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An affinity score for grains merging and
touching grains separation

T. Chabardès, P. Dokládal, M. Faessel, M. Bilodeau

PSL Research University - MINES ParisTech
CMM, Center for Mathematical Morphology
35 rue Saint Honoré - Fontainebleau, France

Abstract. The physical properties of granular materials on a macro-
scopic scale derive from their microstructures. The segmentation of CT-
images of this type of material is the first step towards simulation and
modeling but it is not a trivial task. Non-spherical, elongated or non-
convex objects fail to be separated with classical methods. Moreover,
grains are commonly fragmented due to external conditions: aging, stor-
age conditions, or even user-induced mechanical deformations. Grains
are crushed into multiple fragments of different shape and volume; those
fragments drift from one another in the binder phase. This paper focuses
on reconstruction of grains from these fragments using scores that match
the local thickness and the regularity of the interface between two objects
from a given primary segmentation of the material. An affinity graph is
built from those scores and optimized for a given application using a
user-generated ground truth on a 2D slice of the tridimensional struc-
tures. A minimum spanning tree is generated, and a hierarchical cut
is performed. This process allows to reassemble drifted fragments into
whole grains and to solve the touching grains problem in tridimensional
acquisitions.

1 Introduction

X-Ray microtomography is now widely used by professionals and non-experts to
characterize the structures of materials of interest. However, assessing precisely
the structural information by conventional means is difficult due to the size of the
acquisitions. Human interactions are unpractical for this amount of data. There
is a need for automatic methods of analysis that can harvest the ever-increasing
computing power.

This study focuses on composite materials made from a rubbery binder and
brittle grains of various shapes and sizes mixed into a homogeneous mixture.
Damage occurs when a mechanical shock is applied, causing fragmentation of
these grains. The damaged structure affects the behavior of the material. Eval-
uating the extent of fragmentation may be useful for estimating effects on the
reaction of the mixture. Highly clustered fragments and complex shapes require
specific methods to identify all connections. The drift of fragments in the binder
phase can not be solved using a method only based on the barycenter distance,
as e.g. in [11], see figures (1, 6).



Fig. 1. The fragment 2 is closer to 1 even though it should be associated to 3.

In the first part, we present how to evaluate the shape of the interface between
two objects of a given segmentation. Pixels equidistant to two objects border to
border forms separation segments. Each pixel of those segments is valued by the
distance to border. Measurements are performed on the pixels along the segments
such as mean, standard deviation of the pixels value. Some already relate to
affinities; others can be transformed to affinities using a Gaussian kernel. In a
second part, the grains are reassembled from the derived fragments using the
proposed affinity score in combination with a hierarchical clustering, and a set
of predetermined measurements done on the unprocessed acquisition.

1.1 Materials and 3D images.

The studied materials are composite materials with an elastic binder degraded
by a mechanical impact of a falling mass. Those samples were acquired by X-
ray microtomography with a Skyscan 1172 high-resolution micro-CT system.
Images of the work of Gillibert were recovered for comparison purposes [6]. The
introduced method was also tested on our acquisitions. The following acquisitions
illustrated in the figure (2) are studied:

– MAT1 is a 1014*1155*250 voxels image (3650.4*4158*900 µm3). A mechan-
ical impact is exerced from a 2kg mass falling 15cm. This material has been
studied in [8].

– MAT2 is a 1000*1000*1000 voxels image (2097*2097*2097 µm3). A mechanic
impact is exerced from a 2kg mass falling 30cm. This is a new material.

1.2 Initial segmentation.

The work presented in this paper requires a primary segmentation on the ac-
quisition. We suppose each fragment for every grain isolated, which effectively
induces an over-segmentation, where grains are fragmented. Then, we succes-
sively merge pairs of fragments, whose affinity is the highest. Several approaches
can be considered to create this over-segmentation. Gillibert and al. used a mul-
tiscale stochastic watershed in [7]. The estimation of the granulometry makes
it possible to select appropriate scales to perform several stochastic watersheds
and combine them to obtain a correct segmentation for each size of grains.



(a) MAT1 (b) MAT2

(c) (d)

(e) (f)

Fig. 2. (a,c) are 2D slices of 3D X-ray microtomographic images of fragmented gran-
ular material. (b,d) are the corresponding over-segmentation produced by h-minima
markers. (e,f) are results obtained in [8]. (e) Watershed segmentation of the closed
image after a h-minima filter. (f) Watershed segmentation using markers computed
from the K-means. In (e) and (f), we can observe several grains over-segmentated or
under-segmentated.

