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Abstract

Entomology has had many applications in many biological domains (i.e insect
counting as a biodiversity index). To meet a growing biological demand and
to compensate a decreasing workforce amount, automated entomology has been
around for decades. This challenge has been tackled by computer scientists as
well as by biologists themselves. This survey investigates fourty-four studies
on this topic and tries to give a global picture on what are the scientific locks
and how the problem was addressed. Views are adopted on image capture,
feature extraction, classification methods and the tested datasets. A general
discussion is finally given on the questions that might still remain unsolved such
as: the image capture conditions mandatory to good recognition performance,
the definition of the problem and whether computer scientist should consider
it as a problem in its own or just as an instance of a wider image recognition
problem.

Keywords: image-based insect recognition; classification; automated
entomology; arthropods

1. Introduction

Building accurate knowledge of the identity, the geographic distribution and
the evolution of living species is essential for a sustainable development of hu-
manity as well as for biodiversity conservation. Insects are a class of inverte-
brates within the arthropods that have a exoskeleton, a three-part body (head,
thorax and abdomen), three pairs of jointed legs, compound eyes and one pair
of antennae. This is a subclass of the Arthropods class which also includes
Arachnids, Myriapods and Crustacean and they have been the dominant com-
ponent of animal species diversity for all of the past 520 million years, since the
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main burst of the Cambrian radiation. They have been considered to be the
earliest colonizers of land [1, 2]. Fossil remains demonstrate that Arthropod
species are robust over long periods of time, and that, given the opportunity,
they migrate with changing conditions rather than evolving new species [3].
Arthropods are of exceptional value in the reconstruction of paleoenvironments
because they are provide detailed, precise information on vegetation, soils, wa-
ter quality, vertebrate species composition, forest composition and degree of
stress [3]. Arthropods represent up to 80% of animal phylum [4] and make up
for the largest proportion of species richness at any spatial scale [5]. With 1,5
millions of species, they are more representative for wholesale organism bio-
diversity than any other group. Arthropods have been recognized as efficient
indicators of ecosystem function and recommended for use in conservation plan-
ning [6, 7, 8, 9]. Many researchers have assessed habitat quality and measured
habitat differences using Arthropods within different ecosystems as well as agri-
cultural, forest and urban landscapes [10, 11, 12, 13, 14]. More specifically,
arthropod diversity has been used to indicate the impacts of habitat modifica-
tion [7, 15, 16] to measure the effects of human disturbance [17].

Species identification of Arthropods is a fundamental part of recognizing
and describing biodiversity. Traditionally, identification has been based on mor-
phological diagnoses provided by taxonomic studies. Only experts such as tax-
onomists and trained technicians can identify taxa accurately, because it requires
special skills acquired through extensive experience. However, the number of
taxonomists and other identification experts has drastically decreased. In some
cases a trained technician could make routine identifications using morphologi-
cal “keys” (step-by-step instructions of what to look for), but in most cases an
experienced professional taxonomist is needed. The use of Arthropods as biotic
indicator is slown down by the high level of expertise required to identify insects.
It is an obstacle to a broad and easy application [18]. Consequently, alternative
and accurate identification methods non-experts can possibly use are required.

Finding automatic methods for such identification is an important topic
with many expectations. One of the most common data that can be used in this
context are images. Images of arthropods can be acquired and further processed
by an image classification system. Such images also have some specificity (see
the next sections) and might require adaptation of existing image recognition
methods, or new methods.

The aim of this paper is to provide an overview of this domain as thor-
ough as possible. It is structured as follows: Section 2 describes with more
precision the scope of this survey and the methodology used to analyze the
literature. Section 3 considers the first step of all approaches, i.e., image acqui-
sition. Section 4 is devoted to features extraction, some of them being specific
to arthropods. Section 5 describes the classification of the data into known
classes. Section 6 details the existing datasets and, finally, Section 7 provides a
discussion on this domain, with some conclusions and perspectives.
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2. Scope of this survey and methodology

2.1. Scope and previous surveys

The scope of this survey can be stated as follows: the kind of animals we
deal with are arthropods. In a vernacular manner, we will abusively use the
term insects to denote these animals. The data acquired from these animals
are 2D images: we do not consider for instance other kind of data, such as 3D
images [19], sound [20, 21], genomic data [22], etc. We are especially interested
in methods that can process 2D images with “normal lighting and shooting”
conditions, that is when images are acquired by standard cameras (even mobile
or embedded devices). Finally, we consider the systems that extract features
from images and that perform a classification of the animals into known classes.

Two previously published surveys are relevant to these scope and aims. In
[23], the authors take the general point of view of species identification and
discuss the current state of the field and possible perspectives. They underline
the key difficulties to solve this problem and the reasons why it is yet no so
much developed. They discuss examples of successful achievements that were
initially made and provide motivations for further studying this problem. In
[24], the authors list a few papers from recent years. In this survey, we adopt
a more focused and detailed level of description than in [23]. In comparison
to [24], we provide more references and a common framework to analyze and
compare them. The proposed survey is more centered on computer science
point of view than the cited surveys. Consequently, it can be very useful for
researchers in Pattern Recognition field. Furthermore, final discussions provide
valuable questions that could be the starting points for researcher who intend
embarking on automatic arthropods identification.

2.2. Problem definition

Image-based arthropod classification could be seen as an application of image
classification. Based on some photograph depicting the specimen, its biological
identity is to be determined. The peculiarities of the problem are three-fold :
taxonomy, image variations and incrementality.

Arthropod species, as for any living species, are grouped into taxons at
several scales. These scales constitute the biological taxonomy which can be
seen as a tree grouping species based on genetic similarity. In Figure 1 are
shown the scales relevant to arthropod classification. The biologists might be
willing to use a scale or another depending on their scopes and applications.
For instance, biodiversity studies need very fine information (down to species
precision) and, conversely, pest management applications require less precise
information (say to a genus information). The problem can therefore be seen
differently along granularity in the taxonomy.

Aside from classical object image variations (such as rotation, scale, par-
allax, background or lightning), insect images have more particular properties
such as pose (because specimen appearance varies with the orientation they are
been shown) and deformation (because the specimens are most of the time com-
posed of articulated parts). These aforementioned variations can be referred to
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as capture-specific variations in the sense they only depend on capture factors.
About the objects themselves (object-specific variations), age, sex and genetic
mutations are the main factors of visual variations. The most instructive exam-
ple is that of lepidoptera (commonly referred to as butterflies) which can have
extremely different visual aspects along time (being successively caterpillars,
chrysalises and butterflies).

