh)U (location restriction) | h . k (forwarder located at h)

Definition 2.1 (Structural congruence).
Structural congruence is the smallest congruence ≡ such that:

1. parallel composition (‖) forms an abelian monoid, with neutral element 0;
2. (νh)U ≡ (νk)(U [k/h]) if k not free in U ;
3. (νh)U ‖ V ≡ (νh)(U ‖ V ) if h not free in V ;
4. (νh)(νk)U ≡ (νk)(νh)U ; and (νh)0 ≡ 0.

ΠiUi will denote the parallel composition of the nets Ui. The notation for
tuples is x̃ and (x, x̃) will denote the addition of an element x to x̃. Our notations

are naturally extended using tuples; for example, h{M̃} and h̃.k will respectively
denote Πi h{Mi} and Πi hi . k.

Definition 2.2 (Dependency relation). Let U be a net. We call dependency
relation of U the relation ≺U ,

{
〈h0, hn〉

/
U ≡ V ‖ Πi<n hi . hi+1

}
.

An agent is either a localised process h[P ], or a forwarder h . k. We let a, b
range over an arbitrary set of visible actions, and we define an LTS over nets:

[Loc] P ↪
h,a,U−−−→ P ′

h[P ]
a→ h[P ′] ‖ U

P ↪
h,a,mig k−−−−−−→ P ′

h[P ]
a→ h . k ‖ k{reg P ′}

[Mig]

[Fwd] h{M} ‖ h . k τ→ h . k ‖ k{M} h{M} ‖ h[P ]
τ→ h[P | {M}] [Rcv]

[New]
U

α→ U ′ h not free in U,U ′

(νh)U
α→ (νh)U ′

U
α→ U ′

U ‖ V α→ U ′ ‖ V
[Par]

[Cong] U ≡ U ′ α→ V ′ ≡ V
U

α→ V
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Fig. 1. Nets, Migration, Routing of Messages

This definition depends on a localised LTS, describing the behaviour of local

processes: P ↪
h,a,K−−−−→ P ′ stands for “process P , when located at h, evolves to

P ′ by performing a visible action a and emitting a request K”. Such requests
correspond to the primitives granted to local processes. They can be either:

– a net U (rule [Loc]), containing messages to send or new localities to spawn;
– or a migration request mig k (rule [Mig]): the local process wants to suspend

its execution and to send its state to k. In that case, the local process gets
replaced by a forwarder that will transmit further messages to k.

The two silent transition rules are concerned with the routing of messages:
rule [Fwd] defines the behaviour of forwarders: they transmit the messages;
and rule [Rcv] performs the actual reception of a message at its final location.
A sequence of transitions is depicted in Fig. 1, where squares and triangles rep-
resent respectively localised processes and forwarders; the process located at h′

migrates to k and the message h′{M} is routed to its final destination, k′.

We assume the two properties below about the localised LTS:

If P ↪
h,a,K−−−−→ P ′, then for any message M, P | {M} ↪h,a,K−−−−→ P ′ | {M}. (4)

P ↪
h,a,K−−−−→ P ′ iff for any substitution σ, Pσ ↪

hσ,a,Kσ−−−−−→ P ′σ. (5)

(4) expresses the fact that an additional message should not prevent a process
from doing some localised transition. (5) prevents local processes from testing
the equality of two locations. In some sense, this means that local processes
should not be aware of the implementation details of the framework.

Definition 2.3 (Well-formedness). A net is well-formed if for any of its

reducts U , we have U ≡ (νh̃)V for some h̃, V such that:

1. any agent of V is located at a location mentioned in h̃;
2. for any location h in h̃, there is exactly one agent located at h in V ; and
3. the dependency relation ≺V is a partial order, whose maximal elements are

the locations hosting localised processes.

In the sequel, we shall often omit the restrictions on locations that should appear
in front of a well-formed net (νh̃)V : they can be guessed from V .

Hypothesis 2.4. We assume that we are given only well-formed nets.
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Remark 2.1 (On the expressiveness of the framework). Locations express only
the logical distribution of processes. Hence, the second condition in our defini-
tion of well-formedness does not rule out the case where several locations are
thought of as residing physically on the same device. Also, unlike in [10, 5], the
processes are not required to be distributed along a tree structure, and there is
no constraint on the communication topology: since messages may contain loca-
tions, π-calculus-like mobility of links is provided by the model. Independently,
migration is subjective in our model: the process itself decides to migrate. Objec-
tive migration mechanisms (like the passivation available in the Kell-calculus [1])
may be simulated by using messages to trigger migrations.

