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Cardinalities of Finite Relations in Coq
(Rough Diamond) ?

Paul Brunet1, Damien Pous1 ??, and Insa Stucke2

1 CNRS - LIP, ENS Lyon, UMR 5668
2 Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Germany

Abstract. We present an extension of a Coq library for relation alge-
bras, where we provide support for cardinals in a point-free way. This
makes it possible to reason purely algebraically, which is well-suited for
mechanisation. We discuss several applications in the area of graph the-
ory and program verification.

1 Introduction

Binary relations have a rich algebraic structure: rather than considering rela-
tions as objects relating points, one can see them as abstract objects that can
be combined using various operations (e.g., union, intersection, composition,
transposition). Those operations are subject to many laws (e.g., associativity,
distributivity). One can thus use equational reasoning to prove results about
binary relations, graphs, or programs manipulating such structures. This is the
so-called relation-algebraic method [12,14,15].

Lately, the second author developed a library for the Coq proof assistant [9,
10], allowing one to formalise proofs using the relation algebraic approach. This
library contains powerful automation tactics for some decidable fragments of
relation algebra (Kleene algebra and Kleene algebra with tests), normalisation
tactics, and tools for rewriting modulo associativity of relational composition.

The third author recently relied on this library to formalise algebraic cor-
rectness proofs for several standard algorithms from graph theory: computing
vertex colourings [1] and bipartitions [2].

Here we show how to extend this library to deal with cardinals of relations,
thus allowing one to reason about quantitative aspects. We study several appli-
cations in [3]; in this extended abstract we focus on a basic result about the size
of a linear order and an intermediate result from graph theory.

2 Preliminaries

Given two sets X,Y , a binary relation is a subset R ∈ P (X×Y ). The set X
(resp. Y ) is called the domain (resp. codomain) of the relation.
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With the usual set-theoretic operations of inclusion (⊆), union (∪), inter-
section (∩), complement ( · ), the empty relation (OXY ) and the universal rela-
tion (LXY ), binary relations between two sets X and Y form a Boolean lattice.
Given three sets X,Y, Z and relations R ∈ P (X×Y ) and S ∈ P (Y×Z) we
also consider the operations of composition (RS ∈ P (X×Z)) and transposi-
tion (RT ∈ P (Y×X)), as well as the identity relation (IX , {(x, x) | x ∈ X} ∈
P (X×X)). These operations can be abstracted through the axiomatic notion of
relation algebra. Binary relations being the standard model of such an algebra,
we use the same notations.

Definition 2.1 (Relation Algebra). A relation algebra is a category whose
homsets are Boolean lattices, together with an operation of transposition (·T)
such that:

(P1) composition is monotone in its two arguments, distributes over unions and
is absorbed by the bottom elements;

(P2) transposition is monotone, involutive (RTT = R), and reverses compositions:

for all morphisms R,S of appropriate types, we have (RS)
T

= STRT;
(P3) for all morphisms Q,R, S of appropriate types, QR ⊆ S iff QTS ⊆ R iff

S RT⊆ Q ;
(P4) for all morphism R : X → Y , R 6= O iff for all objects X ′, Y ′, LRL = LX′Y ′ .

From properties (P2), we deduce that transposition commutes with all Boolean
connectives, and that IT = I. Equivalences (P3) are called Schröder equivalences
in [12]; they correspond to the fact that the structure is residuated [5]. The last
property (P4) is known as Tarski’s rule; it makes it possible to reason alge-
braically about non-emptiness.

Important classes of morphisms can be defined algebraically. For instance,
we say in the sequel that a morphism R : X → Y is:

– injective if RRT⊆ I,
– surjective if I ⊆ RTR,
– univalent if its transpose is injective (i.e., RTR ⊆ I),
– total if its transpose is surjective (i.e., I ⊆ RRT),
– a mapping if R is total and univalent.

One can easily check that these definitions correspond to the standard definitions
in the model of binary relations.

Before introducing cardinals, we need a way to abstract over the singleton
sets from the model of binary relations; we use the following definition:

Definition 2.2 (Unit in a Relation Algebra). A unit in a relation algebra
is an object 1 such that O11 6= L11 and I1 = L11.

