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ABSTRACT
We present the first halo model based description of the cosmic infrared background (CIB)
non-Gaussianity (NG) that is fully parametric. To this end, we introduce, for the first time, a
diagrammatic method to compute high order polyspectra of the 3D galaxy density field. It al-
lows an easy derivation and visualization of the different terms of the polyspectrum. We apply
this framework to the power spectrum and bispectrum, and we show how to project them on the
celestial sphere in the purpose of the application to the CIB angular anisotropies. Furthermore,
we show how to take into account the particular case of the shot noise terms in that framework.
Eventually, we compute the CIB angular bispectrum at 857 GHz and study its scale and config-
uration dependences, as well as its variations with the halo occupation distribution parameters.
Compared to a previously proposed empirical prescription, such physically motivated model
is required to describe fully the CIB anisotropies bispectrum. Finally, we compare the CIB
bispectrum with the bispectra of other signals potentially present at microwave frequencies,
which hints that detection of CIB NG should be possible above 220 GHz.

Key words: galaxies: statistics – diffuse radiation – large-scale structure of Universe.

1 IN T RO D U C T I O N

The structuration of the large-scale structures and galaxies in the
Universe is a long-standing field of research in cosmology, the-
oretically as well as observationally. Of particular interest is the
clustering of galaxies as the latter are biased tracers of the underly-
ing dark matter field. Although perturbation theory (see Bernardeau
et al. 2002 for a review) may describe the clustering of dark matter
up to mildly non-linear scales and epochs, it breaks down in the
regime of highly non-linear gravitational infall and does not pre-
scribe the behaviour of galaxies and baryonic physics with respect
to dark matter. Neyman & Scott (1952) pioneered the description
of galaxies as distributed in clusters, which were later identified as
dark matter haloes as the dark matter paradigm became popular.
This latter description has become a fruitful tool, assuming that
galaxy properties are determined by the physical characteristics of
the host halo, as dark matter simulations have become available.
Indeed these simulations have permitted to prescribe the distribu-
tion of mass inside haloes (a.k.a. the density profile), their abun-
dance and spatial distribution (e.g. Navarro, Frenk & White 1997).
Then analytic or semi-analytic models prescribing the distribution
and properties of different galaxy populations may be built (e.g.
De Lucia & Blaizot 2007). A common analytical tool is the halo
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model. In this framework, all dark matter is assumed to be bound
up in haloes which are populated with galaxies thanks to the halo
occupation distribution (HOD). The standard HOD rules the mean
number of galaxies in a halo depending on its mass (Berlind et al.
2003; Kravtsov et al. 2004). Such models have been widely used
to reproduce the 2-point correlation function of optically selected
galaxies, see e.g. Tinker, Wechsler & Zheng (2010), Coupon et al.
(2012), and references therein for the most recent analyses. Most
applications to date have concentrated on 2-point statistics, i.e. real-
space 2-point correlation function or – auto and cross – power spec-
trum of tracers.

One tracer of galaxies and dark matter that has been studied
thanks to the halo model is the cosmic infrared background (CIB).
It was first discovered by Puget et al. (1996), and it stems from the
cumulative emission of dusty star-forming galaxies (DSFG). The
UV emission from young stars heats up the surrounding dust which
consequently reemits in the infrared (IR; from 8 μm to 1 mm) with
a typical grey-body law. The CIB is consequently a tracer of star
formation, with lower frequencies (ν < 220 GHz) tracing star for-
mation at high redshifts (see e.g. Pénin et al. 2012), as their emission
is redshifted into the far-IR/submillimetre domain. Resolutions of
current instruments permit to resolve directly only a small fraction
of the CIB into individual sources, in particular at far-IR frequencies
(<857 GHz) where most of the CIB is unresolved so that sources
produce brightness fluctuations generating the CIB anisotropies.
The CIB fluctuations trace the clustering of the underlying DSFG
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and their angular power spectra have been measured, in the last
few years, over a wide range of wavelengths and scales (Lagache
et al. 2007; Viero et al. 2009; Amblard et al. 2011; Planck Collab-
oration 2011b; Pénin et al. 2012; Planck Collaboration XXX 2013;
Thacker et al. 2013). These measurements are usually modelled in
the context of the halo model associated with a model of evolution
of galaxies (Cooray et al. 2010; Pénin et al. 2012). Until recently,
only the power spectrum of the CIB anisotropies had been mea-
sured, however, statistical information is contained in the higher
order moments.