The main constraint imposed by the well-formedness hypothesis comes from
the third point: the graph of the dependency relation is a forest whose roots
are the localised processes, and no cycle of forwarders should be generated. This
could happen, for example, if a process located at h migrates to some location
pointing to h. We discuss the role of this hypothesis in Sect. 5. One possibility
to prevent the creation of such cycles is to define a partial ordering of the local
processes, and insure that all migration requests respect this ordering (this is
the case in models like Ambients [2], Kells [1], or Seals [3]).

3 Reasoning up to Forwarders

In this section, we validate the behaviour of forwarders, by showing that be-
havioural equivalence is not sensitive to silent transitions (

τ→ ⊆ ≈) and to the
replacement of a forwarder by a substitution.

Even though this property happens to be sufficient for our needs in the sequel
(see Sect. 4.2), it does not allow one in general to reason modulo forwarders in
other bisimulation proofs: it is well known that weak bisimulation up to ≈ is not
a correct technique [9]. Therefore, we prove a stronger result using expansion
(%), the standard behavioural preorder that leads to the correct “bisimulation
up to %” technique. Interestingly, this allows us to use the up to transitivity
technique enjoyed by expansion, so that our proof is actually easier.

Definition 3.1 (Expansion). An expansion relation is a relation R such that
for any α ∈ L, whenever PRQ we have:

– if P
α→ P ′ then Q

α̂→ Q′ and P ′RQ′ for some Q′,

– if Q
α→ Q′ then P

α̂⇒ P ′ and P ′RQ′ for some P ′.

Expansion, denoted by %, is the union of all expansion relations.

Theorem 3.2 (Bisimulation up to Expansion [9]). Let R be a symmetric
relation. If R evolves to %R-, then R ⊆ ≈.

Theorem 3.3 (Expansion up to Transitivity). Let R be a relation. If for
any α ∈ L, whenever PRQ we have:
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– if P
α→ P ′ then Q

α̂→ Q′ and P ′R?Q′ for some Q′,

– if Q
α→ Q′ then P

α̂⇒ P ′ and P ′RQ′ for some P ′,

then R ⊆ %.

Notice that transitivity is allowed only on one side in the previous theorem.
Nevertheless, this is sufficient for the proof of the following proposition:

Proposition 3.4. Let U, V be two nets. If U
τ→ V then U % V .

Proof. We show that the following relation is an expansion up to transitivity:

R , τ→∪ {〈h{reg P} ‖ h{M} ‖W, h{reg (P | {M})} ‖W 〉} .

We need the up to transitivity technique to analyse the two cases below:

U ≡ h{M} ‖ h[P ] ‖W R h[P | {M}] ‖W ≡ V [Rcv]

U
a→ h{M} ‖ h . k ‖ k{reg P ′} ‖W [Mig]

R h . k ‖ k{M} ‖ k{reg P ′} ‖W [Fwd]

R h . k ‖ k{reg P ′ | {M}} ‖W a← V [R, Mig]

U ≡ h{reg P ′} ‖ h{M} ‖ h . k R h{reg (P ′ | {M})} ‖ h . k ≡ V
U

τ→ h{M} ‖ h . k ‖ k{reg P ′} [Rcv]

R h . k ‖ k{M} ‖ k{reg P ′} [Fwd]

R h . k ‖ k{reg (P ′ | {M})} τ← V [R, Rcv]

The other cases are similar or straightforward. ut

The smallest bisimulation relation containing
τ→ is

τ̂⇒. Hence, proving the weaker
result

τ→ ⊆ ≈ without using this expansion-based technique would require to

check that
τ̂⇒ is a bisimulation, which is less tractable: while U and V differ only

slightly when U
τ→ V , this is no longer the case when U

τ̂⇒ V .

We now define a forwarder erasure relation, that replaces a forwarder by the
corresponding substitution and we show that this relation is contained in %.

Definition 3.5 (Forwarder erasure). We call forwarder erasure the following
relation:

E , {〈(νh)(h . k ‖ U), U [k/h]〉} .

Proposition 3.6. Let U, V be two nets. If UEV , then U % V .

