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Abstract

In this paper we present an extension of a Coq library for relation algebras and
related algebraic structures. So far, the library did not provide any tools about the
cardinalities of relations. Thus we add an algebraic axiomatisation of cardinalities.
Its point-free nature makes it possible to reason about cardinal purely algebraically,
which is well-suited for mechanisation. We present several applications, in the area
of graph theory and program verification.

1 Introduction

Binary relations have a rich algebraic structure: rather than considering relations as
objects relating points, one can see them as abstract objects that can be combined using
various operations (e.g., union, intersection, composition, transpose). Those operations
are subject to many laws (e.g., associativity, distributivity). One can thus use equational
reasoning to prove results about binary relations, graphs, or programs manipulating
such structures. This is the so-called relation-algebraic method [25–27]. It has been
successfully applied in social choice [11], game theory [1], and functional programming [3,
10].

An important advantage of such an approach is that it is more amenable to automa-
tion and mechanisation than the standard approach using points and first-order logic,
see, for instance, [6, 17]. In, for example, [5, 7] it turned out that such an approach is

∗An extended abstract of this article is published in the proceedings of the 7th International Confer-
ence on Interactive Theorem Proving (ITP 2016), see [9]. The first two authors were supported by the
European Research Council (ERC) under the Horizon 2020 programme (CoVeCe, grant agreement No
678157) and the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program
“Investissements d’Avenir” (ANR-11-IDEX-0007)
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very limited, in particular when it comes to heterogeneous relations and to more complex
proofs. Due to this a change to systems providing typed relations becomes necessary.

Lately, the second author developed a library for the Coq proof assistant [21, 22],
allowing one to develop large proofs using the relation algebraic approach. This library
contains powerful automation tactics for some decidable fragments of relation algebra
(Kleene algebra and Kleene algebra with tests), normalisation tactics, and tools for
rewriting modulo associativity of relational composition.

The third author recently relied on this library to formalise algebraic correctness
proofs for several standard algorithms from graph theory. For instance, in [4] a program
for computing vertex colourings is considered by using relation-algebraic reasoning. Fur-
thermore, in [7] there can be found an algebraic investigation of computing bipartitions
with the help of Dedekind categories.

In the present paper, we show how to extend this library to deal with cardinals
of relations, thus allowing one to reason about quantitative aspects. To illustrate the
benefits of such an approach, we first show basic results about the sizes of linear orders
and trees. Then we study the notion of independent sets from graph theory: we prove the
correctness of a standard algorithm for finding them, and we establish standard bounds
about their sizes. Last, we prove a decomposition theorem for relations.

Outline. We start by recalling the basic definitions about binary relations, and the
axiomatisation of relation algebra we use in the sequel (Section 2). Then we describe
how this axiomatisation is formalised in Coq, and how we setup various tools that ease
subsequent developments (Section 3). We present our case-studies in Section 4, and we
conclude in Section 5.

The Coq library associated to this paper is available online:

http://media.informatik.uni-kiel.de/cardinal/

2 Preliminaries

Given two sets X, Y , a binary relation is a subset R ∈ P (X×Y ). The set X (resp. Y )
is called the domain (resp. codomain) of the relation.

With the usual set-theoretic operations of inclusion (⊆), union (∪), intersection (∩),
complement ( · ), the empty relation (OXY ) and the universal relation (LXY ), the binary
relations between two sets X and Y form a Boolean lattice.

Given three sets X, Y, Z, the composition of two relations R ∈ P (X×Y ) and S ∈
P (Y×Z) is defined as follows:

RS , {(x, z) | ∃ y ∈ Y, (x, y) ∈ R ∧ (y, z) ∈ S} ∈ P (X×Z)

Accordingly, given a set X, the identity relation on X is the diagonal relation

IX , {(x, x) | x ∈ X} ∈ P (X×X)

If they can be inferred from the context we omit type annotations for the symbols
denoting constants, thus writing L, O, or I.
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Transposition exchanges domain and codomain: for R ∈ P (X×Y ),

RT, {(y, x) | (x, y) ∈ R} ∈ P (Y×X)

Finally, reflexive transitive closure is an operation on homogeneous relations, those rela-
tions with the same domain and codomain: for R ∈ P (X×X),

R? , {(x0, xn) | ∃x1, . . . , xn−1, ∀ i ∈ N<n, (xi, xi+1) ∈ R} ∈ P (X×X)

These operations can be abstracted through the axiomatic notion of relation algebra.
Binary relations being the standard model of such an algebra, we use the same notations.