The hierarchy of n-point correlation functions, for n up to infinity,
characterizes statistically a field, univoquely under some regularity
conditions. In particular, beyond n = 2 it probes the non-Gaussianity
(NG) of the field. NG studies have emerged as a research field of in-
terest, as they bring information complementary to power spectrum
(or 2-point correlation function) analyses. They are of particular in-
terest for the cosmic microwave background (CMB), for instance,
the study of primordial NG discriminates inflation models which
are degenerate at the power spectrum level. Lately, the Planck NG
constraints have ruled out several primordial models, in particular
the possibility of ekpyrotic/cyclic Universe (Planck Collaboration
XXIV 2013).

Nevertheless, such measurements are delicate as millimetre ob-
servations dedicated to the CMB are contaminated by foregrounds
which are non-Gaussian. Extragalactic point sources are of par-
ticular importance because they are present all over the sky and
the fainter ones cannot be detected nor masked. At CMB frequen-
cies, two types of extragalactic point sources are present: radio-loud
sources powered by an active galactic nucleus (Toffolatti et al. 1999)
and DSFG constituting the CIB (Lagache, Puget & Dole 2005). NG
of these point sources has first been looked for at radio frequencies
with Wilkinson Microwave Anisotropy Probe (WMAP), focusing on
radio sources which can be considered unclustered (Toffolatti et al.
1998). Bispectrum predictions based on number counts and mea-
surement on WMAP data have been found in agreement (Komatsu
et al. 2003) and have permitted to quantify the level of unresolved
sources in WMAP maps. At higher frequencies, NG of DSFG has
been pioneered by Argüeso, González-Nuevo & Toffolatti (2003),
González-Nuevo, Toffolatti & Argüeso (2005) and lately Lacasa
et al. (2012) with a phenomenological prescription based on the
clustered power spectrum. Prior to the present study, no physically
based model of the CIB NG was proposed.

This paper builds a halo model description of galaxy clustering
at high orders that we apply to predict the NG of CIB anisotropies.
This allows for a full model for the CIB anisotropies which, given a
galaxy emission model and HOD parameters, computes the power
spectrum as well as the bispectrum, and possibly higher order mo-
ments. The clustering part of the model is fully parametric which
will, at longer term, allow us to constrain these parameters using as
much statistical information from the data as possible. In a compan-
ion paper (Pénin, Lacasa & Aghanim 2014), referred to as Paper II
hereafter, we carry out a Fisher analysis forecast of how the de-
generacies of these parameters are broken when combining power
spectra and bispectra constraints. In addition, we study in detail,
amongst others, the variation of the CIB angular bispectrum with
respect to the models of evolution of galaxies, and the frequency
evolution of the redshift–halo mass contributions to the bispectrum.

This paper is organized as follows. Section 2 details the halo
model formalism, accounting for the shot noise due to the discrete-
ness of galaxies, the occupation statistics (HOD) and shows the
resulting 3D power spectrum. In Section 3, we derive the galaxy
bispectrum and describe a diagrammatic method to carry the deriva-

tion to higher orders. Section 4 introduces harmonic transform of
correlation functions on the sky and shows how the 3D polyspectra
of a signal project on to the sphere. Taking the example of the CIB,
we discuss how the shot noise terms must be accounted for and the
necessary regularization at low redshift. The resulting CIB angular
bispectrum is shown with its different terms in Section 5 as well
as their dependences on the HOD parameters. We also investigate
the halo mass contributions to the galaxy bispectrum. Eventually,
in Section 6, we compare the obtained CIB angular bispectrum to a
previously proposed prescription and to the bispectra of other sig-
nals present at microwave frequencies, namely radio sources and
CMB. We finally conclude in Section 7.

2 G A L A X Y C L U S T E R I N G W I T H T H E H A L O
M O D E L

The most common tool to measure the clustering of galaxies is
the 2-point correlation function. At first, such measurements were
well reproduced by a simple power law (Davis & Peebles 1983;
Madgwick et al. 2003; Le Fèvre et al. 2005). Nevertheless, the
progress in the field of large-scale surveys enabled more accurate
measurements that rule out such simple modelling (e.g. Zehavi
et al. 2004) as they display a cut-off at intermediate scales. A more
complex modelling was required leading to the wide use of the halo
model (e.g. Cooray & Sheth 2002). In that framework, dark matter
is assumed to be bound up in haloes which are virialized spherical
objects �vir times denser than the background.1 The introduction of
the galaxies within the haloes is done through the HOD (Kravtsov
et al. 2004; Tinker & Wetzel 2010). This modelling has proven to
be a very convenient analytical tool to reproduce and interpret the
non-linear clustering of dark matter haloes as well as that of galaxies
(e.g. Coupon et al. 2012). This section summarizes the ingredient
of the halo model necessary to predict the galaxy distribution, and
we show how to treat self-consistently the discreteness of galaxies.