Proof. We check that E is an expansion relation: let U = (νh)(W ‖ h . k) and
V = W [k/h].
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– If U
α→ U ′, by using Hypothesis (5), we obtain V

α→ V ′ with U ′EV ′, except
in the following case, corresponding to the rule [Fwd]:

U ≡ (νh)(W ′ ‖ h{M} ‖ h . k)
τ→ (νh)(W ′ ‖ h . k ‖ k{M}) ≡ U ′ ,

where we just check that U ′EV .
– If V

α→ V ′, again, by using Hypothesis (5), we obtain U
α→ U ′ with U ′EV ′,

except in the two following cases:

V ≡ W ′[k/h] ‖ k{M} ‖ k[P ]
τ→ W ′[k/h] ‖ k[P | {M}] ≡ V ′ [Rcv]

U ≡ (νh)(W ′ ‖ h{M} ‖ h . k ‖ k[P ])
τ→ (νh)(W ′ ‖ h . k ‖ k{M} ‖ k[P ]) [Fwd]
τ→ (νh)(W ′ ‖ h . k ‖ k[P | {M}]) E V ′ [Rcv]

V ≡ W ′[k/h] ‖ k . k′ ‖ k{M}
τ→ W ′[k/h] ‖ k . k′ ‖ k′{M} ≡ V ′ [Fwd]

U ≡ (νh)(W ′ ‖ h{M} ‖ h . k ‖ k . k′)
τ→ (νh)(W ′ ‖ h . k ‖ k{M} ‖ k . k′) [Fwd]
τ→ (νh)(W ′ ‖ h . k ‖ k . k′ ‖ k′{M}) E V ′ [Fwd]

ut

E and
τ→ are confluent and terminating relations (for the termination of

τ→,
we rely on the fact that the dependency relation of a well-formed net is a partial
order). This allows us to define normal forms of nets, that will be used in Sect. 4:

Definition 3.7 (Normalisation). We denote respectively by U↓ and e(U) the

normal forms of U w.r.t.
τ→ and E. We say that a net U is normal (resp. E-

normal) if U = U↓ (resp. U = e(U↓)).

By the two previous propositions, we have that a net expands its E-normal form.
This makes it possible to restrict to E-normal nets in bisimulation proofs (see
the proof of Theorem 4.17 for an example).

Theorem 3.8. For any well-formed net U , we have:

U % e(U↓) .

Proof. By definition of U↓ and e(U), this follows from Props. 3.4 and 3.6. ut

Notice that (
τ→∪ E) is terminating and confluent, and that E preserves

τ→-
normal forms. In particular, we have e(U↓) ≡ e(U)↓. The strategy that we impose
in this theorem to compute the normal form of U is hence somehow arbitrary.
However, this will ease the development in Sect. 4.
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4 Optimisations of the Behaviour of Forwarders

The forwarder chains that are generated along the evolution of a net are the
source of inefficiencies. For example, the message {M} in Fig. 1 will have to go
trough three locations before reaching its final destination. In this section, we
define an optimisation of the framework, that contracts such forwarder chains,
and we prove the correctness of this optimisation, by showing that simple for-
warders, as defined in the previous section, are behaviourally equivalent to the
optimised ones.

4.1 Definition of the Optimisation

Optimised nets extend the syntax of nets by

– annotating pending messages with a list of locations: h{M}k̃;
– introducing blocked forwarders: h / k;
– adding a second kind of messages: relocation messages h〈go. k〉.

Intuitively, the list that decorates a pending message contains the set of forwarder
locations the message did pass through. Messages emitted by the underlying local
processes will have an empty list, which will allow us to omit their annotation.
Relocation messages are received only by blocked forwarders. Their effect is to
redirect such forwarders to a destination closer to the location they indirectly
point to.