Definition 2.1 (Relation Algebra). A relation algebra (with Kleene star) is a category
whose homsets are Boolean lattices, together with two operations of transposition (·T)
and Kleene star (·?) such that:

(P1) composition is monotone in its two arguments, distributes over unions and is ab-
sorbed by the bottom elements;

(P2) transposition maps every morphism R : X → Y into a morphism RT : Y → X,

is monotone, involutive (RTT = R), and reverses compositions: for all morphisms
R, S of appropriate types, we have (RS)T = STRT;

(P3) Kleene star maps every homogeneous morphism R : X → X into a morphism
R? : X → X such that I∪RR? ⊆ R? and for all object Y and morphism S : X → Y ,
RS ⊆ S entails R?S ⊆ S;

(P4) for all morphisms Q,R, S of appropriate types,

QR ⊆ S iff QTS ⊆ R iff S RT⊆ Q ;

(P5) for every morphism R : X → Y , R 6= O if and only if for all objects X ′, Y ′,
LRL = LX′Y ′.

From properties (P2), we deduce that transposition commutes with all Boolean con-
nectives, and that IT = I.

Properties (P3) characterise Kleene star. In fact, together with conditions (P2), they
entail their symmetrical counterparts (I ∪ R?R ⊆ R?, and SR ⊆ S entails SR? ⊆ S), so
that we recover standard Kleene algebra axioms [20].

Equivalences (P4) are called Schröder equivalences in [25]; they correspond to the
fact that the structure is residuated [14]. The last property (P5) is known as Tarski’s
rule; it makes it possible to reason algebraically about non-emptiness.

Important classes of morphisms can be defined algebraically. In the sequel, we use
the following terminology: a homogeneous morphism R : X → X is

• reflexive if I ⊆ R,

• symmetric if RT⊆ R,
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• transitive if RR ⊆ R.

One can easily check that these definitions correspond to the standard definitions in the
model of binary relations. For instance, for reflexivity we have

R ∈ P (X×X) is reflexive

⇐⇒ ∀x ∈ X, (x, x) ∈ R
⇐⇒ ∀x, y ∈ X, x = y ⇒ (x, y) ∈ R
⇐⇒ ∀x, y ∈ X, (x, y) ∈ I⇒ (x, y) ∈ R
⇐⇒ I ⊆ R

We shall see other classes of homogeneous morphisms in Section 4. We also say that an
arbitrary morphism R : X → Y is:

• injective if RRT⊆ I,

• surjective if I ⊆ RTR,

• univalent if its transpose is injective (i.e., RTR ⊆ I),

• total if its transpose is surjective (i.e., I ⊆ RRT),

• a mapping if R is total and univalent.

Again, these definitions correspond to the standard definitions in the model of binary
relations. For instance, for injectivity we have

R ∈ P (X×Y ) is injective

⇐⇒ ∀x, y ∈ X, ∀z ∈ Y, (x, z) ∈ R ∧ (y, z) ∈ R⇒ x = y

⇐⇒ ∀x, y ∈ X, (∃z ∈ Y, (x, z) ∈ R ∧ (y, z) ∈ R)⇒ x = y

⇐⇒ ∀x, y ∈ X, (∃z ∈ Y, (x, z) ∈ R ∧ (z, y) ∈ RT)⇒ x = y

⇐⇒ ∀x, y ∈ X, (x, y) ∈ RRT⇒ (x, y) ∈ I

⇐⇒ RRT⊆ I

Before introducing cardinals, we need a way to abstract over the singleton sets from
the model of binary relations. Therefor we use the following definition:

Definition 2.2 (Unit in a Relation Algebra). A unit in a relation algebra is an object
1 such that O11 6= L11 and I1 = L11.