However, this approach is tedious and costly. A less refined approach can
be used, as over-segmented fragments will be merged during the clustering pro-
cess: the resulting affinity will be high in this case. In this study, the image is
first binarized using a method close to the Otsu threshold. The watershed is
then computed from the inverse of the distance map, and the set of markers is
generated by using the h-minima filter.

Other approaches could also be considered, such as using the distance map on
the binarized image, as a probability density map to generate random markers



for the watershed transformation. The only requirement is to find a right amount
of over-segmentation. Every fragment can be split into a small number of objects
in the over-segmentation, but no object must gather more than one fragment. In
the figure (2), two segmentations have been provided for the studied materials.

1.3 State of art of fragments merging.

A morphological approach for removing cracks is to use the morphological clos-
ing combined with a volumic opening, see [12,18]. Small connected components
are therefore removed, and fragments close in space are merged. The constrained
watershed transform introduced by [2] used on the closed image can differenti-
ate a fragmented grain from two grains merging. Markers have to be chosen
to represent each grain appropriately and are an important parameter in this
method. Two approach exists. The first approach is topological and uses the
h-minima filter introduced in [19]. The use of the h-minima with the watershed
on the distance map is standard, but if the grains are highly fragmented and the
fragments are scattered, the algorithm fails to reconstruct grains accurately.

The second approach is based on a method of cluster analysis, the K-means
clustering, which aims to partition a set of observations into K clusters, as de-
scribed in [11]. The number of clusters can be automatically calculated from
a covariance measure. In [8], the K-means transform is used to generate the
appropriate markers for the watershed transformation.

We propose in section 3 a fully automatic method for homogeneous granular
material, which can be adapted to heterogeneous material. Based on the previ-
ously described affinity score, a maximum spanning tree is built. This maximum
spanning tree can be used to form a hierarchy between fragments represented
as a dendrogram. The estimation of grains size is used to cut this hierarchy and
produce the final result.

1.4 State of art of touching objects separation.

Separation of touching objects is a recurring problem in image processing. Clas-
sical techniques like Hough-transform [10] or the watershed applied to the inverse
of the distance function performs well when the objects of interest possess reg-
ular shapes such as spheres. Unfortunately, when shape and size of objects vary
considerably or when clusters contain many objects, classical methods may fail
to produce the desired separation. Differents approach exists [16]: morphology-
based procedures [1], contour-based techniques [15], graph theoretic approaches,
parametric fitting algorithms and level set approach [3, 17]. Morphological mul-
tiscale decomposition can decompose clusters into size-specific scales, carrying
markers for each disjoint region [9]. Methods exist for shape specific objects.
In [20], a method based on a modified version of the pseudo-Euclidean distance
transformation is able to split fused ellipses. In [5], a gap-filling method is pro-
posed for elliptic shapes.



2 The morphological affinity score for adjacent objects.

2.1 Definitions.

We start from an initial segmentation as described in section 1.2. Let f : D →
{0, 1} a binary image, where D is the definition domain.
Binary objects We define the set X of N objects as X = {Xi}i<N , so that
Xi ⊂ D and Xi ∩Xj = ∅ for i 6= j. Each Xi represents a grain or a fragment.
The complement D \X is the binder.

Distance mapping We define the distance mapping d : D → N labeling each
pixel with the distance to the nearest object Xi ∈ X according to a chosen
metric.

SKIZ by distance function A zone of influence of a object Xi of X is the
subset of D that are closer to Xi than to any other object, and we note it zi(i). A
SKIZ is defined as the boundary of all zones of influence. We compute the SKIZ
by using the watershed transform. We note this set skiz(X ) and we assume it
thin and connected using some connexity {.

Triple points The set T of triple points is the set of pixels that are equidistant
to three or more distinct objects. We have extended the set T by including
pixels on the border of f that are equidistant to two objects. The triple points
are the extremities of a given segment of the SKIZ.

Interfaces We define interfaces between Xi, Xj as part of the segments along
the SKIZ. We note I the set of interfaces, and Iij the interface between two
distinct objects Xi and Xj . The distance decreases when going from triple points
inwards, as shown in figure (4). However, this distance behaves differently when
observed closer to the objects of interest. We define an incremental process to
thin the skiz into the non-decremental segment.

I0 = skiz(X ), T 0 = T

Ii+1 = Ii \ T i+1

T i+1 = {a | ∃b{a, b ∈ T i, d(b) > d(a)}

Finally, we define Iij = I∞ ∩ zi(i) ∩ zi(j). Those interfaces are the support
for building our new affinity scores. The distance mapping considered along the
pixels of an interface gives various information regarding the shape of the inter-
face between two objects. The figure (3.d) illustrates the interfaces Iij between
various objects given some initial segmentation (3.b).