We shall use the terminology ‘simple net’ to denote a net as defined in
Sect. 2. Structural congruence is extended to optimised nets in the obvious way.
We define over this extended syntax an optimised LTS, written

α→o, by taking
the rules of the initial LTS and replacing the silent transition rules ([Fwd] and
[Rcv]) with the three rules below.

h{M}h̃ ‖ h . k
τ→o h / k ‖ k{M}h,h̃ [OFwd]

h{M}h̃ ‖ h[P ]
τ→o h[P | {M}] ‖ h̃〈go. h〉 [ORcv]

h〈go. k
′〉 ‖ h / k τ→o h . k′ [OUpd]

When a forwarder transmits a message, it registers its location (rule [OFwd]),
and enters a blocked state so that it will temporarily block further potential
messages. Upon reception at the final location, a relocation message is broad-
casted to the locations registered in the message (rule [ORcv]). The blocked
forwarders located at these locations will finally update their destination ac-
cordingly (rule [OUpd]). This behaviour is illustrated in Fig. 2, where reversed,
grey triangles correspond to blocked forwarders. Notice that forwarders have to
block until they receive the relocation message: otherwise, a timestamps mech-
anism would be required, so that a forwarder can cleverly chose between two
possibly distinct relocation messages.
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{N}

{N}
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Fig. 2. Optimised Forwarder Behaviour

The definition of dependency relation is adapted by considering all forwarders
uniformly, be they blocked or not. We have:

Proposition 4.1. In the optimised LTS, for any reduct U of a simple, well-
formed net, there exist h̃, V such that U ≡ (νh̃)V and the following conditions
hold:

1. the properties required in Def. 2.3 are satisfied;
2. for any blocked forwarder h/k, h appears exactly once in the annotation of a

pending message (h′{M}h̃, with h ∈ h̃), or as the destination of a relocation
message (h〈go. h′〉); in both cases, we have h ≺V h′;

3. any location registered in a pending message, or appearing as the target of a
relocation message hosts a blocked forwarder.

In the sequel, we shall implicitly assume that any optimised net that we
manipulate satisfies these hypotheses.

4.2 Correctness of the Optimisation

Unlike in the previous section, we cannot rely on expansion-based up-to tech-
niques: neither silent transitions, nor the erasure of forwarders are contained
in expansion. This comes from the race conditions introduced by the blocking
behaviour of forwarders: for example, in Fig. 2, the message {N} has to wait for
arrival of {M}. The very ‘controlled’ nature of expansion – the right-hand-side
process has to be as fast as the left-hand-side process, at each step – cannot take
into account the fact that {N} is closer to its destination at the end.

However, by proving that in the optimised setting, a net is bisimilar to its E-
normal form (Theorem 4.16), the following restricted version of the bisimulation
up to ≈ technique will be sufficient to prove the equivalence between the two
systems (Theorem 4.17): we can restrict to

τ→-normal forms, so that there is no
silent challenge to play.

Theorem 4.2 (Bisimulation up to Bisimilarity). Let R be a symmetric
relation, if R evolves silently to itself and visibly to ≈ R ≈, then R ⊆ ≈.

Like in Sect. 3, the smallest bisimulation relations containing
τ→o or E contain

at least
τ̂⇒o, so that we need some bisimulation proof technique in order to be able

to work with small and local candidate relations. We use for that the following
technique from [8].
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Definition 4.3 (Controlled relation). A relation B is a controlled relation
if the following conditions hold:

1. B evolves to B?,
2. B+ τ⇒ terminates,
3. B ⊆ ≈.

Theorem 4.4 (Bisimulation up to a Controlled relation [8]). Let B be a
controlled relation, if a symmetric relation R evolves to B?R ≈, then R ⊆ ≈.

The following proposition will be used to prove the third point of Def. 4.3.

Proposition 4.5. If B is a relation evolving to B? and such that B+ τ⇒ termi-
nates, then B? is a simulation.

We now have enough technical devices to embark in the proof of correctness.
We first prove a lemma that will allow us to route messages to their destination.

Lemma 4.6. Let U ≡ V ‖ h0{M}h̃ be a net. Then we have:

U ≡ V ′ ‖ h0{M}h̃ ‖ Πi<nFi(hi, hi+1) ‖ hn[P ]

U
τ⇒o V ′ ‖ h̃〈go. hn〉 ‖ Πi<nhi . hn ‖ hn[P | {Ñ} | {M}] ‖ k̃ . hn

where Fi(h, k) is either:

– a forwarder: h . k, or
– a blocked forwarder, together with a relocation message: h / k′ ‖ h〈go. k〉, or
– a blocked forwarder whose location is registered in a message blocking some

other forwarders: h / k′ ‖ k{N}h,k̃ ‖ k̃ / k̃
′.

Ñ and k̃ are the messages and forwarder locations collected in Πi<nF (hi, hi+1).