In other words, there are only two morphisms from a unit to itself. In the model of
binary relations, every singleton set is a unit.

Using units, we can axiomatise the notion of cardinal in a relation algebra. To this
end, we mainly follow Kawahara [19]:

Definition 2.3 (Cardinal). A relation algebra with cardinal is a relation algebra with a
unit 1 and a monotone function | · | from morphisms to natural numbers such that for
all morphisms Q,R, S of appropriate types:

4



(C1) |O| = 0,

(C2) |I1| = 1,

(C3) |RT| = |R|,

(C4) |R ∪ S|+ |R ∩ S| = |R|+ |S|,

(C5) if Q is univalent, then |R ∩QTS| ≤ |QR ∩ S| and |Q ∩ SRT| ≤ |QR ∩ S|.

A difference with Kawahara’s axioms is that we do not require |R| = 0 to entail
R = O, as this follows from the assumptions of Definition 2.4 below. Note that these
requirements for a cardinal rule out infinite binary relations: we have to restrict to
binary relations between finite sets. Typically, in this model of (finite) binary relations,
the cardinal of a relation is the number of pairs it contains. This restriction is harmless
in practice: we only work with finite sets when we study, for example, algorithms.

Many natural facts of cardinal can be derived just from conditions (C1) to (C4).
For example we get |

⋃
R∈RR| =

∑
R∈R |R| for every finite set R of pairwise disjoint

morphisms. The last condition (C5) is less intuitive; it is called the Dedekind inequality
in [19]. It allows one to compare cardinalities of morphisms of different types. Kawahara
uses it to obtain, for instance, the following result, which we need in the sequel:

Lemma 2.1. Assume a relation algebra with cardinal. For all morphisms Q,R, S of
appropriate type, we have:

1. If R and S are univalent, then |RS ∩Q| = |R ∩QST|.

2. If R is univalent and S is a mapping, then |RS| = |R|.

Leaving cardinals aside, two important classes of morphisms are that of vectors and
points, as introduced in [24], for providing a way to model subsets and single elements
of sets, respectively:

• vectors, denoted with lower case letters v, w in the sequel, are morphisms v : X →
Y such that v = vL. In the standard model, this condition precisely amounts to
being of the special shape V × Y for a subset V ⊆ X.

• points, denoted with lower case letters p, q in the sequel, are injective and nonempty
vectors. In the standard model, this condition precisely amounts to being of the
special shape {x} × Y for an element x ∈ X.

Hence in the binary relations model there is a one-on-one correspondence between vectors
from X to Y and subsets of X, points being the vectors associated with singleton sets.
Another characterisation can be described from the Boolean-matrix representation of
binary relations: a vector is a matrix whose rows are either zero everywhere or one
everywhere, and a point is a matrix with a single row of ones and zeros everywhere else.

Also note that from Tarski’s rule (P5) and non-emptiness, one deduces that points
are surjective, thus the transpose of a point is a mapping.

Every morphism with unit as its codomain is a vector. As expected, points with unit
as their codomain have cardinal one:
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Lemma 2.2. Let p : X → 1 be a point in a relation algebra with a cardinal (and unit).
We have |p| = 1.

Proof. We have |p| = |pT| = |I1pT| = |I1| = 1, using cardinality axiom (C3), Lemma 2.1(2)
(I1 is univalent and pT : 1→ X is a mapping) and cardinality axiom (C2).

We conclude this preliminary section with the notion of pointed relation algebra.
Indeed, in the model of binary relations, the universal relation between X and Y is the
least upper bound of all points between X and Y . This property is called the point
axiom in [13]. Since we restrict to finite relations, we give a finitary presentation of this
law.

Definition 2.4 (Pointed Relation Algebra). A relation algebra is pointed if for all X, Y
there exists a (finite) set PXY of points such that

LXY =
⋃

p∈PXY

p .

A typical result in pointed relation algebras is that the identities decompose as follows:

IX =
⋃

p∈PXX

ppT

When working in pointed relation algebras with cardinal, we also have results like
the following, where we use |X| as a shorthand notation for |LX1|:

Lemma 2.3.