Finally, given the considerable diversity amongst arthropods, classes are
highly numerous and, besides, new classes remain undiscovered. This property
can be seen as incrementality.

order

family

genus

species

Figure 1: The taxonomic scales relevant to arthropod classification

2.3. Methodology

To describe this state of art on image-based recognition of insects, we used
the following methodology. Starting from a set of fourty-four papers, we de-
scribed each paper along several analytic points of view. These analytic points
of view are related to a classical image recognition system. Such a system can
be decomposed into three sequential phases: a) Image capture; b) Feature ex-
traction and c) Classification. Image capture consists of the tools and methods
used to take photos of the insects (discussed in Section 3). Features extraction
consists of extracting useful visual information out of the pictures (discussed
in Section 4). Finally, classification is the actual step at which recognition is
performed based on the extracted information (discussed in Section 5). The
datasets are the images used to train and test the system (discussed in Sec-
tion 6).

A set of criteria were chosen to analyze the literature from different per-
spectives and summarize it into useful information for further use. Are images
capture with or without constraints? In the wild or in the lab? Are features
domain-dependent or conventional from the computer vision community? What
are the classifiers used in the literature? How is the performance evaluation
carried out? What are the number of classes or the data set size? Are data
sets publicly available or not ? All these criteria can be seen as different di-
mensions or angles to categorize, summarize and identify relationships between
approaches. Once these pieces of information are obtained, the papers were
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clustered based on them. Both dimensions and clusters are further exposed
along the next sections.

3. Image capture settings and apparatuses

A first categorization which can be made is based on the type of image
capture setting and on the context of the acquisition. In fact, the acquisition
mode might influence the techniques used for the identification of the insects,
but also the context of application of such algorithms. In this context, several
analytic dimensions can be considered. The first is about acquisition conditions,
that basically deals with the insects (both in the way they are captured and
taken care of) and the way the images are produced (the capture tools and the
overall protocol). The second is what we name as pose constraint, that is how
much we allow the point of view on the insect to be variating. A constrained
pose setting specifies we want to see, for instance, only the front side of the
insect we capture the image of. An unconstrained pose setting, in the contrary,
induces variability in orientation of the individual and therefore in their apparent
shapes, details and colours. Next, closely related to the pose, the part or area
of the individual is to be considered. Some insects are better recognized from
their wings as others from their entire body.

(a) [25] (b) [26]

Lab-based samples

(c) [27] (d) [28]

Field-based samples

(e) [29] (f) [30]

Multi-individuals samples

Figure 2: Image samples

Therefore we have divided the considered works into two broad categories:
lab-based setting and field-based setting. In a lab-based setting there is a fixed
protocol for image acquisition. This protocol governs the insect trapping, its
placement and the material used for the acquisition (capture sensor, lighting
system, etc.). Lab-based setting is mainly used by entomologists bringing the
insects to the lab to inspect them and to identify them. Therefore, they have
the possibility to manage the image acquisition system. By field-based setting
we mean a capture of insects directly in cultivated fields, without any particular
constraints to the images capture system. Typically the acquisition is made by a
mobile device and the insect is alive when the picture is taken. The application
context of this type of setting is that of a farmer who wishes to identify an insect
to know, for example, if it belongs to a devastating species or not. In this context
no, or little, knowledge of the identification system is required by the user other
than the user interface. At these two categories we add a third, smaller, which
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includes the works whose acquisition system is such that in a picture there are
more insects than one. In such setting, a more complex segmentation phase
might be required before the identification to isolate each insect.

A taxonomy of the reviewed papers is shown in Table 1. For each paper
the taxonomy reports the corresponding bibliographic reference. We will high-
light, in the next paragraphs, the most interesting acquisition systems from the
considered papers (or a group of papers using similar settings).

Category Levels Refs

Lab-based
Manual
Positioning

Constrained
Pose

[31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 19,
41, 42, 43, 44, 45, 26, 25, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55]

Unconstrained
pose

[56, 57, 58, 59, 30, 60, 61, 62, 52]

Automatic Posi-
tioning

[63, 57, 59]

Field-based [28, 64, 27]
Multi-
individuals

[29, 65, 66, 30]

Table 1: Taxonomy of reviewed papers on the basis of image capture setting

In lab-based setting (see examples on Figure 2a and Figure 2b), most of the
acquisition systems are manually manipulated. In [58, 32, 33, 35, 34, 36, 37,
38, 39, 40, 62, 46, 52] the acquisition is made manually on a microscope slide,
with some standard illumination systems (fiber optic light sources, desk lamps,
etc.). In [58], to change the pose of the insect, an interesting trick has been
used body rotation was achieved by first placing two short nylon fishing lines on
either side of the specimen and gently moving a cover slip placed over them by
using the tip of the index finger. In [32, 35, 34, 36, 46, 52, 51] some zoom lenses
are used to have more details of the insect or to capture only some parts (wing,
genitalia, etc.). In [36] live bees captured in the wild are cooled down using an
icebox: this makes them immobile for a time sufficient for the recognition image
to be acquired without causing the bee long-term harm. Also in [37] active
moths were refrigerated to prevent them escaping while being imaged. In [51]
a stereoscope is used in order to avoid a view with obstructed parts. In [61]
the insects were frozen for 20 min and then randomly and manually placed on
a white balance panel. The images were taken under different orientations and
two poses (top and side view).

In [63] the main goal of the paper is not the insect identification but the
detection of insects in bulk wheat samples. Nevertheless, it is interesting to
note that their acquisition system could be used also for insect identification.
Samples, that are a blend of wheat kernels and dockage including some grass
seeds, are placed in a crate cell, are captured by a color capture device, with a
backlight illumination. To reduce reflection, a dome with flat matte white paint
inside was placed over the samples.

There are also semi-automatic systems. In [57, 59] the authors propose
a semi-automated mechanical manipulation and imaging system that allows
the positioning of the specimen and its rotation to obtain the best view for
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classification. The decision of the view is taken by the human operator. In [19],
a similar but more complex system is proposed: a mirror system is providing
a split image, with two views of the insect approximately 90◦ apart. Providing
two simultaneous views increases the likelihood of good dorsal views for 2D
classification, and it affords greater robustness for 3D reconstruction since the
camera viewpoints of the two views are fixed.