In other words, there are only two morphisms from a unit to itself. In the
model of binary relations, every singleton set is a unit. Using units, we can
axiomatise the notion of cardinal in a relation algebra; we mainly follow Kawa-
hara [8]:
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Definition 2.3 (Cardinal). A relation algebra with cardinal is a relation al-
gebra with a unit 1 and a monotone function | · | from morphisms to natural
numbers such that for all morphisms Q,R, S of appropriate types:

(C1) |O| = 0,
(C2) |I1| = 1,
(C3) |RT| = |R|,
(C4) |R ∪ S|+ |R ∩ S| = |R|+ |S|,
(C5) if Q is univalent, then |R ∩QTS| ≤ |QR ∩ S| and |Q ∩ SRT| ≤ |QR ∩ S|.

Note that these requirements for a cardinal rule out infinite binary relations:
we have to restrict to binary relations between finite sets, i.e., graphs. Typically,
in this model, the cardinal of a relation is the number of pairs it contains. This
restriction is harmless in practice: we only work with finite sets when we study,
for example, algorithms.

Many natural facts of cardinal can be derived just from conditions (C1)
to (C4), e.g., monotonicity. The last condition (C5) is less intuitive; it is called
the Dedekind inequality in [8]. It allows one to compare cardinalities of mor-
phisms of different types. Kawahara uses it to obtain, e.g., the following result:

Lemma 2.4. Assume a relation algebra with cardinal. For all morphisms Q,R, S
of appropriate type, we have:

1. If R and S are univalent, then |RS ∩Q| = |R ∩QST|.
2. If R is univalent and S is a mapping, then |RS| = |R|.

Leaving cardinals aside, two important classes of morphisms are that of vec-
tors and points, as introduced in [11], for providing a way to model subsets and
single elements of sets, respectively:

– vectors, denoted with lower case letters v, w in the sequel, are morphisms
v : X → Y such that v = vL. In the standard model, this condition precisely
amounts to being of the special shape V × Y for a subset V ⊆ X.

– points, denoted with lower case letters p, q in the sequel, are injective and
nonempty vectors. In the standard model, this condition precisely amounts
to being of the special shape {x} × Y for an element x ∈ X.

In the binary relations model, one can characterise vectors and points from their
Boolean-matrix representation of binary relations: a vector is a matrix whose
rows are either zero everywhere or one everywhere, and a point is a matrix with
a single row of ones and zeros everywhere else. Every morphism with unit as its
codomain is a vector; points with unit as their codomain have cardinal one:

Lemma 2.5. Let p : X → 1 be a point in a relation algebra with a cardinal (and
unit). We have |p| = 1.

We conclude this preliminary section with the notion of pointed relation
algebra. Indeed, in the model of binary relations, the universal relation between
X and Y is the least upper bound of all points between X and Y . This property
is called the point axiom in [4]. Since we restrict to finite relations, we give a
finitary presentation of this law.
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Definition 2.6 (Pointed Relation Algebra). A relation algebra is pointed if
for all X,Y there exists a (finite) set PXY of points such that LXY =

⋃
p∈PXY

p.

As a consequence, in pointed relation algebras it holds IX =
⋃

p∈PXX
ppT. When

working in pointed relation algebras with cardinal, we also have results like the
following, where we use |X| as a shorthand notation for |LX1|:

Lemma 2.7. For all objects X and Y we have |LXY | = |X|·|Y | and |IX | = |X|.

Any pointed relation algebra with cardinal is in fact isomorphic to an algebra
of relations on finite sets; therefore, the above list of axioms can be seen as a
convenient list of facts about binary relations which make it possible to reason
algebraically. Still, our modular presentation of the theory makes it possible to
work in fragments of it where this representation theorem breaks, i.e., for which
other models exist than that of binary relations.

3 Relation Algebra in Coq

The Coq library RelationAlgebra [9, 10] provides axiomatisations and tools for
various fragments of the calculus of relations: from ordered monoids to Kleene
algebra, residuated structures, and Dedekind Categories. It is structured in a
modular way: one can easily decide which operations and axioms to include.