1. For all objects X and Y we have |LXY | = |X|·|Y |.

2. For every object X we have |IX | = |X|.

In fact pointed relation algebras always have a cardinal:

Proposition 2.1. Avery pointed relation algebra with unit has a (unique) cardinal given
by the function

(R : X → Y ) 7→ #
{

(p, q) | p ∈ PX1, q ∈ PY 1, pq
T⊆ R

}
.

3 Relation Algebra in Coq

The Coq library RelationAlgebra [21,22] provides axiomatisations and tools for various
fragments of the calculus of relations: from ordered monoids to Kleene algebra, residu-
ated structures, and Dedekind Categories. It is structured in a modular way: one can
easily decide which operations and axioms to include.

In the present case, these are Boolean operations, composition, identities, transpose,
and Kleene star. We extended the library with a module relalg containing definitions
and facts about this particular fragment. For instance, this module defines many classes
of relations, some of which we already mentioned in Section 2. For those properties we
use classes in Coq:
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Class is_vector (C: ops) X Y (v: C X Y) := vector: v∗top == v.

Here we assume an ambient relation algebra C, ops being the corresponding notion, as
exported by the RelationAlgebra library. Variables X,Y are objects of the category, and v:

C X Y is a morphism from X to Y. The symbols * and == respectively denote composition
and equality; top is the top morphism of appropriate type: its source and target (Y twice)
are inferred automatically.

We use a class to ease rewriting in subsequent proofs: in this case, the tactic rewrite

vector will look for a subterm of a shape v*top with v provably a vector using typeclass
resolution, and replace it with v. Similar classes are set-up for all notions discussed in
the sequel (injective, surjective, univalent, total, mapping, points, and much more).

The library does not provide Tarski’s rule (P5), which is not positive. Still, many
results can be obtained by using the following definition of non-emptiness:

Class is_nonempty (C: ops) X Y (R: C X Y) :=
nonempty: forall p q, top’ p q <== top ∗ R ∗ top.

(In the second line, the notation top’ p q is used to specify the source and the target
of the top morphism: they cannot be inferred automatically. The symbol <== denotes
the preorder ⊆.) Some proofs however require us to link this algebraic definition of
non-emptiness to the ambient logic, using Tarski’s rule. For this purpose we use the
following class:

Class tarski (C: ops) :=
Tarski: forall X Y (R: C X Y), ∼(R <== 0) ↔ is_nonempty R.

(Here, the prefix symbol ∼ is Coq’s negation—thus in the ambient logic.)
The RelationAlgebra library provides several automation tactics to ease equational

reasoning [21,22]. The most important ones are:

• ra normalise for normalising the current goal w.r.t. the simplest laws (mostly
about idempotent semirings, units and transposition),

• ra for solving goals by normalisation and comparison,

• lattice for solving lattice-theoretic goals,

• mrewrite for rewriting modulo associativity of categorical composition,

• ka for solving goals about Kleene algebra, using automata algorithms.

For an example of the latter tactic, consider the law R? = (RR)? ∪ R(RR)?. This
equation actually belongs to the equational theory of Kleene algebra and can be proved
automatically by ka.

Lemma decomp_str (C: ops) X (R: C X X): R? == (R∗R)? ∪ R∗(R∗R)?.
Proof. ka. Qed.

While giving an explicit proof from axioms (P1) and (P3) is not overwhelming, it already
requires a few lines and some non-trivial reasoning. In larger proofs, it is thus extremely
beneficial to be able to rely on such an automated tactic.

We define three more classes to represent relation algebra with unit, relations algebra
with cardinal, and pointed relation algebra. Units are introduced as follows:
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Class united (C: ops) := {
unit: ob C;
top_unit: top’ unit unit == 1;
nonempty_unit:> is_nonempty (top’ unit unit) }.

The field unit is the unit object; the two subsequent fields correspond to the requirements
from Definition 2.2. The symbol 1 is our notation for identity morphisms.