In [41, 45, 49] the acquisition system is similar to the above-described ones,
but the insect is captured with a classic color digital camera without microscope,
so the insect has a “natural” size in the image. In [49] a transparent plastic stick
was fixed to a piece of foam and held at the far end of a needle that was inserted
into the specimen, in order to eliminate the shadow due to the fill lights used.

Typically in field-based setting (see Figure 2c and Figure 2d) there is no par-
ticular acquisition hardware and the insects are captured by standard cameras
or mobile devices in open field. In [27], even if the acquisition is performed on
open fields, pheromone traps are used and cameras are being integrated to the
trap setup in order to improve the precision of insect information captured and
facilitate the subsequent segmentation phase.

In multi-individuals (see examples on Figure 2e and Figure 2f) setting [30,
66, 65, 29], the positioning of the insect is also manual and is similar to the
setups described for manual setting in lab-based category. In [30] the rice pests
caught in traps are spread on the glass plate with as little overlap as possible,
which will make the following image segmentation and identification easier. The
acquisition setting is quite standard, but an interesting particularity is that two
digital cameras above and below the glass plate are fixed on a stainless holder
in order to have multiple poses of the insect without manipulating either the
insect or the acquisition system.

In conclusion we can say that in field of insect identification, the lab-based
setting is still the most widely used setup and the positioning of the insects is
made mostly manually with a constrained pose (see Table 1). More recently,
the study is done considering several individuals in a single image, but the
acquisition system is still largely manual. There are still few works that develop
insect identification systems in open field, probably because of a more difficult
recognition context (cluttered background, live insect, etc.). In fact in some
open-field setting some expedients are used to have an image simple to process.

3.1. Advantages and drawbacks

With the large increase of mobile devices, an equivalent growing open-field
captures is expected. In fact such a system is more flexible and it can be used by
a wider range of users. Open-field captures do not require special hardware and
there are no constraints on insect pose. However this kind of systems are more
complex in terms of algorithm design and it is hard to obtain good performances.

Anyway, lab-based settings still remain a configuration that will be studied
in the future. Indeed, biologists have some specific research that need insect to
be studied in laboratory. Therefore, while open-field capture will be used by
non-expert people, lab-based setting will continue to grow because of specific
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Figure 3: Feature extraction evolution [67]

need of biologists. The advantage of lab-based setting, from the point of view
of the classification system, is the possibility of constraining the insect so that
the recognition task is less complex thanks to less variability. Nevertheless, the
main drawback of lab-based setting is the manual manipulation of the capture
system (posing of the insect, illumination fixing, etc.). This manual task is very
tedious and time-consuming and researcher ask more and more for automatic
manipulation systems.

In order to speed up the process of recognition, multi-individuals setting are
conceived. In this case, the time is reduced, because of multiple classification
in a single capture. However, again the classification system has to deal with
more image processing problems, like detection of insects that is a difficulty not
present in original lab-based setting.

4. Feature extraction

Focusing on feature extraction, we listed the two following aspects: the
segmentation which is the data extraction phase such that the insect is isolated
(foreground/background detection) and the types of features used (whether they
are local, global and what information they model).

4.1. Foreground/Background detection

Before the features can be extracted, the system needs to know which zone
of the image is important. This part is taken care of by segmentation. This
segmentation problem was tackled in several ways, as listed in Table 2.

In some cases, segmentation is learned in a supervised manner as in [63,
27, 46]. [46] feeds the entire image to the classifier, which is supposed to learn
to discriminate only on foreground and therefore to recognize it. In [27], the
approach relies on learning on both positive and negative example images. Neg-
ative example images are images where there is no insect but only foreground.
Learning on such images enables the system to ignore the background.

When segmentation is irrelevant, it can be asked to the user as in [37, 25, 26,
48, 39, 55, 32, 40, 33]. An interface is shown to the user so that he or she can
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Category Levels Refs

No segmentation [63, 27, 46]

User segmentation
[37, 25, 26, 48, 39, 55, 32, 40,
33]

Thresholding
Manual or static

[56, 54, 51, 29, 28, 68, 38, 25,
43, 52, 44, 49, 41, 45]

Clustering [64, 28, 68, 62, 41, 45]
Edge detection [58, 28, 68, 25]

Other
Image apriori [36, 50, 38]
Background subtraction [30, 31, 35, 34]
Snake [43, 66]

Table 2: Taxonomy of the reviewed papers on the basis of segmentation

select the region of interest by drawing its outlines. Of course, manual segmen-
tation might be a tedious and time-consuming task considering how numerous
the images can get. That is why segmentation is worth automated most of the
time.

Some segmentation methods rely on thresholding which is basically splitting
the image histogram into several groups which correspond respectively to the
object and the background. The simplest way of doing thresholding is to set the
intensity value that separates the two groups. This value can be set statically in
the program or by the user who can select the one which yields the best result
as in [54, 53].

Another way of performing thresholding is to see it as a clustering problem
where two or more clusters (which are the regions) have to be formed [64, 28, 68,
62, 41, 45]. Otsu’s method criterion is about choosing the clusters such that the
intra-cluster variation is minimized while the inter-cluster one is maximized [41,
45, 68]. k-means is used onto the color space to search for centroids representing
the different regions in the image based on color similarity [64, 62]. [28] uses
ISODATA, a clustering algorithm that builds clusters with a given standard
deviation threshold. [41, 45] use meanshift clustering in the color space as a
preprocessing step to Otsu.

Some articles build their segmentation over edge detection. Most of them
use Sobel filters to get the gradient of the image and use filling operators to get
a first mask [28, 68, 25]. [58] uses order-statistic filters to get the edges of the
images.

There are other techniques used to segment the images. [43, 66] use active
contours (snake) that take a simple thresholding mask as a seed point to get
a more accurate segmentation. [30, 31, 35, 34] use background segmentation
(which implies the background to be constant).