2.1 Halo framework

In the halo model framework, galaxies reside in dark matter haloes
that are assumed spherical. Hence the galaxy density field at a
given point x reads (redshift dependences are implicit throughout
this paper, we state them explicitly when needed):

ngal(x) =
∑

i

ngal(x|i), (1)

with i being the halo index. In the literature, ngal(x|i) is assumed,
implicitly or explicitly, to be a smooth distribution following the
halo density profile. However, galaxies are discrete objects; hence
we write

ngal(x|i) =
Ngal(i)∑
j=1

θ (x − xj ), (2)

with j being the index of the random galaxies, Ngal(i) being the –
random – number of galaxies in the halo i, xj is the – random –
position of the jth galaxy and θ (x) is the galaxy profile. We assume
here after that galaxies are drawn independently in the halo.

1 �vir is the density contrast with respect to the critical density at the halo
redshift.
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Equation (1) can then be rewritten as

ngal(x) =
∫

dM d3xh

∑
i

δ(M − Mi) δ(3)(xh − xi)

×
∫

d3xg

Ngal(i)∑
j=1

δ(3)(xg − xj ) θ (x − xj ), (3)

with Mi and xi the mass and position of the dark matter halo i.
This equation serves as the basis for the computation of the galaxy
clustering throughout this paper.

Furthermore, we make the following set of assumptions for the
galaxy distribution.

(i) Haloes are spherical. This is a common assumption in halo
models; inclusion of halo shapes was shown to have a 5–10 per cent
effect on the 3D bispectrum by Smith, Watts & Sheth (2006).

(ii) The number of galaxies Ngal(i) (= Ngal(Mi)) is drawn from
the HOD and depends on the mass Mi of the halo (see Section 2.2).

(iii) The galaxy positions follow the dark matter halo profile.
They are drawn from a distribution whose pdf is the normalized
halo profile u(x|M) centred on the halo centre:

p(xj |i) = u(xj − xi |Mi). (4)

(iv) The galaxy profile θ (x) is a Dirac δ(3)(x). This assumption
holds since the scales probed are larger than the galaxy size.

The galaxy density field may then be characterized with a hier-
archy of n-point correlation functions of ngal. At first order (n = 1),
the mean number of galaxies per comoving volume is

ngal =
∫

dM 〈Ngal(M)〉 dnh

dM
, (5)

where dnh
dM

is the number of haloes with mass M per comoving
volume, i.e. the halo mass function. It is convenient to define the
galaxy density contrast as

δgal(x) = ngal(x) − ngal

ngal
. (6)

In the following, we will derive the correlation functions of δgal

and their Fourier transform. To this end, we need to specify the
behaviour of the number of galaxies occupying a halo.

2.2 Occupation statistics

High-resolution dissipationless simulations as well as semi-analytic
and N-body+gas dynamics studies show that the number of galaxies
within a single halo depends on halo mass with a shape consisting of
a step, a shoulder and a power-law tail at high mass (e.g. Berlind et al.
2003; Kravtsov et al. 2004). This behaviour can be understood when
the number of galaxies, described as a random distribution, is split
into the contribution from central galaxies and that of satellite ones
Ngal = Ncen + Nsat. The former is described as a step-like function
while the latter is a power law. High-resolution simulations have
brought a lot of progress in the modelling of these two contributions
(e.g. Tinker & Wetzel 2010).

The HOD provides us with the number of galaxies in a halo; Ncen

takes either the value of 0 or 1, and the presence of satellite galaxies
is conditioned to {Ncen = 1}. If Ncen = 1, the number of satellites
is drawn from a Poisson distribution (see Zheng et al. 2005) with

mean nsat (in the following, overbar denotes the average conditioned
to {Ncen = 1}).2 Hence we have

〈Nsat〉 = P (Ncen =1) × nsat = 〈Ncen〉 × nsat. (7)

Using the properties of the Poisson distribution, we can then com-
pute the expectation values that will be used in the following sec-
tions:

〈Ngal〉 = P (Ncen =1) × (1 + nsat)

= 〈Ncen〉 + 〈Nsat〉, (8)