Assuming units, one can then define cardinals:

Class cardinal (C: ops) (U: united C) := {
card: forall X Y, C X Y → nat;
card0: forall X Y, @card X Y 0 = 0;
card1: @card unit unit 1 = 1;

cardcnv: forall X Y (R: C X Y), card RT = card R;
cardcup: forall X Y (R S: C X Y),

card (R ∪ S) + card (R ∩ S) = card R + card S;
cardded: forall X Y Z (R: C X Y) (S: C Y Z) (T: C X Z),

is_injective R → card (T ∩ (R∗S)) ≤ card (RT ∗ T ∩ S);
cardded’: forall X Y Z (R: C Y X) (S: C Y Z) (T: C Z X),

is_univalent R → card (R ∩ (S∗T)) ≤ card (R ∗ TT ∩ S) }.

The first field is the cardinal operation itself. The remaining ones correspond to the
conditions from Definition 2.3. (Dedekind inequalities (C5) are split into two fields and
typeset slightly differently to ease rewriting.)

Next we give three Coq proofs about cardinals, to illustrate the ease with which it is
possible to reason about them. The first two correspond to Lemma 2.1.

Lemma card_uniuni X Y Z (R: C X Y) (S: C Y Z) (T: C X Z):

is_univalent R → is_univalent S → card (R∗(S ∩ T)) = card (R ∩ (T∗ST)).
Proof.
apply antisym.
rewrite ←cardcnv, cnvcap, cnvdot, capC.
rewrite cardded, ←cardcnv. apply card_leq. ra.
rewrite cardded’. apply card_leq. ra.

Qed.

The lemma antisym makes it possible to prove an equality by double inclusion; cnvcap
and cnvdot state that transpose commutes with meets and composition; capC states
commutativity of meet; card leq correlates with monotonicity of the cardinal operation.

Lemma card_unimap X Y Z (R: C X Y) (S: C Y Z):
is_univalent R → is_mapping S → card (R∗S) = card R.

Proof.
rewrite ←capxt, card_uniuni, surjective_tx. apply card_weq. ra.

Qed.

Lemma capxt states that top is a unit for meet; surjective tx that every surjective
morphism R satisfies LR = L; and card weq that cardinals are preserved by equality.

The third Coq proof we show here is that of Lemma 2.2. It follows precisely the one
we gave earlier.

Lemma card_point X (R: C X unit): is_point R → card R = 1.
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Proof.
rewrite ←cardcnv, ←dot1x. rewrite card_unimap. apply card1.

Qed.

Lemma dot1x states that I is a left unit for composition.

Finally, pointed relation algebras are defined by requiring a finite set of points for
each homset, of which L is the least upper bound. We implement such sets by duplicate-
free lists: this may not come as a surprise to literate Coq users, as lists are integrated
into the Coq system, and thus quite convenient to use.

Class pointed (C: ops) := {
points: forall X Y, list (C X Y);
points_points: forall X Y p, In p (points X Y) → is_point p;
points_nodup: forall X Y, nodup (points X Y);
point_ax: forall X Y, top == \sup_(p\in points X Y) p }.

To manipulate this (finite but not binary) least upper bound, we rely on the support
already provided in RelationAlgebra, largely inspired from “big operators” in mathcom-
p/ssreflect [8, 15]. Whence the \sup_(...)... notation in the field point ax.

4 Applications

In this section we present some applications of the usage of cardinals. We start with an
easy example where we link the cardinality of morphisms representing linear orders or
trees to the cardinality of their carrier sets. Then we present examples that are related to
graph theoretical results and algorithms: the presented abstraction via relation algebra
can be used in the context of program verification.

4.1 Linear orders

A morphism R : X → X is a partial order on X if R is reflexive, antisymmetric and
transitive (i.e., I ⊆ R, R ∩ RT ⊆ I and RR ⊆ R). If R is additionally linear (i.e.,
R ∪ RT = L) we call R a linear order. Recall that for an object X, |X| is a shorthand
for |LX1|. We have

Theorem 4.1. If R : X → X is a linear order, then |R| = |X|2+|X|
2

.