Finally some studies base their segmentation pipelines on image apriori. [38]
assumes the object in the image yields the longest outline while [36] searches for
lines on wing images and [50] uses the symmetry of lepidoptera as a detection
criterion.
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Category Levels Refs

Handcrafted
features

Domain-dependent
Wing’ Venations [36, 38, 48]

Geometry
[25, 53, 54, 26, 40, 49,
63]

Global and generic
image features

Shape
[66, 29, 58, 56, 43, 30,
52, 44, 26]

Color
[56, 41, 43, 28, 30, 52,
26]

Texture
[33, 41, 43, 30, 39, 52,
51, 26]

Raw Pixel [46]

Local features
SIFT

[19, 42, 65, 47, 57, 60,
61, 59]

Others [28, 50, 27, 45]

Mid-level features

Unsupervised
representations

BoW [19, 57, 60, 61]
PCA [32, 55, 31, 35, 34]

Supervised
representations

MLP [56, 33, 46]
Sparse Coding [27, 42, 47, 64]

Hierarchical repre-
sentations

Auto-encoder [52]

Table 3: Feature taxonomy for insect recognition

4.2. Three general feature extraction methods

For decades, constructing a pattern-recognition or machine-learning system
required careful engineering and considerable domain expertise to design a fea-
ture extractor that transformed the raw data (such as the pixel values of an
image) into a suitable internal representation or feature vector from which the
learning subsystem, often a classifier, could detect or classify patterns in the
input. To increase feature performance, learning mid-level features on top of
handcrafted ones has been put forward. During the last decade, the amount
of human labor has been reduced by representation learning. Representation
learning is a set of methods that allows a machine to be fed with raw data
(pixels) and to automatically discover the representations needed for detection
or classification. Figure 3 illustrates the concepts of handcrafted, mid-level and
learned features. In Table 3, the papers from the literature are organized ac-
cording the following criteria: a) Handcrafted features; b) Mid-level features; c)
Learning Hierarchical Representations.

4.3. Fixed/Handcrafted Feature Extractor

4.3.1. Domain-depend features

In [36], the feature is based on the venations present in the bees’ wings,
and the cells they enclose, to generate numerical feature vectors. Authors in
[36] could say the venations in the bees’ wings are almost as fingerprints. In
the same direction, [38] the coordinates of some characteristic points on the
wing are used to compare vein patterns. In [49], owlflies wings are described
by Elliptic Fourier coefficients. The feature extraction algorithm incorporates
prior expert knowledge about wing veination. More recently, [48] studied the
impact of feature selection on top of descriptors presented in [38].

In [53, 54, 26, 25], series of geometrical features including area, perimeter,
holes number, eccentricity and roundness have previously been tested. All these
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features are intuitive because they can be directly measured or simply calculated
from images. However, these precisely extracted features are easily affected by
factors such as the posture of insects or the shooting angle. Furthermore, it is
usually difficult to compute the real size of insects from the images because of
the lack of some shooting parameters such as object distance.

4.3.2. Global Image features

General image features are generic descriptors that can be used to represent
any kind of images not specifically insects. However, in the literature there is
distinction between local and global features whether features ares extracted
locally on specific area of the image or globally on the whole image.

In [66] Hu moments (Hu), Elliptic Fourier Descriptors (EFD), Radial Dis-
tance Functions (RDF) and Local Binary Patterns (LBP) are extracted as shape
descriptors. LBP features seem to outperform the rest of the features in recog-
nition rate based on the individual performance of each method. The results
from the underlying features are then fused using weighted majority voting to
obtain a decision. In [26], a series of shape, color and texture features was de-
veloped that draw on CBIR and allow the identification of butterfly images to
the taxonomic scale of family. In [64], the objective is to detect pests into an
image, and L∗a∗b∗ color space is used as features.

In [43, 41, 30, 56] global features are used to describe the entire insect. A set
of 54 features including geometric features of insect, contour features, moment
features, texture features and color features are extracted. In [29, 58] features
were extracted from the shape descriptors computed on the binary mask of
the Region Of Interest (ROI). The measurements taken were area, convex area,
eccentricity, major axis length, minor axis length, perimeter, solidity, roundness,
compactness, extent, aspect ratio. In [33, 51] wavelet decomposition of the
images is performed.

4.3.3. Local features

A crucial step for identification or classification and retrieval is to describe
images by extracting a set of local feature descriptors, encoding them into high-
dimensional vectors and then fusing them into image-level signatures. In [28],
images are preprocessed to detect insect location and then global color features
are measured (color frequency histograms). Finally, local color features are ex-
tracted from patches. In [50], the core of the system is a probabilistic model
that infers Semantically Related Visual (SRV) attributes from low-level visual
features of moth image. The main motivation is to obtain a human-readable
representation of the image. In [45], the approximate shift invariant property
of the dual tree complex wavelet transform (DTCWT) and its good directional
selectivity in 2D make it a very appealing choice for insect image recognition.
These local and global approaches are combined: a first distance between images
is obtained by conventional region-based bag of words techniques and a second
distance is computed through DTCWT. The two distances are then merged to-
gether. Finally, the very well-known SIFT (Scale Invariant Feature Transforms)
[69] features are extracted in [19, 57, 61, 42, 47, 65, 59]. SIFT features were
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completed by multiple order gradient histogram (MOGH) in [60]. In the same
direction, [27] SIFT features are also completed by with color, texture and shape
features. In [59, 65], SIFT features are extracted and directly matched between
paired-images. The number of positive putative matches is used to estimate the
similarity of the two images.

4.4. Mid-level features

In the Digital Automated Identification System (DAISY) [35, 34, 32, 31, 55],
images are processed using filters to detect edges (top-hat filer) and then noise is
removed by applying a Gaussian blur. It adopts a principal component analysis
(PCA) method to acquire image features that contain nearly all the information
of an image. PCA features are more suitable for species identification because
the great amount of detailed information collected with PCA can weaken dif-
ferences between high-level categories such as orders. The basic algorithm of
DAISY is based on the methods for human face detection and recognition via
eigen-images. DAISY requires user interaction for image capture and segmen-
tation, because specimens must be aligned in the images. In Russell et al. [39],
SPIDA (Species IDentification Automated) was created as a ground spiders
identification system. SPIDA’s feature vector is built using images of the spi-
der’s external genitalia from a subset of components of the wavelet transform
using the Daubechies 4 function [70]. This method also has the drawback that
the specimen has to be manipulated by hand, and the image capture, prepro-
cessing, and region selection also require direct user interaction.