Proof. The decomposition of U comes from the well-formedness hypothesis. We
prove the reduction by induction over n: if n = 0 we just apply the rule [ORcv],
otherwise we reason by case analysis on the shape of F0(h0, h1):

– a simple forwarder: h0.h1: we transmit the message with rule [OFwd], apply
the induction hypothesis (IH), and relocate the forwarder using rule [OUpd]:

U
τ→o V ′ ‖ h0 / h1 ‖ h1{M}h0,h̃

‖ Π0<i<nF (hi, hi+1) ‖ hn[P ] [OFwd]

τ⇒o V ′ ‖ h0 / h1 ‖ (h0, h̃)〈go. hn〉 ‖ Π0<i<nhi . hn

‖ hn[P | {Ñ} | {M}] ‖ k̃ . hn (IH)
τ→o V ′ ‖ h0 . hn ‖ Πi<nhi . hn ‖ hn[P | {Ñ} | {M}] ‖ k̃ . hn [OUpd]

– a blocked forwarder with a relocation message: h0 / k
′ ‖ h0〈go. h1〉: we

relocate the forwarder with rule [OUpd] and fall back into the previous case.
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– h0 /k
′ ‖ h1{N1}h0,k̃1

‖ k̃1 /k̃′1: we apply the induction hypothesis to the mes-
sage at h1, and transmit the initial message trough the relocated forwarder:

U
τ⇒o V ′ ‖ h0{M}h̃ ‖ h0 / h1 ‖ h0〈go. hn〉 ‖ Π0<i<nhi . hn

‖ hn[P | {N1, Ñ}] ‖ k̃1 . k̃′1 ‖ k̃ . k̃′ (IH)
τ→o V ′ ‖ h0{M}h̃ ‖ Πi<nhi . hn ‖ hn[P | {N1, Ñ}] ‖ k̃1 . k̃′1 ‖ k̃ . k̃′

[OUpd]
τ→o

3 V ′ ‖ h̃〈go. hn〉 ‖ Πi<nhi . hn ‖ hn[P | {N1, Ñ} | {M}]

‖ k̃1 . k̃′1 ‖ k̃ . k̃′ [OFwd,ORcv,OUpd]

ut
τ→o does not commute with visible actions: some relocation of forwarders is

involved. To handle this, we introduce the following relation, that allows one to
reorganise step by step the forwarder structure of a net.

Definition 4.7. We denote by S the swapping relation, defined as the symmet-
ric closure of the following relation:

{〈h . h′ ‖ h′ . k ‖ U, h . k ‖ h′ . k ‖ U〉} .

Our goal is to prove that (S∪ τ→o) is a controlled relation: this entails
τ→o ⊆ ≈,

but also makes it possible to give a nice proof of E ⊆ ≈ (Prop. 4.13), by using

Theorem 4.4. The three following lemmas establish progressively that (S ∪ τ→o)

evolves to (S ∪ τ→o)?, so that this relation satisfies the first point of Def. 4.3.
Again, thanks to the up-to technique, we avoid manipulation of complex rela-
tions, and focus on nets that differ only slightly (as in Def. 4.7).

Lemma 4.8. If U
τ→o V and U

a→o U
′ then U ′

τ̂⇒o S?
τ̂⇐o

a←o V .

Proof. It holds that U ′
τ→o

a←o V , except in the following case:

U ≡ W ‖ h{M}h̃ ‖ h[P ]
τ→o W ‖ h[P | {M}] ‖ h̃〈go. h〉 ≡ V [ORcv]

U
a→o W ‖ h{M}h̃ ‖ h . k ‖ k{reg P

′} ≡ U ′ [Mig]

where we have

V
a→o W ‖ h . k ‖ k{reg P ′ | {M}} ‖ h̃〈go. h〉 ≡ V

′ . [Mig]

We reason by case analysis on the agent located at k:

– a localised process k[Q]: by routing to k the messages exhibited in U ′ and
V ′, we obtain:

U ′
τ⇒o W ′ ‖ (h, h̃) . k ‖ k[Q | {reg P ′} | {M}]

V ′
τ⇒o W ′ ‖ h̃ . h ‖ h . k ‖ k[Q | {reg P ′ | {M}}]

12



(the only message to route in V ′ is almost at its final destination, and the
relocation message has already been sent to the blocked forwarders located
at h̃, so that the latter gets relocated under h instead of k).
Finally, we relocate these forwarders with n applications of the swapping

relation, n being the length of h̃: U ′
τ̂⇒o Sn

τ̂⇐o V
′.