2.2 Weigths.

In the following part, we propose several measures to weight the interfaces. All
proposed weights are w : I → R. However, it is important to notice that the
range of w differs regarding to the considered weight.



(a) original (b) over-segmentation

(c) skiz and triple points (d) thin interfaces

Fig. 3. The process to generate interfaces is illustrated. In (a) a granular material.
(b) an example of segmentation that was used to produce the skiz. In (c), The skiz is
drawn in red, the objects in gray, and triple points in blue. In (d) are shown interfaces
generated using the Manhattan distance.

Fig. 4. Divergence of the distance along the skiz is observed towards the triple points.

The barycenter distance. The simplest measure already used in [8] is the
Euclidean distance between barycenters of two distinct objects: wbar(Iij) =
‖Xi −Xj‖L2 , where X denotes the barycenter of the object labeled X in X .



Sum on the pruned interface: wd(Iij) =
∑
x∈Iij d(x) with d the distance to

fragments.

Length of the pruned interface: wl(Iij) = | Iij | the length of each interface.

Mean: wµ(Iij) = wd(Iij)/wl(Iij) the mean of the distance.

Variance: wσ2(Iij) =
∑
x∈Iij d(x)2 − w2

µ(Iij) the variance of the distance.

2.3 Affinities.

We note A, a positive and symetric matrix, with aij ∈ (0, 1) the affinity score of
Xi and Xj , where a value close to 1 corresponds to two closely related objects
and a value close to 0 to distinct objects. All previous weights can be transformed
to an affinity. We use a gaussian kernel for all weights that relate to a distance,
where σw is the scale of the kernel, as follows:

A = G(w, σw) =
1√

2πσw
e
− w2

2σ2w

Using the previous equation, we have Abar, Ad, Al, Aµ, Aσ2 .

Length-to-surface ratio. Other affinities can be obtained from the previous
weigths. Below, we use an affinity based on the surface of the objects. We define
s(X) the surface of the object X as s(X) =| {x, x ∈ G(f), x ∈ X} |, where G(f)
is a morphological gradient of the image f . We now define the new affinity As
as follows:

(as)ij =
wl(Iij)

min(s(Xi), s(Xj))

Note that wl(Iij) can be bigger than the surface of an objects, and the resulting
affinity has to be bounded to (0, 1).

All those affinities can be used as such with clustering techniques. However,
those affinities complement each other and we can combine several affinities as
follows:

A =
∑
k

Akfk (1)

In the next section, we used a linear combination of the affinities Abar, Aµ,
Aσ2 , As to merge fragments in a composite material fragmented by mechani-
cal pressure. We have optimized the linear combination by minimizing a score
between the resulting merging and a ground truth, as described in section 3.2.



3 Fragments merging.

3.1 Minimum spanning tree and hierarchical cut.

We can use the linear combination of the introduced affinities with several ex-
isting clustering methods, such as K-means, spectral clustering, DBSCAN and
other. The inconvenience is when the number of fragments increases compu-
tational issues appear (running time, instability of convergence, memory con-
sumption). For given materials, we have chosen a hierarchical clustering and
we perform a hierarchical cut using an estimated size of grain extracted from a
covariance analysis.

The previous affinity matrix is an adjacency graph. The first step of the pro-
posed clustering method is to produce a hierarchy using the minimum spanning
tree of the graph 1−A to remove edges of low affinity. We produce a dendrogram
from the minimum spanning tree as illustrated in the figure (5). The strategies
employed to build the hierarchy can be of any of the commonly used types:
agglomerative or divisive.

Cutting the hierarchy depends on the material that is considered. MAT1 is
a homogeneous composite with one size of grains. Therefore, the criterium that
we used to cut the hierarchy is volumic. The covariance analysis of the raw data
can give us an estimate of the mean size of the grains, see [4]. We have associated
with each cluster the sum of the volumes of the individual objects composing
the former. Cutting the hierarchy can be achieved by the pseudo-code (1).

Due to the previous thinning of the SKIZ, the initial graph might not be
connected. The missing edges are diverging all along the SKIZ and therefore of
low affinities. Moreover, filtering the graph by removing edges that feature low
affinity values can be done to process graphs of lower density. Each connected
components can be processed afterward independently.

Algorithm 1 Top-down cut of the hierarchy. w(i) is the volume associated to
cluster i. L is the volumic limit estimated by the covariance.