There is a large body of literature [19, 57, 61, 60] showing the successful
application of the bag-of-keywords approach. In this approach, local-feature
data is extracted from the available images and characterized by computing a
feature vector called a descriptor. A visual dictionary is created by clustering a
subset of the training data in the descriptor space, creating clusters that define
dictionary words. This dictionary is then used to map the region descriptors of
a novel image into words, and to map the bag of features for an image into a bag
of words that is used to construct a representation of the image. Histograms
of these words have been successfully used as intermediate image representa-
tions. Once an intermediate representation is constructed, the remainder of the
training data is used to train a classifier to recognize object classes.

In this series of studies regarding insect identification, the progression of
recognition methods from simple pattern recognition approaches to unsuper-
vised and later discriminative dictionaries can be seen.

To improve the classification accuracy, [42, 47, 27] develop an insect recog-
nition system using advanced multiple task sparse representation and multiple-
kernel learning (MKL) techniques. As different features of insect images con-
tribute differently to the classification of insect species, the multiple-task sparse
representation technique can combine multiple features of insect species to en-
hance the recognition performance.

Another way to build discriminative mid-level features is to feed a Multi
Layered Perceptron (MLP) with handcrafted features as in [56, 33] or directly
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from the raw pixels as in [46]. However the number of feature abstraction layers
is limited to two because of the vanishing gradient problem.

4.5. Learning Hierarchical Representations

Over the last few years, a large amount of research on visual recognition has
focused on learning low-level and mid-level features using unsupervised learning,
supervised learning, or a combination of both. The ability to learn multiple lev-
els of good feature representations in a hierarchical structure helps to construct
sophisticated recognition systems.

In [52], series of geometric, shape, invariant moment, texture and color fea-
tures are given as an input to a Stacked Denoising Autoencoder. This deep
learning architecture consists of multiple levels of non-linear operations and is
an effective way to represent high-level abstractions. Automatically learning
features at multiple levels of abstraction allows a deep learning system to learn
complex functions mapping the input to the output directly from data [71].
The goal in [52] is to solve the pose variety problem. Compared with general
auto-encoder (AE) architecture, DAE architecture adds the noise to the train-
ing data, which means that the DAE learns to detach noise from real data. It
makes the encoder learning more robust to the expression of the input signal.

4.6. Advantages and drawbacks

The first attempts of image-based recognition [53, 54] used morpho-metrics
as features. Morpho-metrics are distances or ratios between venations present
on the wings. These morpho-metrics were extracted and used to separate species
using Linear Discriminant Analysis. Morpho-metrics being specific to winged
species, more generic approaches were to be found. [35, 34, 32, 44, 36] established
the DAISY system to classify wasp insect images using PCA. To improve clas-
sification accuracy, [55] applied DAISY to recognize insect images by analyzing
their wing patterns and shapes. [36] proposed an improved ABIS (Automatic
Bee Identification System) system using support vector machine (SVM) and ker-
nel discriminate analysis based on geometric features of wings (such as length,
angle, and area). Moreover, many literature works have focused on constructing
object appearance models, a key part of object classification. Generally, based
on their appearance models, most object feature descriptors can be categorized
as either global features or local features. [39] adopted global features (includ-
ing color, texture, and geometry) to classify insect images and obtained good
results using high-quality images. However, because the features are very sen-
sitive to rotation, scale, translation, and viewpoint changes, this classification
method did not work well on objects with large intra-species variation or high
inter-species similarity. To address these issues, [61] developed a local feature-
based insect identification scheme to account for variations in insect appearance.
Furthermore, [62] devised an image-based automated insect identification and
classification method using three models: an invariant local feature model, a
global feature model, and a hierarchical combination model. [65] extended the
LOSS algorithm [68] for analyzing the geometrical characteristics of insects to
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improve insect classification. A drawback is the limited expressiveness of these
models because insect appearances can only be represented by hand-crafted
descriptors which makes it difficult to handle significant insect view and pose
changes simultaneously. For the same reason, some local features based on
SIFT such as CFH [57], bag of words [61, 19, 61, 60] or ScSPM [42] that are
currently used in insect species recognition are not quite suitable in high-level
(order level) insect identification. It is well known that natural images can be
sparsely represented using a sparse linear combination of a few elements from
a trained dictionary. In contrast to most existing insect-classification methods
that directly operate on low-level features or cues, sparse coding can learn in-
sect appearances from raw features to quantify insect appearances by means of
sparsity [42, 47, 27]

Over the last few years, in [52] the ability to learn multiple levels of good fea-
ture representations in a hierarchical structure helps to construct sophisticated
recognition systems. The benefit of the sophistication of recognition systems is
the release of the imaging constraints. The perspective is therefore about han-
dling more and more noise and variations so that both the capture step gets less
and less tedious and the classification gets improved in handling more complex
class configurations.

5. Classification methods

Category Levels Refs

Monolithic

Discriminative

Linear [54, 53, 38, 40, 63]

SVM
[30, 49, 47, 51, 42, 27, 61,
28, 48, 25]

Neural nets [52, 33, 58, 46, 44, 48, 25]
Decision trees [28, 48, 57]

Generative
Parametric [57, 43, 28, 48]
Density estimation [61, 43]
Other [31, 32, 35, 34, 64]

Combinations
Committees [66]
Boosting and bag-
ging

[19, 57, 28]

Other [33, 39, 29, 62]

Instance-based
k-NN

[66, 61, 43, 28, 26, 45, 41,
65]

Other [50]

Table 4: Taxonomy of the reviewed papers on the basis of classification

From the perspective of classification, we used the following pieces of infor-
mations: the granularity of the classification (the scale in the taxonomy tree
whether it’s to a species, families, order or another level precision), the number
of classes, classifier(s) used, type of validation and the accuracy of the results.

The original pattern recognition framework assumes there is a clear bound-
ary between extracting information from raw data and classification. The al-
gorithms fulfilling these two tasks are thought as independent processes and
seen as blackboxes from one another point of view. However, the boundary
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is becoming blurrier with some recent work (see representation learning [72]
for example). In these approaches, the features and the classifier function are
learnt at the same time during the learning stage. However, most of the papers
studied in this article keep a sharp boundary between feature extraction and
classification. In this section, the classification stage is investigated as well as
the way it has been applied to insect image recognition until now.

As for the previous chapters, we consider the papers under a certain catego-
rization, which is depicted in Table 4: a) Monolithic classifiers; b) Combinations;
c) Instance-based.

5.1. Monolithic classifiers

The basic way to do classification in pattern recognition is to train a single
system on the actual data.