Proof. Since R is antisymmetric we have R ∩RT⊆ I. Furthermore, we have I ⊆ R since
R is reflexive so that R ∩RT = I. Now we can calculate as follows:

|X|2 + |X| = |LXX |+ |IX | (by Lemma 2.3)

= |R ∪RT|+ |IX | (R linear)

= |R ∪RT|+ |R ∩RT| (R reflexive and antisymmetric)

= |R|+ |RT| (by (C4))

= |R|+ |R| (by (C3))
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With the presented tools, this lemma can be proved in Coq in a very same way. First
we define a notation for the cardinal of an object:

Notation card’ X := card (top’ X unit).

Then we proceed as follows:

Lemma card_linear_order X (R: C X X): is_order R → is_linear R →
2∗card R = card’ X ∗ card’ X + card’ X.

Proof.
intros Ho Hli.
rewrite ←card_top, ←card_one.
rewrite ←Hli.
rewrite ←kernel_refl_antisym.
rewrite capC, cardcup.
rewrite cardcnv. lia.

Qed.

The standard Coq tactic lia solves linear integer arithmetic. The lemmas card top and
card one correspond to the items of Lemma 2.3, i.e.,

Lemma card_top X Y: card (top’ X Y) = card’ X ∗ card’ Y.
Lemma card_one X: card (one X) = card’ X.

4.2 Number of edges in trees

Next, we want to show how to use relation algebra for mechanising graph theoretical
results. Our first example is a well-known result about trees stating that the number of
edges in a tree is exactly the number of vertices minus one.

We follow the presentation from [2]. A forest is an acyclic directed graph such that
each vertex has at most one parent. We represent a directed graph by a morphism
R : X → X. Acyclicity can be expresses by using the transitive closure denoted with
R+ where R+ , R?R. Then R is acyclic if its transitive closure is irreflexive, i.e.,
R+ ∩ I = O. Unicity of the parents is just injectivity. A tree is a forest with a vertex r
called the root, such that every vertex can be reached from the root. The latter condition
can be modelled algebraically by rL ⊆ R?. In this setting, we want to prove

Theorem 4.2. If R : X → X models a tree, then |R| = |X| − 1.

Accordingly in Coq, we use classes to ease rewriting as before, and we define:

Class is_forest X (R: C X X) := {
unique_parents:> is_injective R;
acyclic:> is_irreflexive (R+) }.

Class is_tree X (R: C X X) (r: C X unit):= {
tree_forest:> is_forest R;
root_is_point:> is_point r;
root_reaches_all_vertices: r∗top <== R? }.

We only outline the key steps in our formalisation. First, the root of a tree has no
parent:
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Lemma no_parent_to_root X (R: C X X) (r: C X unit): is_tree R r → R∗r == 0.

Second, the root is the only node with no parent:

Lemma only_root_without_parent X (R: C X X) (r p: C X unit):
is_tree R r → is_point p → R ∗ p <== 0 → p == r.

Third, non-root nodes have exactly one parent:

Lemma card_parents_proper_node X (R: C X X) (r p: C X unit):
is_tree R r → is_point p → p ∩ r <== 0 → card (R ∗ p) = 1.

The Coq proofs for these three lemmas are respectively 11, 3, and 4 lines long. We finally
obtain the theorem with 16 more lines.

Theorem card_tree X (R: C X X) (r: C X unit): is_tree R r → card R = card’ X −1.

In the end, the mechanised proof closely follows the paper one [2], and it is of similar
size.

4.3 Approximation of maximal independent sets

The next example is motivated by the rising importance of the tool-supported verification
of software. Therefore, we present a program for approximating maximum independent
sets in undirected graphs. It is based on an algorithm developed and presented in [28].
In [5] a relation-algebraic formulation as well as a proof of its correctness can be found.
The proof is based on the assertion-based verification method, see, e.g., [12, 16], using
pre- and post-conditions, and invariants.

An undirected (loopfree) graph g = (X,E) has a symmetric and irreflexive adjacency
relation. It can thus be represented by a morphism that is symmetric (RT ⊆ R) and
irreflexive (R ∩ I = O).

An independent set (or stable set) of g is a set of vertices S such that any two vertices
in S are not connected by an edge, i.e., {x, y} /∈ E, for all x, y ∈ S. Furthermore, we say
that an independent set S of g is maximal if for every independent set T of g we have
|T | ≤ |S|.