– a forwarder k . k′: like in the previous case, we first route the available
messages to their destination, say k′′:

U ′
τ⇒o W

′ ‖ (h, k, h̃) . k′′ ‖ k′′[Q | {reg P ′} | {M}] ,

V ′
τ⇒o W

′ ‖ h̃ . h ‖ h . k ‖ k . k′′ ‖ k′′[Q | {reg P ′ | {M}}] .

Here we need an additional application of the swapping relation to relocate h

to k′′, before being able to relocate the forwarders at h̃: U ′
τ̂⇒o Sn+1 τ̂⇐o V

′.
– a blocked forwarder k/k′. We reason like in the previous case by first routing

the message that blocks this forwarder to its destination. ut

Lemma 4.9. If USV and U
α→o U

′ then U ′
τ⇒o S?

α̂⇐o V .

Proof. It is immediate for visible challenges α = a: we have U ′S a←o V . When
α = τ , the interesting cases are those where the silent transition U

τ→o U
′ is the

transmission of a message trough one of the two forwarders being swapped:

– U ≡W ‖ h{M}h̃ ‖ h . h
′ ‖ h′ . k τ→o W ‖ h / h′ ‖ h′{M}h,h̃ ‖ h

′ . k ≡ U ′.
By routing the messages, we obtain:

U ′
τ⇒o W

′ ‖ h . k′ ‖ h′ . k′ ‖ k′[Q | {M}] ,

V
τ⇒o W

′ ‖ h . k ‖ h′ . k′ ‖ k′[Q | {M}] ≡ V ′ .

If k = k′, we are done. Otherwise, there is a forwarder k . k′, and we need
one application of the swapping relation in order to relocate the forwarder
located at h in V ′.

– U ≡ h . h′ ‖ h′{M}h̃ ‖ h
′ . k

τ→o h . h′ ‖ h′ / k ‖ k{M}h′,h̃ ≡ U
′

By routing the messages, we obtain:

U ′
τ⇒o W

′ ‖ h . h′ ‖ h′ . k′ ‖ k′[Q | {M}] ≡ U ′′ ,

V
τ⇒o W

′ ‖ h . k ‖ h′ . k′ ‖ k′[Q | {M}] ≡ V ′ .

If k = k′, we are done. Otherwise, there is a forwarder k . k′, and we need
two applications of the swapping relation in order to relocate the forwarder
located at h in both nets:

U ′′ ≡ W ′′ ‖ h . h′ ‖ k . k′ ‖ h′ . k′ ‖ k′[Q | {M}]
S W ′′ ‖ h . k′ ‖ k . k′ ‖ h′ . k′ ‖ k′[Q | {M}]
S W ′′ ‖ h . k ‖ k . k′ ‖ h′ . k′ ‖ k′[Q | {M}] ≡ V ′

This analysis also applies for the symmetric cases, where the silent transitions
are played by the net with ‘flat’ forwarders. ut
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Lemma 4.10.
τ→o is locally confluent.

Proof. Using Prop. 4.1, the only critical pair is U = V ‖ h{M}h̃ ‖ h{N}k̃ ‖ h.k,

U
τ→o V ‖ h{M}h̃ ‖ h / k ‖ k{N}h,k̃ = U1 [OFwd]

U
τ→o V ‖ h{N}k̃ ‖ h / k ‖ k{M}h,h̃ = U2 [OFwd]

By using Lemma 4.6 on U1, we can route the message {N} to some location k′:

U1
τ̂⇒o V

′ ‖ h{M}h̃ ‖ h / k ‖ (h, k̃)〈go. k
′〉 ‖ k′[P | {N}] (Lemma 4.6)

τ→o V
′ ‖ h{M}h̃ ‖ h . k

′ ‖ k̃〈go. k
′〉 ‖ k′[P | {N}] [OUpd]

τ→o
3 V ′ ‖ (k̃, h̃)〈go. k

′〉 ‖ h . k′ ‖ k′[P | {N} | {M}] ≡ U ′ [OFwd,ORcv,OUpd]

The same reasoning about U2 leads to U2
τ⇒o U

′. ut

Lemma 4.11. S? τ⇒o terminates.