Classification is the process of actually recognizing an individual as belonging
to a certain population among others. There are two ways to see classification
conceptually: discriminatively and generatively speaking. This will be discussed
about along the next paragraphs.

5.1.1. Discriminative methods

As a discriminative process, classification is setting boundaries on a given
feature space between the different populations in order to distinguish them.
Stochastically speaking, it is said that discriminative approaches try to model
p(C = c|x), i.e. the probability of occurence of class c given x (features vector).

A first approach to discriminative classification is to find a linear bound-
ary between classes. [61, 43] uses the least squares approximation method to
find this boundary. In [54, 53, 38, 40, 63], Fisher criterion (Linear Discrimi-
nant Analysis) is used to the same end on morphometrics. However, data may
not be linearly separable and therefore linear discrimination is likely to fail. In
[30, 49, 47, 51, 42, 27, 61, 28, 48, 25] SVMs are in use. While [51, 47, 42, 28]
use linear SVM, [61, 30, 49, 48] use kernelized SVMs. [61, 48] use SVMs with
the polynomial kernel. [30, 49, 25] use the gaussian Radial Basis Function of
standard deviation σ as a kernel. σ is considered as a free parameter in the
frame of such a use. The usual way to tune σ is trial and error. However, [73]
proposes a genetic algorithm to find this parameter which is used in [49]. [27]
uses Multiple Kernel Learning, which is a SVM using an optimally chosen com-
bination of different kernel types in order to efficiently learn on different feature
modalities.

As used in [52, 33, 58, 46, 44, 48, 25], neural networks are another discrim-
inative approach where non-linearity is induced through activation functions.
In [46], a neural network is trained with scaled conjugate gradient-based back-
propagation. Several parameters and network sizes (from no to two hidden
layers) are tested on the following recognition task: discriminate a single pest
from many non-damaging insects. While a one-hidden-layer network is proven
to be a universal approximator, the authors couldn’t get satisfying result with
one single hidden layer. A possible explanation is, because the inputs are raw
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pixel, the MLP must learn a feature level. Finally, [44] uses Quality Threshold
ARTMAP, which is an incremental learning network technique. An ARTMAP
network is a combination of unsupervised modules (which are self-organizing
maps): one operating on features, one on the classes and a last one in between.

Decision trees are used in [28, 48, 57]. [28, 48] use classic decision tree
generated with C4.5 algorithm. [59] uses Logistic Model Trees which differ from
classic trees in that its nodes are logistic regression classifiers.

5.1.2. Generative methods

From a generative perspective, classification is trying to estimate the like-
lihood for an individual to belong to a given population. To keep using the
probabilistic point of view, generative approaches are modeling p(x|C = c), i.e.
the probability of occurence of feature vector x if considering the class c.

[59, 43, 28, 48] use parametric probability density functions to estimate
p(x|C = c) for each class c. [59, 48, 28, 43] use Näıve Bayes classifiers which
assume the features are statistically independent. Logistic classifiers (used in
[48]), however, don’t postulate on statistical independance. Rather than trying
to find a distribution by tuning probability density functions, non-parametric
methods rely on the instances themselves. [61, 43] use Parzen-Rosenblatt win-
dow classifiers to estimate the probabilities.

Other generative methods are used besides probability density estimation. In
its first version, DAISY [31, 32, 35, 34] uses a non-parametric statistical test to
evaluate the quality of the PCA reconstructed image with respect to the original
image. The test used is Kendall rank correlation coefficient (more commonly
referred to as the τ -test). [64] uses a correspondence filter to detect a given
shape and localize it on image. It is a frequency domain filter which is computed
through an optimisation process such as a linear optimisation program. The idea
is to create such a filter so that the peak of correlation and the localisation of
the object we search in the image match up.

5.2. Combinations

But when it comes to issues such as overfitting, a monolithic classifier is
somehow not enough and that is here where ensemble learning is relevant. The
idea of ensemble learning is to use a combination of said weak classifiers to get
a strong classifier [74]. Classifier combinations also aim at improving simple
classifiers performances.

In [66] four k-Nearest Neighbour classifiers are trained on different feature
descriptors. Their decisions is combined into a weighted majority vote: it is a
committee of k-NN classifiers. [19, 57] combine decision trees in more complex
ways. In [57], logistic model trees are boosted with AdaBoost. The classifiers
are incrementally trained, each classifier being trained on classification error
weighted according to the previous classifier error so that it can learn more
where it was weaker. [60, 29] use several classifiers to perform dichotomies on
the dataset. In [60], the decision is made by making SVMs compete against
each other in a tennis-tournament-like process.
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SPIDA [33] not only experiments flat neural network classifiers but also tests
multi-granularity discrimination: a first neural net discriminates individuals at
the genus level before a second one performs likewise at the species-level in
the actual genus. The system is found to have no difficulty to discriminate
between genuses but some between species inside different genera. In [39] a
different structural approach is adopted: A set of neural nets were trained (one
per taxon). Each neural network has two outputs: one that is trained to be
stimulated when the individuals belongs to the taxon (known as pro-species
output) and the other when it’s not (the anti-species output). The final decision
is given as follows: the top-3 scores from all the pro neurons are considered and
those who are above a given threshold are considered as answers and shown to
the user. In [29], a stacked ensemble of neural networks is used to get satisfying
classification results (compared to those of a single neural net classifier). It is
in fact a decision-tree where every node decision is given by a neural network.
[62] uses a different framework which is based on recognition relevance. If a
first classification correlation level is not high enough, a second classification
is operated. It stacks up a global feature classifier (based on Bayes classifiers)
on top of a local feature classifier (with Nearest Mean classifier) in order to
become invariant to pose variabilities. The global classifier is first called and, if
the matching probability is too low (under a given threshold), the local feature
classifier is called to give the final decision.

5.3. Instance-based

The previously mentioned methods rely on characterizing classes in the fea-
ture space either generatively or discriminatively. Another way of tackling the
classification problem is to compare the unknown image not to classes them-
selves but to known occurences (which turn out to be the learning images).

[66, 26, 45, 41, 65] use nearest neighbour classification to get a final decision.
[26] uses a nearest neighbour classifier with a weighted L2 norm: the authors
want to test the classification within modifying the weights of the different
features.[41, 45, 65] base their approaches on refining a candidate list at each
level. A first classifier gives a match list based on some similarity measure
while a second one refines that list. [41] experimented a two-level classification
workflow. The first level is a coarse matching step where a histogram similarity
measure is done and candidates are filtered based on a given similarity-threshold
value. The second level classification is done by a k-NN classifier which performs
on some texture features. [45] first uses an integrated region matching process
on clustered image to find k image candidates. The final answer is given by a
Nearest Neighbour classifier.