In the present case, these are Boolean operations and constants, composition,
identities, transposition. We extended the library by a module relalg containing
definitions and facts about this particular fragment. For instance, this module
defines many classes of relations, some of which we already mentioned in Sec-
tion 2. For those properties we use classes in Coq:

Class is_vector (C: ops) X Y (v: C X Y) := vector: v∗top == v.

Here we assume an ambient relation algebra C, ops being the corresponding
notion, as exported by the RelationAlgebra library. Variables X,Y are objects
of the category, and v: C X Y is a morphism from X to Y. The symbols * and
== respectively denote composition and equality; top is the top morphism of
appropriate type: its source and target (Y twice) are inferred automatically.

The RelationAlgebra library provides several automation tactics to ease equa-
tional reasoning [9, 10]. The most important ones are:

– ra normalise for normalising the current goal w.r.t. the simplest laws (mostly
about idempotent semirings, units and transposition),

– ra for solving goals by normalisation and comparison,
– lattice for solving lattice-theoretic goals,
– mrewrite for rewriting modulo associativity of categorical composition.

The library also contains a decision procedure for Kleene algebra with tests,
which we do not discuss here for lack of space. Those tactics are defined either by
reflection, where a decision procedure is certified within Coq (ra normalise, ra);
by exhaustive proof search (lattice); or as ad hoc technical solutions (mrewrite,
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which is a plugin in OCaml that applies appropriate lemmas to reorder paren-
theses and generalise the considered (in)equation).

A crucial aspect for this work is the interplay between the definitions from
this library and Coq’s support for setoid rewriting [13], which makes it possible
to rewrite using both equations and inequations in a streamlined way, once the
monotonicity or anti-monotonicity of all operations has been proved.

This is why we use a class to define the above predicate is vector: in this
case, the tactic rewrite vector will look for a subterm of a shape v*top where
v is provably a vector using typeclass resolution, and replace it with v. Similar
classes are set-up for all notions discussed in the sequel (injective, surjective,
univalent, total, mapping, points, and many more).

We also define classes to represent relation algebra with unit, relation algebra
with cardinal, and pointed relation algebra. Units are introduced as follows:

Class united (C: ops) := {
unit: ob C;
top_unit: top’ unit unit == 1;
nonempty_unit:> is_nonempty (top’ unit unit) }.

The field unit is the unit object; the two subsequent fields correspond to the
requirements from Definition 2.2. The symbol 1 is our notation for identity mor-
phisms. Assuming units, one can then define cardinals:

Class cardinal (C: ops) (U: united C) := {
card: forall X Y, C X Y → nat;
card0: forall X Y, @card X Y 0 = 0;
card1: @card unit unit 1 = 1;

cardcnv: forall X Y (R: C X Y), card RT = card R;
cardcup: forall X Y (R S: C X Y), card (R ∪ S) + card (R ∩ S) = card R + card S;
cardded: forall X Y Z (R: C X Y) (S: C Y Z) (T: C X Z),

is_injective R → card (T ∩ (R∗S)) ≤ card (RT ∗ T ∩ S);
cardded’: forall X Y Z (R: C Y X) (S: C Y Z) (T: C Z X),

is_univalent R → card (R ∩ (S∗T)) ≤ card (R ∗ TT ∩ S) }.

The first field is the cardinal operation itself. The remaining ones correspond to
the conditions from Definition 2.3.

Next we give two Coq proofs about cardinals, to show the ease with which
it is possible to reason about them. The first one correspond to Lemma 2.4(2).

Lemma card_unimap X Y Z (R: C X Y) (S: C Y Z):
is_univalent R → is_mapping S → card (R∗S) = card R.

Proof. rewrite ←capxt, card_uniuni, surjective_tx. apply card_weq. ra. Qed.

Here, Lemma uniuni corresponds to Lemma 2.4(1); capxt states that top is a
unit for meet; surjective tx that every surjective morphism R satisfies LR = L;
and card weq that cardinals are preserved by equality.

The second illustrative proof is that of Lemma 2.5, which becomes a oneliner:

Lemma card_point X (R: C X unit): is_point R → card R = 1.
Proof. rewrite ←cardcnv, ←dot1x. rewrite card_unimap. apply card1. Qed.

(Lemma dot1x states that I is a left unit for composition.)
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4 Applications

We first detail an easy example where we link the cardinality of morphisms rep-
resenting linear orders to the cardinality of their carrier sets. The second example
is based on a graph theoretic result giving a lower bound for the cardinality of
an independent set.