Proof. We call size of a net U the triple s(U) = 〈n, r, l〉, where n is the number
of pending messages, r the number of relocation messages, and l the number of
forwarders that are not blocked. These triples are ordered lexicographically. We
check that USV implies s(U) = s(V ), and that this size strictly decreases along

silent transitions (recall that
τ⇒o contains at least one transition). ut

Proposition 4.12. (S ∪ τ→o) is a controlled relation.

Proof. First we check that (S∪ τ→o) satisfies the first two requirements of Def. 4.3:

(1) comes from Lemmas 4.8, 4.9, and 4.10; by remarking that (S ∪ τ→o)+
τ⇒o =

(S? τ⇒o)+, Lemma 4.11 gives (2).

For (3), by Prop. 4.5, we have that (S ∪ τ→o)? is a simulation. Moreover,
τ̂←o

is a simulation (as is always the case). By combining these two results we obtain

that the symmetric relation (S ∪ τ↔o)? = ((S ∪ τ→o)?∪ τ̂←o)? is a simulation, and

hence a bisimulation, so that (S ∪ τ→o) ⊆ (S ∪ τ↔o)? ⊆ ≈. ut

We now show that E ⊆ ≈. In order to avoid confusion, we consider in the
sequel bisimilarity as a relation between rooted LTSs that share the same set
of labels: 〈U,→〉 ≈ 〈V, 〉 will denote the fact that U with labelled transition
relation →, is bisimilar to V , with labelled transition relation  .

Notice that we do not extend the erasure relation E to optimised nets; like
e(.) it will only be used to reason about simple nets.

Proposition 4.13. Let U, V be simple nets.

If UEV then 〈U,→o〉 ≈ 〈V,→o〉.

Proof. We show that the symmetric closure of the erasure relation E is a bisim-
ulation up to the controlled relation (S ∪ τ→o) (Theorem 4.4).
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– If U
a→o U

′, then U ′ is a simple net, and we check that V
a→o V

′ with U ′EV ′.
– If U

τ→o U
′, the interesting case is the following, when n > 1:

U ≡ (νh0)(W ‖ h0{M} ‖ Πi<nhi . hi+1 ‖ hn[P ])

U
τ→o U ′ ≡ (νh0)(W ‖ h0 / h1 ‖ h1{M}h0 ‖ Π0<i<nhi . hi+1 ‖ hn[P ])

U E V ≡W [h1/h0] ‖ h1{M [h1/h0]} ‖ Π0<i<nhi . hi+1 ‖ hn[P [h1/h0]])

By routing the message in both processes, we obtain:

U ′
τ⇒o U ′′ ≡ (νh0)(W ‖ Πi<nhi . hn ‖ hn[P | {M}])

V
τ⇒o V ′ ≡W [h1/h0] ‖ Π0<i<nhi . hn ‖ hn[P [h1/h0] | {M [h1/h0]}])

These processes are not related by E , we need first to relocate in U ′′ the
forwarder located at h0 under h1, using a ‘reversed’ application of S:

U ′
τ⇒o U

′′ S (νh0)(W ‖ h0 . h1 ‖ Π0<i<nhi . hn ‖ hn[P | {M}]) E V ′ τ⇐o V .

– The cases where V
α→o V

′ are handled similarly. ut

Remark that we can also prove that (E ∪ S ∪ τ→o) is a controlled relation. This
would be useful if we had to reason up to E on some silent transitions.

Lemmas 4.11 and 4.10 ensure that
τ→o defines a unique normal form for any

net (termination of S? τ⇒o entails termination of
τ→o).

Definition 4.14. Let U be an optimised net.
We denote by U↓o the normal form of U w.r.t.

τ→o.

Notice that U↓o is always a simple net: it does not contain any blocked forwarder,
relocation message, nor pending, annotated messages. Furthermore, we have that
an optimised net U is a normal net iff U = U↓o.

The normalisation of a simple net by
τ→ and

τ→o does not necessarily lead to
the same net: U↓ 6≡ U↓o. However, these nets differ only by some rearrangement
of their forwarders: they are related by S?. As expressed by the proposition
below, in order to obtain the same net, we just need to erase all the forwarders.

Proposition 4.15. For any simple net U , we have:

e(U↓) ≡ e(U↓o) .