[50] relies on a CBIR approach which is not about getting a final answer but
just providing a match list to the user. The decision task falls therefore to them.
In the scope of this study, Relevance Feedback is used as a performance booster.
The user sends a query and is asked about the answer relevance. If trust has
been granted to the user (because he passed a recognition test successfully),
the system distorts the feature spaces so that the non-relevant items are further
away from each others.
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5.4. Methods comparison studies

In some studies, features are extracted from the images and the choice of
a classifier is not really guided. They usually take a set of classifiers to apply
to extracted features and keep the one that maximizes the recognition rate on
sample data. Results of some of the tested classifiers are somehow investigated.
Table 5 details the different methods used in each study and gives the recognition
rates per method.

[61] [43] [28] [48] [25]
Least Square 84.2 83.3

LDA 64.0
SVM 88.4 85.0 60.0 92.0

Decision tree 58.3 36.0
MLP 58.5 76.0
Bayes 89.9 65.9 65.2

Logistic 63.2
Parzen density 86.3 84.7
Random forest 83.2

k-NN 77.4 83.8 71.6
Nearest Mean 89.5 63.6

Table 5: Recognition rates in comparison studies (bold figure for best rate)

5.5. Advantages and drawbacks

Although discriminative methods are powerful tools to accurately split the
feature spaces, their lack of incrementality can be a restriction in the scope
of broad insect recognition where new species can be encountered. Generative
methods are more fitted to this end since the classes probabilities are considered
independently. Adding a class is then not a problem.

When it comes to evolving classes (unknown individuals encountered that
belong to already existing classes), instance-based are handier since the new
individuals can be integrated to the instance. Going further, the nature of
insect recognition as a pattern recognition problem can be called into question.
Given the potentially high cardinality of the classes set and the high intra-class
variability, it might be more relevant to try to match the unknown individual
to a known one than to an entire class. This feature is interesting from the user
perspective because they get the closest known individuals instead of the class
information. The problem could then be seen more as a metric learning one.
In such a frame, the similarity function is to be learnt so that the individuals
in a class are close to each others and as far as possible to other classes in the
similarity space. The learning process would therefore be class-agnostic in the
sense the learning phase only needs to know which individuals pairs are similar
and which ones aren’t. The class is induced by the individuals and their labels.

6. Datasets

To characterize the datasets, we noted the number of instances (images)
per class and overall as well as per training, validation and testing subset. The
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granularity is a good indicator as well. Granularity is the scope in the taxonomy
where a study is located. It can be as specific as to a few species in a single
family or as wide as over several orders (see taxonomical scales in Figure 1).
Every dataset used in the studied literature are listed in Table 6.

The first comment one can make is that the granularity is often very thin
and the variability very subtle. We most of the time talk about species in a
few specific orders or families. In fact, studied sets are tightly bound to the
projects biological and environment-related problems such as recognizing a very
specific group of pests for a given orchard. Some studies are in the frame of
Integrated Pest Management [75] Pests for different orchards were investigated
such as rice [30], palm [46], apples [56] cotton [29] or miscellaneous vegetables
[64, 65, 68] pests. [52, 61, 43, 37, 66] focus on moths. Some others deal with
biodiversity assessments like the BugID project [76, 77, 19, 59, 57] and [60] which
focus on aquatic myriapods. These insects, when found in rivers, are used to
perform bioassessments regarding water quality. [58] does likewise to assess
marine life by recognizing copepods populations. ABIS [36] aims at quantifying
bees populations regarding their different species. Bees are the main pollinators
and are therefore essential for crops to grow.

Some studies deal with coarser problems [25, 26, 56] such as families of
butterflies [26] or different orders [25] while some studies test the performances
of their methods on different granularity levels [33].

There are almost a dataset per article, in most cases because every study
has its focus on both the capture of images and the insect taxons involved. The
result here is we miss a reference set.

7. General discussion

Automated insect identification has been intensively studied over the last
three decades, including computer vision-based systems for the classification of
insect species.

From all the considered works emerge the following questions:

1. What is the least imaging effort to make in order to get satisfying results?

2. How to define the problem with respect to the taxonomy tree?

3. Is image-based insect recognition more than an application of image clas-
sification?

7.1. What is the least imaging effort to make?

The first approaches of insect-image classification used very constrained and
low-tolerance imaging protocols such as with flatbed wing images. Then came
methods using region-of-interest segmentation on plain or weakly cluttered back-
grounds. Finally, the plunge towards dealing with complex-background images
has yet to be taken although some local methods have been used to this end.

Considering generic image classification, Convolutional Neural Networks have
been acknowledged as state of the art in a quite short span of time regarding
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their high and surpassing performance in terms of both accuracy and invari-
ances. In the set of studies being scrutinized here, none has experimented on-
pixel classification further than through classical shallow MLP [46] on one hand.
On the other hand, deep hierarchical approaches aren’t represented further than
Stacked Denoising Autoencoders in [52].

However, important characteristics regarding deep learning in general should
be taken into account regarding the insect-image classification problem: learning
deep hierarchical representations requires a notably larger set of example images
than for shallow learning. Assuming the insect images harvest is a more tedious
task than for generic images (which is tedious enough for getting millions of
images), this issue is the main limitation to the use of CNNs. Finally, no article
applied the transfer learning paradigm in order to take the benefit of a pre-
trained deep hierarchical representation. Using knowledge gained on larger but
generic dataset such as ImageNet as a learning basis to recognize insects could
be a way to tackle the image volumetrics problem.

7.2. How to define the problem with respect to the taxonomy tree?

As for any other classification task, the problem has to be modeled consider-
ing both the classes and the relations between them. Are the classes close to each
other? Do they cover variability? Does that variability make the classes cross
each other? To sum up, what are the variabilities both between the categories
(inter-class) and inside (intra-class) them?

The first intuition is these properties vary along the taxonomy tree (see
Figure 1). The smaller the scale is, the finer the intra-class variations. Small
scale insect recognition problems tend to be fine grained object recognition
problems. At this scale, the main issue is the intra-class variations can be as
strong as and even stronger than the inter-class ones [61, 62, 52, 57, 39].