4.1 Linear orders

A morphism R : X → X is a partial order on X if R is reflexive, antisymmetric
and transitive (i.e., I ⊆ R, R ∩ RT⊆ I and RR ⊆ R). If R is additionally linear
(i.e., R ∪RT = L) we call R a linear order. Recall that for an object X, |X| is a
shorthand for |LX1|. We have

Theorem 4.1. If R : X → X is a linear order, then |R| = |X|2+|X|
2 .

Proof. Since R is antisymmetric we have R∩RT⊆ I. Furthermore, we have I ⊆ R
since R is reflexive so that R ∩RT = I. Now we can calculate as follows:

|X|2 + |X| = |LXX |+ |IX | (by Lemma 2.7)

= |R ∪RT|+ |IX | (R linear)

= |R ∪RT|+ |R ∩RT| (R reflexive and antisymmetric)

= |R|+ |RT| (by (C4))

= |R|+ |R| (by (C3))

With the presented tools, this lemma can be proved in Coq in a very same
way. First we need to define a notation for the cardinal of an object:

Notation card’ X := card (top’ X unit).
Lemma card_linear_order X (R: C X X): is_order R → is_linear R →

2∗card R = card’ X ∗ card’ X + card’ X.
Proof.
intros Ho Hli.
rewrite ←card_top, ←card_one.
rewrite ←Hli.
rewrite ←kernel_refl_antisym.
rewrite capC, cardcup.
rewrite cardcnv. lia.

Qed.

The standard Coq tactic lia solves linear integer arithmetic. The lemmas card top

and card one correspond to the statements of Lemma 2.7, i.e.,

Lemma card_top X Y: card (top’ X Y) = card’ X ∗ card’ Y.
Lemma card_one X: card (one X) = card’ X.

Lemma kernel refl antisym states that the kernel of a reflexive and antisym-
metric morphism is just the identity.
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4.2 Independence number of a graph

In this section we prove bounds for the independence number of an undirected
graph [16]. An undirected (loopfree) graph g = (X,E) has a symmetric and
irreflexive adjacency relation. It can thus be represented by a morphism R :
X → X that is symmetric (i.e., RT⊆ R) and irreflexive (i.e., R ∩ I = O).

An independent set (or stable set) of g is a set of vertices S such that any
two vertices in S are not connected by an edge, i.e., {x, y} /∈ E, for all x, y ∈ S.
Independent sets can be modelled abstractly using vectors: a vector s : X → 1
models an independent set of a morphism R if Rs ⊆ s . Furthermore, we say
that an independent set S of g is maximum if for every independent set T of g
we have |T | ≤ |S|. The maximum size of an independent set is defined as:

αR , max {|s| | s is an independent set of R} .

One easily obtain the lower bound αR ≤
√
|R |. In fact, we have |s| ≤

√
|R |

for every independent set s, which we can prove in two lines using our library.

The upper bound is harder to obtain. We have |R|
k+1 ≤ αR, where k is the max-

imum degree of R. Call maximal an independent set which cannot be enlarged
w.r.t. the preorder ⊆:

Definition maximal (v: C X unit) := forall w, v <== w → R ∗ w <== !w → w <== v.

As expected, maximum independent sets are maximal:

Lemma maximum_maximal (v: C X unit):
R∗v <== !v → card v = independent_number R → maximal v.

(Note that the converse is not necessarily true.) Then we prove the following
algebraic characterisation of maximal independent sets: while independent sets
are characterised by an inequality (Rv ⊆ v ), maximal are characterised by an
equality (Rv = v ).

Lemma maximal_independent_iff (v: C X unit):
R∗v <== !v → (maximal v ↔ R∗v == !v).

Finally, obtaining the lower bound for the independence number consists in
proving that maximal independent sets, defined algebraically, satisfy this bound:

Lemma maximal_lower_bound (v: C X unit):
R∗v == !v → card’ X ≤ (maximum_degree R + 1) ∗ card v.

Theorem independent_lower_bound:
card’ X <== (maximum_degree R + 1) ∗ independent_number R.