Proof. USV entails e(U) ≡ e(V ), therefore it is sufficient to prove that U↓S?U↓o.
We proceed by well-founded induction on U , using the termination of

τ→:

– If U is a normal net, we have U↓ = U = U↓o.

– If U
τ→ U ′, since U is simple, U ≡ V ‖ h0{M} ‖ Πi<nhi . hi+1 ‖ hn[P ] and:

U
τ→ U ′

τ⇒ V ‖ Πi<nhi . hi+1 ‖ hn[P | {M}] ≡ U1

U
τ⇒o V ‖ Πi<nhi . hn ‖ hn[P | {M}] ≡ U2 (Lemma 4.6)
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We check that U1SnU2, and we have U1
τ̂⇒o U1↓o so that from Prop. 4.12,

U2
τ̂⇒o U

′
2 with U1↓o(S ∪

τ→o)?U ′2. Furthermore, since S preserves normal
forms, U1↓oS?U ′2, and U ′2 = U2↓o
Finally, by induction, U1↓S?U1↓o and U↓ = U1↓S?U1↓oS?U2↓o = U↓o. ut

It follows that a net is bisimilar to its E-normal form, which leads to the final
proof of correctness.

Theorem 4.16. Let U be an optimised net, we have:

〈U,→o〉 ≈ 〈e(U↓),→o〉 .

Proof. From Prop. 4.12,
τ→o ⊆ ≈, and U ≈ U↓o. We conclude with Props. 4.13

and 4.15: U↓o ≈ e(U↓o) ≡ e(U↓). ut

Theorem 4.17 (Correctness of the optimisation). For any simple net U ,
we have:

〈U,→o〉 ≈ 〈U,→〉 .

Proof. Using Theorems 4.16 and 3.8, we can suppose w.l.o.g. that U is E-normal.
Let R ,

{
〈〈U,→o〉 , 〈U,→〉〉

/
U is E-normal

}
. We show that the symmet-

ric closure of R is a bisimulation up to ≈ (Theorem 4.2): since U is normal,

there are only visible challenges to play. Suppose U
a→o U

′. The LTSs do not
differ on visible actions, hence we have U

a→ U ′. U ′ is not necessarily E-normal,
so that 〈U ′,→o〉R 〈U ′,→〉 does not hold. However, by Theorems 4.16 and 3.8,
we have: 〈U ′,→o〉 ≈ 〈e(U ′↓),→o〉 R 〈e(U ′↓),→〉 ≈ 〈U ′,→〉.

The challenges offered by 〈U,→〉 are handled symmetrically. ut

5 Concluding Remarks

The bisimilarity proof in [5]. In the GCPAN [5], which is an optimisation of
the PAN [10], we actually add counters to the forwarders and garbage collect
forwarders whose counter is 0, to which no message will be sent anymore.

We can build on the results presented here to give a complete correctness
proof, by validating each optimisation step. Because in PAN local processes
satisfy the requirement of our framework, the PAN with relocating forwarders is
equivalent to the original machine. Furthermore, adding counters to the machine
does not affect this. We then show that the relation that removes a forwarder
with counter 0 is a strong bisimulation. Finally, correctness of the GCPAN is
established by checking that the identity relation is a bisimulation up to strong
bisimilarity relating the previous nets and GCPAN nets.

Forwarder cycles. In this paper, we assumed that no forwarder cycles can appear
during the evolution of a net (Hyp. 2.4). However, Theorem 4.17, that states the
correctness of the optimisation, holds without this assumption. Indeed, in both
systems, all forwarders belonging or pointing to a cycle, and messages routed
along such forwarders, will get trapped in the cycle, rendering this part of the
net behaviourally equivalent to the empty net:
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– In the initial system, any message trapped in a cycle will keep moving in-
definitely along the cycle, producing infinitely many silent transitions (the

relation
τ→ remains confluent, but does no longer terminate).

– In the optimised system, messages reaching the cycle will progressively block
its forwarders (

τ→o still terminates, but it is no longer confluent: the shape
of the final blocked cycle depends on the order of the reductions).

Furthermore, cycles can only be created by the visible rule [Fwd], and we can
check that the set of messages and forwarders trapped in a cycle does not depend
on the setting we chose. Hence, in the proof of Theorem 4.17, we could safely
remove the cycles and lost messages that appear on both sides, the same way as
we normalise processes along the bisimulation game.
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