Does it go to less fine-grained when we climb up the tree towards a coarser
level? Even though macro-taxons are not formed on morphological criteria, the
genetical proximity induces likelihood of visual similarity. [33] genus-level results
are way superior than the species-level ones. Even further, their hierarchical
experiment seems to yield good results: a first set of neural networks identifies
the genus and a second set deals with contained species. This assertion has to
be taken carefully due to the low number of classes that are tested here.

On another point of view, natural phenomena (biodiversity resulting in inter-
class similarities and intra-class differences) bring more difficulties for insect
identification at the order level than that at the species level [25]. However, it is
most often found that the similarities in species within a single family and the
differences among species of separate families are prominent enough to [allow]
identification [25]. This assumption calls another one: To make upscaled insect
recognition efficient, every sub-class (or sub-taxon) must be collected. Same
observation is made in [26] at the family level: higher results are observed for
higher taxon coverage.

The macro-groups cannot be considered as uniform populations where the
individuals are equivalent. These groups must be learnt by considering their
respective subgroups equally.
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7.3. Is image-based insect recognition more than an application of image clas-
sification?

This question could be rephrased as “Are there intrinsic properties to in-
sect images so that insect recognition is a specific computer vision problem in
itself?” To provide the beginning of an answer, the characteristics regarding
insect recognition must be considered. Aside from classical object image varia-
tions, pose is a fairly critical variation type that is tackled in [52]. Deformation
is one potential characteristics of these objects due to articulated parts [57, 60].
However, these variations can occur under equivalent forms in other objects
categories. To take the example of face recognition, age is an object-specific
variation factor which can be compared to the insect age. Regarding the vi-
sual statistical and structural properties of such images, apparently no study
investigated these aspects.

Observations on the classification perspective emerge from the conclusions
in Subsection 7.2: taxonomy does not reflect visual similarity at any location.
This heterogeneity creates complex classes configurations at a coarse level as
previously shown but also brings about the dynamics of a potential evolving
classification tool. In a context where specimens are being encountered along
time, i.e. the construction of the classes is incremental in some sense, new
groups of specimens might appear at any moment. As a consequence on a fine
level, class are likely to add up when unencountered taxons appear. A dual
assertion can be made at the coarse level: when sub taxons add up and since
taxonomy is not heterogeneous, the macro-taxon is incrementally defined by its
sub-taxons. Depending on the granularity, the problems can reveal two kinds of
incrementality : class add-ups and incremental class definitions. These systemic
concerns have not been addressed yet in the literature since the datasets are
fixed.

Even though this problem has interesting properties, its singularity regard-
ing pattern recognition and image analysis remains unsure. Besides, generic
methods are the most used methods in the recent works and it will not be pos-
sible to compare methods as long as the experiments are not performed on a
common dataset.
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Insects Granularity Number
of tax-
ons

Avg.
Nb. of
images
per
taxon

Capture
type

Constrained
pose?

Part of in-
sect

Publicly
available

Used in Best reco
rate (*
means avg
reco rate)

Lepidopterans species 100 4 lab-based Yes Wings No [41, 45] 85.00%

Ichneumonidae species 5 50 lab-based Yes Wings No [31, 34,
32]

94%

Midges species 49 20 lab-based Yes Wings No [35, 32] 86%

Macromoths species 237 3 lab-based Yes Whole No [37, 28] 85.00%

Moths, but-
terflies and
caterpillar

species 4500 8 lab-based Yes Whole Yes
(http://janzen.
sas.upenn.edu/)

[50] (par-
tial use)

53.00%

Leafhoppers species 3 N/A lab-based Yes Whole No [54] 73.00%

Copepods species 8 30 lab-based No Whole No [58] 98.00%

Miscellaneous
orchard
insects (mul-
tiple poses)

species 9 162 lab-based Yes Whole No [61, 62,
52] (par-
tial use)
[43]

96.60%

Miscellaneous
orchard
insects (trap-
based)

species 5 128 lab-based No Whole No [62, 52]
(partial
use)

94.10%

Tephritidae species 20 7 lab-based Yes Whole or
part

No [42, 47] 88.50%

Many orders orders 9 123 lab-based Yes Whole No [26] 32%

Apple pests species 6 200 lab-based No Whole No [56] 99.50%

Butterflies species 9 25 lab-based Yes Whole No [25],[27] 90.30%

Miscellaneous
insects

species 20 12 lab-based Yes Whole No [44] 99%

Benthic
macro-
invertebrates

species 8 191 lab-based No Whole No [60] 88%

Palm tree in-
sects

species 21 20 lab-based Yes Whole No [46] 95%*

Cotton insects species 12 N/A multi-
individuals

No Whole No [29] 75%*

Rice insects species 4 195 multi-
individuals

No Whole No [30] 97.5%*

Stoneflies species 9 425 lab-based No Whole Yes (http:
//web.engr.

oregonstate.

edu/~tgd/bugid/

stonefly9/)

[59, 19,
57]

96.50%

Ephemeroptera,
Plecoptera
and Tri-
choptera

species 29 Yes (http:
//web.engr.

oregonstate.

edu/~tgd/bugid/

ept29/)

Spiders species 13 974 lab-based Yes Whole No [39] 100%

Lycosidae species 6 18 lab-based Yes Whole No [33] 100%

Several pests species 6 160 multi-
individuals

No Whole No [65] N/A

Field crop in-
sects

species 24 26 field-
based

No Whole No [27] 89.50%

Moths species N/A 6 field-
based

No Whole Yes (http:
//www2.ahu.edu.

cn/pchen/web/

insectRecognition.

htm)

[66] 88%

Several pests species N/A N/A field-
based

No Whole No [64] N/A

Wasps and
dragonflies

species 3 8 lab-based Yes Wings No [38] N/A

Honeybees subspecies 26 70 lab-based Yes Wings No [48] 65%

Bombus bees species 8 65 lab-based Yes Wings No [36] 95%

Various bees subspecies 5 448 lab-based Yes Wings No [40] 97.50%

Owlflies species 7 17 lab-based Yes Wings No [49] 100%

Fruitflies species 72 25 lab-based Yes Wings No [51] 86.20%

Mosquitoes species 79 100 lab-based Yes Wings No [51] 80.30%

Table 6: Datasets used in the selected studies
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