Independent sets can be modelled abstractly using vectors: a vector s : X → 1 mod-
els an independent set of a morphism R if Rs ⊆ s . Again, one can check the corre-
spondence between this specification and the graph theoretical definition by equivalence
transformations.

The following relation-algebraic program takes as input a relation representing an
undirected graph and outputs an independent set. We assume a function pick point(·)
to pick a point p ⊆ v out of a non-empty vector v, in a deterministic but unspecified
manner.

Input: R : X → X
1 s := OX1 ; v := OX1 ;
2 while v 6= L do
3 let p = pick point( v ) in
4 s := s ∪ p ; v := v ∪ p ∪Rp;
5 end
6 return s ;

Wei’s algorithm
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This greedy algorithm operates by maintaining a set v (vector) of visited vertices (points),
and uses a vector s to store the the independent set being built. Both these vectors are
initially empty. At each step, we pick a point p in the complement of v, to ensure it has
not been visited yet, and add it to s. We then add to the vector v both p and all of its
neighbours. The algorithm stops when they are no more points to be picked, meaning
that v encompasses all vertices of the graph.

When the maximum degree of the input graph is k, the returned independent set is
at most k + 1 times smaller than every other one. This is what we prove in the sequel.

That a (symmetric) morphism R : X → X has degree at most k is modelled by
requiring that |Rp| ≤ k for every point p : X → 1. Then we define the following
predicates:

• Inv(R, s, v): s is an independent set of R and Rs ∪ s = v;

• Post(R, s): s is an independent set of R and for every independent set t of R, we
have |t| ≤ (k + 1) · |s|.

The first predicate is the loop invariant: in addition to maintaining an independent set
in s, the vector v should collects all vertices contained in the present independent set s
and, additionally, their neighbours. The second predicate is the post-condition: s should
be an independent set of appropriate size.

We use the standard assertion-based verification method: assuming that R is sym-
metric, irreflexive, and of degree at most k, we just have to show the following three
proof obligations for partial correctness:

(PO1) Inv(R,OX1,OX1)

(PO2) Inv(R, s, v) and v 6= L imply Inv(R, s ∪ p, v ∪ p ∪Rp), for every point p ⊆ v .

(PO3) Inv(R, s, v) and v = L imply Post(R, s)

For total correctness we also need to provide a loop variant to ensure termination. The
cardinal of the vector v does the job: it strictly increases at each iteration:

(PO4) if p is a point satisfying p ⊆ v , then |v| < |v ∪ p ∪Rp|

Using the lemmas and tactics from RelationAlgebra as well as a small library of basic
facts about cardinals, we discharge these proof obligations in Coq in a streamlined way.
The proof of (PO1) is fully automatic, using the tactic ra; and those of (PO2), (PO3),
and (PO4) are respectively 9, 9, and 6 lines long.

4.4 Independence number of a graph

The investigation of graph parameters is an important field in graph theory, for instance
their dependencies and their lower and upper bounds [28]. In this section we give bounds
for the independence number of an undirected graph g = (X,E), modelled again by a
symmetric and irreflexive morphism R : X → X, i.e., the maximal size of an independent
set defined as:

αR , max {|s| | s is an independent set of R} .

12



To replay this definition in Coq, we use the support for big operations provided by
the RelationAlgebra library, by declaring the (max,+) algebra on natural numbers as a
model.

One easily obtain the following lower bound: αR ≤
√
|R |. In fact, we have |s| ≤√

|R | for every independent set s, which we can prove in two lines using our library.

The upper bound is harder to obtain. We have |X|
k+1
≤ αR, where k is the maximum

degree of R. Call maximum an independent set of maximal cardinal (αR); call instead
maximal an independent set which cannot be enlarged w.r.t. the preorder ⊆:

Definition maximal (v: C X unit) := forall w, v <== w → R ∗ w <== !w → w <== v.

As expected, maximum independent sets are maximal:

Lemma maximum_maximal (v: C X unit):
R∗v <== !v → card v = independent_number R → maximal v.