〈Ngal(Ngal − 1)〉 = P (Ncen =1) × (nsat + 1)nsat

s = 〈Ncen〉(n2
sat + 2 nsat) (9)

〈Ngal (Ngal − 1)(Ngal − 2)〉 = P (Ncen =1)

×(nsat + 1) nsat (nsat − 1)

= 〈Ncen〉
(
n3

sat + 3n2
sat

)
. (10)

We take the mean number of central galaxies as in Pénin et al.
(2012)

〈Ncen〉 = P (Ncen =1) = 1

2

[
1 + erf

(
log M − log Mmin

σlog M

)]
(11)

and the mean number of satellites as

〈Nsat〉 = 1

2

[
1 + erf

(
log M − log 2Mmin

σlog M

)](
M

Msat

)αsat

, (12)

where as for the rest of this paper, we use base-10 logarithm.
Such expressions are motivated by hydrodynamical cosmolog-

ical simulations (Berlind et al. 2003) as well as high-resolution
collisionless simulations (Kravtsov et al. 2004). In this formulation,
the HOD is thus characterized by four parameters: Mmin, the mass
threshold above which a halo contains a central galaxy; σ log M de-
scribing the width of the transition from 0 to 1 central galaxy; Msat

the typical mass above which a halo contains satellite galaxies; and
αsat the index of the power law for the number of satellites at large
halo masses. Furthermore, Nsat has a cut-off of the same form as
the central occupation but with a transition mass twice larger than
that of the central galaxy. This prevents haloes which have a low
probability of hosting a central galaxy to contain satellite galaxies.
Throughout this paper, we use log Mmin/M� = 12.6, σ log M = 0.65,
log Msat/M� = 13.6 and αsat = 1.1, unless otherwise stated
(Paper II).

2.3 Power spectrum

In the last decade, it has been shown that the 2-point correlation
function of galaxies departs from a simple power law (Zehavi et al.
2004). In the framework of the halo model, this has been reproduced
by splitting the total 2-point correlation function, or the angular
power spectrum, into two contributions, the 1- and 2-halo terms.
The discreteness of galaxies further adds a shot noise term, which

2 For example, we have n2
sat = n2

sat + nsat, through the properties of the
Poisson distribution.
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Figure 1. For the Navarro–Frenk–White halo profile and the Sheth & Tormen mass function we plot the 1- and 2-halo terms of the galaxy power spectrum at,
respectively, z = 0.1 (left-hand panel) and z = 1 (right-hand panel). Note that the k range is not identical between the plots.

can be accounted for following a counts-in-cells approach (Peebles
1980). We thus have3

Pgal(k) = P 1h
gal(k) + P 2h

gal(k) + P shot
gal (k). (13)

The shot noise contribution is given by

P shot
gal (k) = 1

ngal
, (14)

and will be examined in more detail in Section 4.3. The 1- and 2-halo
terms describe, respectively, the contribution of two galaxies within
one same halo and that of two galaxies in two different haloes. The
1-halo contribution is

P 1h
gal(k) =

∫
dM

dnh

dM

〈Ngal(M)(Ngal(M) − 1)〉
n2

gal

u(k|M)2, (15)

where u(k|M) is the Fourier transform of the normalized halo pro-
file. Throughout this paper, we use the Navarro–Frenk–White halo
profile (Navarro et al. 1997) and the Sheth & Tormen mass func-
tion (Sheth & Tormen 1999) that provide us with associated bias
functions, in particular the second order bias b2(M), introduced in
Section 3.1, which will be needed for the bispectrum computation
later on.

The 2-halo contribution writes

P 2h
gal(k) = Plin(k)

(∫
dM

〈Ngal(M)〉 dnh
dM

ngal
b1(M) u(k|M)

)2

,

where Plin(k) is the dark matter power spectrum predicted by linear
theory (working at tree level).

On scales larger than the typical halo size, u(k|M) → 1 when k
→ 0. Hence, the 1-halo term tends towards a constant while the
2-halo term tends towards the linear power spectrum. On small
scales, the halo profile smoothes out both terms. For instance, the
contribution of massive haloes is smoothed at a smaller cut-off
wavenumber compared to that of lower mass haloes. The 1- and 2-
halo terms of the power spectrum are exhibited in Fig. 1 at redshifts

3 See detailed derivation in Appendix A, including the shot noise terms
consistently.

Figure 2. Total 3D galaxy power spectrum as a function of redshift.

z = 0.1 (left-hand panel) and z = 1 (right-hand panel). Note that the
k range is different from a panel to another. Indeed, we compute the
power spectrum at the wavevectors which will project on observable
angular scales on the sky (see Section 5). As expected, we find that
the 1-halo term dominates at small scales while the 2-halo term is
more important at large scales. We also note that the 1-halo term
increases clearly with time, by a factor of ∼2, while the 2-halo does
not significantly vary.