1: i← root of the dendrogram
2: Cut(i)
3: procedure Cut(i)
4: if i is a leaf OR w(i) < L then
5: return i
6: else
7: return Cut(left child of i),Cut(right child of i)

3.2 Optimizing the affinity

The choice of the affinity is crucial to obtain the desired result. One can see
that a single affinity that was presented earlier is not sufficient to reassemble the



(a)

(b)

Fig. 5. A simple case of dendrogram built from a maximum spanning tree is illustrated.
In (a), Objects are shown in black, and interfaces are valued using a colormap scheme.
The affinity used to generate the valued edges is a linear combination of Aµ, Aσ2 and
As.The resulting dendrogram is shown in (b), where 3 clusters are visually identified,
and the y-axis is 1 − A. We can see that objects 1 and 3 have a lower affinity than 0
and 2, and are visually two distinct grains that are connected.

fragments, see figure (1). The K-means algorithms is based on the barycenter
distance and is not able to reassemble fragments that have drifted far away
from their original positions. The size distribution of fragments is wide, the
drift between similar fragments can be big enough not to be caught by the
naive border-to-border distance as illustrated in figure (6). We assume that a
combination of affinities is the key to obtain better results.

We opted for a linear combination of the four affinities Abar, Aµ, Aσ2 and
As. To optimize the affinity, we optimize the segmentation using a user-provided
ground truth (GT) on one or more slices of the 3D image.

We construct a bivariate histogram H from the labels of GT and from
the labels obtained by hierarchical clustering extracted from the same slices.
H = [hij ] is a M ×N sparse matrix where M is the number of detected objects
and N the number of objects in the GT. From H , we compute the F1 score of
the segmentation in the following way:



(a) MAT1 (b) (c)

Fig. 6. (a) shows two fragments that heavely drift from one another on the bottom left.
(b) shows the over-segmentation. (c) the result of the fragment merging. The round
fragment in (b) in the bottom right corner colored in red in blue, is oversegmented. In
(c), the two objects were merged into one orange grain.)

A sum of a line i = const, P (i) =
∑
j hij , is the detection rate of label i. The

index l = arg maxj hij , is the label corresponding to i in GT. We now compute
the true positive TP (i) = hil, the false positive FP (i) = P (i)− TP (i).

The sensitivity and the positive predictive value for every i is: Sens(i) =
TP (i)
P (i) and PPV (i) = TP (i)

TP (i)+FP (i) .

A F1 score is computed for every detected object, with H the harmonic mean:
F1(i) = H(Sens(i), PPV (i)). The overall F1 score of the result is the harmonic
mean of all scores: F1 = H(F1(i)), 1 ≤ i ≤ M . The vector (fk) in equation 1
is then determined by minimizing 1 − F1. The minimization method is a mod-
ification of Powell’s method [13], [14]. It performs sequential one-dimensional
minimizations along each vector of the directions set.

3.3 Results.

Table (1) shows the size of the generated graph for MAT1 and MAT2. One
benefit of this method is to be able to work on a compressed representation of
the studied materials from the raw tridimensional data. Further compression is
achieved by using a ε-filtering of the weighted graph. Here, edges lower than
mean(a) − 2 ∗ std(a) have been removed. An appropriate filtering will generate
several connected components, which can each be processed independently and
in parallel.

Table 1. The graphs generated for MAT1 and MAT2. Here is shown the gain in
memory consumption when working on graphs.

Materials Number of voxels Number of objects Number of edges After ε-filtering

MAT1 2.9 ∗ 108 720 5106 2456
MAT2 1.0 ∗ 109 4660 28341 12846



Figure (6) shows a crop of a result obtained on MAT1. Figure (7) shows the
tridimensional results on MAT1 and MAT2. Some grains are broken down into
multiple small fragments, they have been successfully merged. Touching grains
have been solved for MAT2 and MAT1 and visually satisfying results have been
achieving for the merging of fragments.

(a) MAT1 (b) MAT2

Fig. 7. Results of the fragments merging method.(a) Slice of reassembled MAT1. (b)
Slice of reassembled MAT2. In (a), grains are heavely fragmented such as the green
grain in the top-right corner, and heavely clustered such as red and yellow grains
in the bottom-right corner. In (b), less fragmentation is observed but there is more
connections between grains.

4 Conclusion

We have introduced a method to calculate affinities between objects in tridi-
mensional data such as CT images. Those affinities have been applied to the
problem of fragments merging using machine learning algorithm. Oversegmented
fragments were also merged, as shown in figure (6), while every touching grains
remains separated. The touching objects problem were therefor also solved with
the same approach. Visually satisfying results were obtained for both, see figure
(7). Those affinities are invariant to scales and are able to characterize objects
of various shapes. Many perspectives arise from this preliminary work. Further
works should first concern the influence of the primary segmentation and the
metric employed to build the interfaces. The proposed method for hierarchical
clustering is a proof of concept than could be applied to more advanced clustering
technics.
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