(Note that the converse is not necessarily true.) Then we prove the following algebraic
characterisation of maximal independent sets: while independent sets are characterised
by an inequality (Rv ⊆ v ), maximal are characterised by an equality (Rv = v ).

Lemma maximal_independent_iff (v: C X unit):
R∗v <== !v → (maximal v ↔ R∗v == !v).

Finally, obtaining the lower bound for the independence number consists in proving
that maximal independent sets, defined algebraically, satisfy this bound:

Lemma maximal_lower_bound (v: C X unit):
R∗v == !v → card’ X ≤ (maximum_degree R + 1) ∗ card v.

Theorem independent_lower_bound:
card’ X <== (maximum_degree R + 1) ∗ independent_number R.

Including the proofs of the three key lemmas, the final theorem is eventually proved
in 41 lines of Coq. We consider this a success as this is comparable to what is required
for a detailed paper proof.

4.5 Decomposition as a union of univalent morphisms

The last result we want to prove with the tools of Section 3 is the following:

Theorem 4.3. For all k ∈ N and morphism R : X → Y the following facts are equiva-
lent:

1. There exists a collection {F1, . . . , Fk} of k pairwise disjoint and univalent mor-
phisms with R =

⋃k
i=1 Fi.

2. For every point p : X → 1 it holds that |RTp| ≤ k.

It states that every morphism can be represented by the union of pairwise disjoint
univalent morphisms. As an immediate consequence we get that a morphism R : X → Y
is univalent iff for every point p : X → 1 it holds that |RTp| ≤ 1. A dual characterisation
can be obtained for total morphisms, i.e., that R : X → Y is total iff it holds |RTp| ≥ 1
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for every point p : X → 1. Both statements are proved in [2]. Furthermore, in the
context of graph theory, if R : X → X is an adjacency relation, the second property
means that the maximum (in-)degree in the modelled graph is smaller than k. This
theorem translates as follows in Coq:

Theorem decompose X Y (R: C X Y) k:
(exists l: list (C X Y),

length l = k ∧ disjoint l ∧
(forall F, In F l → is_univalent l) ∧
R == \sup_(F\in l) F)

↔ forall p: C X unit, is_point p → card (RT∗p) <== k.

As in the case of the point axiom, we use a list l to represent the collection {F1, . . . , Fk}
mentioned in Theorem 4.3. The predicate disjoint l states that any two distinct ele-
ments of the list l have an empty intersection.

The direct implication is easy; we obtain it in 5 lines. The reverse implication is
proved by induction on k. The base case only requires 5 lines; the inductive case requires
23 lines, and an additional hypothesis on the considered relation algebra: a relational
version of the Axiom of Choice. We use the following formulation, stemming from [23].

Definition 4.1 (Relational Axiom of Choice). A relation algebra satisfies the axiom of
choice if for every morphism R : X → X, there exists a univalent morphism F such that
F ⊆ R and FL = RL.

In this example, although the resulting Coq proof closely follows the paper one, it is
noticeably more compact. Our explanation is that once we move to relation algebraic
proofs, convincing a computer becomes easier than convincing a human reader: we just
need to name lemmas and axioms in the Coq proof, while we constantly need to recall
the current algebraic expressions in a paper proof.

5 Conclusion

We presented an extension of the Coq RelationAlgebra library, that makes it possible
to reason algebraically about cardinalities of binary relations. Using this library, we
showed how to formalise results ranging from simple properties of linear orders or trees,
to correctness of an approximation algorithm from graph theory, and a more abstract
decomposition theorem.

A key feature of the Coq proof assistant for this work is dependent types : they allow
us to define relations algebras as categories in a straightforward way, so that we can
talk about vectors or units as one would do on paper. This sharply contrasts with the
situation in other attempts with theorem provers, where the authors had to painfully
restrict to homogeneous relations. Of course, such an restriction is not possible if one
wants to deal with cardinals as in the present work.

The ability to mechanise basic results from graph theory in a streamlined way is
something crucial from our point of view: proofs in graph theory are often quite informal
and intuitive (for the sake of readability), so that their formalisation can require a lot of
work. In the present work, we have shown that the relation algebraic approach could be
an efficient way to attack such a difficult task.
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