In Fig. 2, we show the evolution with redshift of the total galaxy
power spectrum (1- and 2-halo terms). The spectrum decreases
with increasing redshift up to z ∼ 2 beyond which it increases with
redshift. This behaviour seems counterintuitive as the linear dark
matter power spectrum, Plin(k, z), decreases monotonically with
increasing redshift. However, galaxies are biased tracers of matter
and they are strongly biased at high redshift (bgal ∼ 5.5 at z ∼ 4)
(Coupon et al. 2012; Jullo et al. 2012), which counterbalances the
decrease of Plin(k, z).
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3 H I G H E R O R D E R S W I T H T H E H A L O MO D E L

As it is analytical, the halo model can be extended easily to higher
orders. Indeed, it has been already used to compute the real-space 3-
point correlation function (Wang et al. 2004), comparing favourably
with simulations and measurements, as well as the bispectrum in
redshift space (Smith, Sheth & Scoccimarro 2008), comparing again
favourably with numerical simulations of dark matter.

In the following, we first summarize the 3D bispectrum compu-
tation and then we present a new diagrammatic method that can be
used to compute the series of high order moments.

3.1 Bispectrum

The 3D galaxy bispectrum at a given redshift can be written as
the sum of several terms (see detailed derivation in Appendix B,
neglecting primordial NG as argued in the appendix):

Bgal(k1, k2, k3, z) = B1h
gal(k1, k2, k3, z) + B2h

gal(k1, k2, k3, z)

+ B3−halo
gal (k1, k2, k3, z) + B

shot2g
gal (k1, k2, k3, z)

+ B
shot1g
gal (k1, k2, k3, z), (16)

where the 1-halo term writes

B1h
gal(k1, k2, k3, z) =

∫
dM

〈Ngal(Ngal − 1)(Ngal − 2)〉
n3

gal(z)

dnh

dM

× u(k1|M, z) u(k2|M, z) u(k3|M, z). (17)

The 2-halo term writes

B2h
gal(k1, k2, k3, z) = G1(k1, k2, z) Plin(k3, z)F1(k3, z)

+ G1(k1, k3, z) Plin(k2, z)F1(k2, z)

+ G1(k2, k3, z) Plin(k1, z)F1(k1, z). (18)

The 3-halo term writes

B3−halo
gal (k1, k2, k3, z) =F1(k1, z)F1(k2, z)F1(k3, z)

× [F s(k1, k2) Plin(k1, z) Plin(k2, z)+perm.
]

+ F1(k1, z)F1(k2, z)F2(k3, z)

× Plin(k1, z) Plin(k2, z) + perm., (19)

with

F1(k, z) =
∫

dM
〈Ngal(M)〉

ngal(z)

dnh

dM
(M, z) b1(M, z) u(k|M, z), (20)

where b1(M, z) is the first order bias,

F2(k, z) =
∫

dM
〈Ngal(M)〉

ngal(z)

dnh

dM
(M, z) b2(M, z) u(k|M, z), (21)

where b2(M, z) is the second order bias,

G1(k1, k2, z) =
∫

dM
〈Ngal(Ngal − 1)〉

ngal(z)2

dnh

dM
(M, z) b1(M, z)

× u(k1|M, z) u(k2|M, z) (22)

and

F s(ki , k j ) = 5

7
+ 1

2
cos(θij )

(
ki

kj

+ kj

ki

)
+ 2

7
cos2(θij ), (23)

which stem from non-linear evolution at second order in perturba-
tion theory (e.g., Fry 1984; Gil-Marı́n et al. 2012).