Including the proofs of the three key lemmas, the final theorem is eventually
proved in 41 lines of Coq. We consider this a success as this is comparable to
what is required for a detailed paper proof.
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5 Conclusion

We presented an extension of the Coq RelationAlgebra library [3], that makes
it possible to reason algebraically about cardinalities of binary relations. A key
feature of the Coq proof assistant for this work is dependent types: they allow
us to define relation algebras as categories in a straightforward way, so that we
can talk about vectors or units as one would do on paper. While our approach
to cardinals would certainly work when starting from Kahl’s implementation of
allegories in Agda [7], it remains unclear to us whether it could be adapted to
his formalisation of relation algebra in Isabelle/Isar [6].
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1. R. Berghammer, P. Höfner, and I. Stucke. Tool-based verification of a relational
vertex coloring program. In Proc. RAMiCS, volume 9348 of LNCS, pages 275–292.
Springer, 2015.

2. R. Berghammer, I. Stucke, and M. Winter. Investigating and computing bipar-
titions with algebraic means. In Proc. RAMiCS, volume 9348 of LNCS, pages
257–274. Springer, 2015.

3. P. Brunet, D. Pous, and I. Stucke. Cardinalities of relations in Coq. Coq
Development and full version of this extended abstract; available from http:

//media.informatik.uni-kiel.de/cardinal/, 2016.
4. H. Furusawa. Algebraic Formalisations of Fuzzy Relations and Their Representa-

tion Theorems. PhD thesis, Department of Informatics, Kyushu University, 1998.
5. N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An Algebraic

Glimpse at Substructural Logics. Elsevier, 2007.
6. W. Kahl. Calculational relation-algebraic proofs in Isabelle/Isar. In Proc. RelMiCS,

volume 3051 of LNCS, pages 178–190. Springer, 2003.
7. W. Kahl. Dependently-typed formalisation of relation-algebraic abstractions. In

Proc. RAMiCS, volume 6663 of LNCS, pages 230–247. Springer, 2011.
8. Y. Kawahara. On the Cardinality of Relations. In Proc. RelMiCS/AKA, volume

4136 of LNCS, pages 251–265. Springer, 2006.
9. D. Pous. Relation Algebra and KAT in Coq. Website.

http://perso.ens-lyon.fr/damien.pous/ra/.
10. D. Pous. Kleene Algebra with Tests and Coq tools for while programs. In Proc.

ITP, volume 7998 of LNCS, pages 180–196. Springer, 2013.
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12. G. Schmidt and T. Ströhlein. Relations and Graphs - Discrete Mathematics for

Computer Scientists. EATCS Monographs on Th. Comp. Sci. Springer, 1993.
13. M. Sozeau. A new look at generalized rewriting in type theory. J. Formalized

Reasoning, 2(1):41–62, 2009.
14. A. Tarski. On the calculus of relations. J. of Symbolic Logic, 6(3):73–89, 1941.
15. A. Tarski and S. Givant. A Formalization of Set Theory without Variables, vol-

ume 41 of Colloquium Publications. AMS, Providence, Rhode Island, 1987.
16. V. Wei. A Lower Bound for the Stability Number of a Simple Graph. Bell Labo-

ratories Technical Memorandum 81-11217-9, 1981.

http://dx.doi.org/10.1007/978-3-319-24704-5_17
http://dx.doi.org/10.1007/978-3-319-24704-5_17
http://dx.doi.org/10.1007/978-3-319-24704-5_16
http://dx.doi.org/10.1007/978-3-319-24704-5_16
http://media.informatik.uni-kiel.de/cardinal/
http://media.informatik.uni-kiel.de/cardinal/
http://dx.doi.org/10.1007/978-3-540-24771-5_16
http://dx.doi.org/10.1007/978-3-642-21070-9_18
http://dx.doi.org/10.1007/11828563_17
http://perso.ens-lyon.fr/damien.pous/ra/
http://dx.doi.org/10.1007/978-3-642-39634-2_15
http://dx.doi.org/10.1007/978-3-642-77968-8
http://dx.doi.org/10.1007/978-3-642-77968-8
http://dx.doi.org/10.6092/issn.1972-5787/1574

	Cardinalities of Finite Relations in Coq (Rough Diamond) 