In the following, we will note 3hcos the part of the 3-halo term
containing the Fij kernel (i.e. the first term of equation 19) and we
note 3h the part involving the second order bias (i.e. the last lines
of equation 19):

B3−halo
gal (k123, z) = B3h

gal(k123, z) + B3hcos
gal (k123, z). (24)

Eventually, the shot noise terms are

B
shot1g
gal (k1, k2, k3, z) = 1

n2
gal(z)

, (25)

B
shot2g
gal (k1, k2, k3, z) = P clust

gal (k1) + P clust
gal (k2) + P clust

gal (k3)

ngal(z)
, (26)

with P clust
gal (k) = P 1h

gal(k) + P 2h
gal(k). These terms will be examined in

more detail in Section 4.3.
For illustration, Fig. 3 shows the 1-, 2- and 3-halo terms of the

galaxy bispectrum at z = 0.1 (left-hand panel) and z = 1 (right-
hand panel), in the equilateral configuration (k1 = k2 = k3). Note
that, due to projection effects, here again the k range is not identical
between the plots.

We first note that the 2- and 3-halo terms dominate at large
scales whereas the 1-halo term dominates at small scales. We see
that all terms grow with time, the 1-halo having the fastest growth.
We also note that the 3-halo term becomes negative at z = 0.1.
This comes from the fact that the second order bias can be either
positive or negative depending on the halo mass and on the redshift.
For haloes with M ∼ 1013−14 M� (which typically dominate the
3-halo term) b2 is positive at high redshifts and it becomes negative
at low redshifts (e.g., at M = 1013 M� it changes sign at z ∼ 0.6,
while it changes sign at z ∼ 1.5 at M = 1012 M� and is always
positive at M = 1014 M�).

Fig. 4 shows the evolution of the total 3D bispectrum of the
galaxies across redshifts. The bispectrum clearly increases with
time, as gravitational infall produces non-linear structures so that
the density field deviates more and more from its initially Gaussian
distribution.

3.2 Diagrammatic and higher orders

The 3D galaxy density field may also be characterized with higher
orders than the power spectrum and bispectrum. This is achieved
through the use of polyspectra, where P (n)

gal (k1...n, z1...n) is the
polyspectrum of order n. See Appendix D for a comprehensive
definition of polyspectra and their diagonal degrees of freedom.

We introduce here, for the first time, a diagrammatic method per-
mitting the derivation of the equations of the 3D galaxy polyspec-
trum coming from the halo model. This approach is a generalization
of the formalism at second and third order, the power spectrum and
bispectrum, respectively. It allows us to have a clear representation
and understanding of the different terms involved. It further allows
us to avoid cumbersome calculations at high order, by replacing
them with diagram drawings.

The first step of the diagrammatic method that we propose here
is to draw in the form of diagrams all the possibilities of putting n
galaxies in halo(s). Potentially, two or more galaxies can lie at the
same point (‘contracted’) for the shot noise terms. Then for each
diagram, the galaxies are labelled, e.g. from 1 to n, as well as the
haloes e.g. with α1 to αp. An illustration is given in Fig. 5 that
displays the three diagrams for the power spectrum; Fig. 6 shows
the six diagrams for the bispectrum; and finally Fig. 7 exhibits the
14 diagrams for the trispectrum.
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128 F. Lacasa, A. Pénin and N. Aghanim

Figure 3. The 1-, 2- and 3-halo terms of the galaxy bispectrum at, respectively, z = 0.1 (left-hand panel) and z = 1 (right-hand panel). Note that the k range
is not identical between the plots.

Figure 4. Total galaxy equilateral bispectrum as a function of redshift.

Figure 5. Diagrams for the 3D galaxy power spectrum. From left to
right: (2-halo), (1-halo,2-galaxies), (1-halo,1-galaxy). Violet circles rep-
resent haloes and red ellipses galaxies.

Each diagram produces a polyspectrum term. This term contains
a prefactor 1/nn

gal multiplied by an integral over the halo masses∫
dMα1...αp of several factors. The following ‘Feynman’-like rules

prescribe these different factors.

(i) For each halo αj there is a corresponding:

(a) halo mass function dnh
dM

∣∣
Mαj

,

(b) average of the number of galaxy uplets in that halo,
e.g. 〈Ngal〉 for a single galaxy in that halo, 〈N(N − 1)〉 for a pair etc.

1 1 12
2

2

3

1
2

3

1 2
3

1 2

3

3
3

Figure 6. Diagrams for the 3D galaxy bispectrum. From left to right and
top to bottom: (3-halo), (2-halo 3-galaxies), (2-halo 2-galaxies), (1-halo
3-galaxies), (1-halo 2-galaxies) and (1-halo 3-galaxies).
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Figure 7. Diagrams for the 3D galaxy trispectrum.

(c) as many halo profiles u(k|Mαj
) as different points, where

k = |∑i∈point ki |.
For example, k = ki for a non-contracted galaxy i, while k = |ki1 +
· · · + kiq | for a galaxy contracted q times with labels i1. . . iq.
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NG of the CIB anisotropies – I. Formalism 129

(ii) The final factor is the halo polyspectrum of order p, condi-
tioned to the masses of the corresponding haloes:

P (p)
halo

⎛
⎝∑

i∈α1

ki , . . . ,
∑
i∈αp

ki | Mα1 , . . . , Mαp

⎞
⎠ ,

where the sum
∑

i∈αj
ki runs over the indexes i of the galaxies

inside the halo αj.

Finally, the possible permutations of the galaxy labels 1 to n in
the diagram are taken into account: the contribution is the sum over
permutations of {1. . . n} which produce different diagrams. For
example, we have seen in Section 3.1 that some contributions to the
galaxy bispectrum (namely 1-halo, 3-halo and shot1g) have a single
term while others (namely 2-halo and shot 2 g) have three terms.

As an example, the (2-halo, 2-galaxy) term of the bispectrum
(upper-right diagram in Fig. 6) yields

B2h2g(k123) = 1

n3
gal

∫
dMα12 〈Ngal(Mα1 )〉 〈Ngal(Mα2 )〉

× dnh

dM

∣∣∣∣
Mα1

dnh

dM

∣∣∣∣
Mα2

u(|k1 + k2||Mα1 ) u(k3|Mα2 )

× P (2)
halo(k1 + k2, k3|Mα1 , Mα2 ) + perm. (27)

Furthermore, the P (2)
halo term simplifies into Phalo(k3|Mα1 , Mα2 ) as

k1 + k2 = −k3.
We described in the previous sections the mass function, halo

profile and the HOD governing the number of galaxies in a halo. The
final element needed for the computation of the galaxy polyspectra is
a description of the halo polyspectra. To this end, we adopt the local
biasing scheme which allows us to compute the halo polyspectrum
from the matter polyspectrum as described in Appendix C.

At high order, the halo polyspectrum has thus several possible
sources. The first source is the first order biasing of the correspond-
ing dark matter polyspectrum, either primordial (primordial NG)
or from perturbation theory. In the bispectrum case, it produces the
3hcos term. The second source is the higher order biasing of lower
order dark matter polyspectrum. In the bispectrum case, it produces
the 3h term.

Hence, we have proposed a diagrammatic method to compute
galaxy polyspectra which gives the power and simplicity of draw-
ings to compute otherwise cumbersome equations at high order.
The focus of the next section is to relate these 3D polyspectra to
observables on the sky.

4 C I B A N G U L A R P O LY S P E C T R A O N TH E S K Y

Measurements of the CIB clustering are carried out on the celestial
sphere. Hence a statistical characterization of random fields on the
sphere is needed, as well as the projection of the statistics of 3D
random fields on to the sphere.

In this section, we first describe the formalism of correlation
functions on the sphere, then we derive the CIB angular polyspec-
trum. Eventually, we discuss the shot noise terms and the effect of
the flux cut.

4.1 Correlation functions in harmonic space

Given a full-sky map of the temperature T (n̂) of some signal on the
celestial sphere, it can be decomposed in the harmonic basis as

T (n̂) =
∑
	m

a	m Y	m(n̂), (28)

with

a	m =
∫

d2n̂ Y ∗
	m(n̂) �T (n̂), (29)

with the usual orthonormal spherical harmonics Y	m.
For a – statistically isotropic – Gaussian field, all the statistical

information is contained in the power spectrum C	, the 2-point
correlation function in harmonic space: 〈a	m a∗

	′m′ 〉 = C	 δ		′ δmm′ .
For non-Gaussian fields, information is also contained in higher
order moments. For instance, the bispectrum b	1	2	3 is

〈a	1m1a	2m2a	3m3 〉 = G
m1m2m3
	1	2	3

× b	1	2	3 , (30)

with the Gaunt coefficient

G1,2,3 =
∫

d2n̂ Y123(n̂) (31)

=
√

(2	 + 1)123

4π

(
	1 	2 	3

0 0 0

)(
	1 	2 	3

m1 m2 m3

)
, (32)

where Yi = Y	imi
. In the following, the subscript 123 denotes the

product of the corresponding variables, e.g. X123 ≡ X1 X2 X3. The
Gaunt coefficient is zero unless the triplet (	1, 	2, 	3) follows the
triangle inequalities and m1 + m2 + m3 = 0.

Higher order polyspectra P (n)(	1...n , 	d
1...(n−3)) are defined in Ap-

pendix D, along with the case of diagonal independence.
The one-to-one correspondence between the full pdf and the hier-

archy of polyspectra for n up to infinity ensures that the polyspectra
provide us with a full statistical characterization of a given field on
the sphere.

4.2 Anisotropy projection on the sky

The CIB is mostly unresolved in the far-infrared domain which
leads to the loss of the redshift information. The emission is thus
integrated on a large range of redshift (1 < z < 4), and the CIB
temperature in a given direction n̂, is a line-of-sight integral of the
IR emissivity jν per comoving volume:

T (n̂, ν) =
∫

dz
dr

dz
a(z) jν (r(z) n̂, z) , (33)

with jν in Jy Mpc−1 so that T has units of Jy sr−1 and may be
converted to a temperature elevation at CMB frequencies through
Planck’s law. Here r is the comoving distance to redshift z and a is
the scalefactor.

Using the Rayleigh/plane wave expansion and the Fourier expan-
sion of the emissivity field, we obtain

a	m(ν) = i	

∫
d3k
2π2

dz
dr

dz
a(z) j	(kr) Y ∗

	m(k̂) jν(k, z), (34)

where j	 is the spherical Bessel function of order 	.
We relate in Appendix E the CIB angular polyspectrum to

the 3D emissivity polyspectra, for the terms which are diagonal
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130 F. Lacasa, A. Pénin and N. Aghanim

independent.4 This gives

P (n)
CIB(	1, . . . , 	n) =

(
2

π

)n∫
k2

1...ndk1...n dz1...n x2dx

×
[
a(zi)

dr

dz

∣∣∣∣
zi

j	i
(kiri)j	i

(kix)

]
i=1...n

× P (n)
j (k1...n, z1...n) (35)

with parity invariance imposing 	1 + . . . + 	n to be even.
In the Limber’s approximation, equation (35) simplifies to

P (n)
CIB(	1, . . . , 	n) =

∫
r2dr

r2n
an(z)P (n)

j (k∗
1...n, z), (36)

with k� = (	 + 1/2)/r(z). Note that, as a consequence of Limber’s
approximation, equation (36) now involves the emissivity polyspec-
trum at a single redshift (i.e. z1 = ··· = zn = z).

Galaxy power spectrum and galaxy emissivity are often related
assuming implicitly or explicitly that all galaxies at a given redshift z
have the same luminosity (e.g. Knox et al. 2001; Pénin et al. 2012;
Xia et al. 2012). We will refer to this approach as the constant-
luminosity assumption. It yields

δjν(k, z) = jν(z) · δgal(k, z), (37)

where the average emissivity jν is computed from galaxy number
counts.

In the present study, we propose a more general assumption re-
ferred to as the flux-abundance independence assumption. That is,
we assume that the flux is stochastic with a distribution given by the
number counts, and furthermore that the stochasticity is independent
of the galaxy position/abundance. The commonly used constant-
luminosity assumption is a special case of the flux-abundance in-
dependence assumption when the luminosity function d2N

dL dV
is a

dirac. Note that, although the flux-abundance independence is a
more general assumption than the constant-luminosity one, it does
not capture the possibility that the luminosity may depend on un-
derlying variables having an influence on galaxy abundance (e.g.
the host halo mass).

For non-shot noise terms, the flux-abundance independence as-
sumption yields the same relation as the constant-luminosity as-
sumption:

P (n)
j (k∗

1...n, z) = jν(z)n P (n)
gal (k

∗
1...n, z). (38)

The difference between the two assumptions impacts the shot noise
terms as discussed in detail in Section 4.3.

For non-shot noise terms, the angular polyspectrum then takes
the form

P (n)
CIB(	1, . . . , 	n) =

∫
dz

r2n−2

dr

dz
an(z) jν(z)n P (n)

gal (k
∗
1...n, z). (39)

In particular at second order the power spectrum is

C	(ν) =
∫

dz

r2

dr

dz
a2(z) j

2
ν (z) Pgal(k

∗, z) (40)

as given e.g. by Knox et al. (2001), Pénin et al. (2012) and Xia et al.
(2012).

And at third order, the bispectrum is

b	1	2	3 =
∫

dz

r4

dr

dz
a3(z) j

3
ν(z) Bgal(k

∗
123, z). (41)

4 Note that not all terms may be diagonal independent, in which case equation
(E2) must be used in all generality.

4.3 Shot noise

The shot noise terms, for the power spectrum or for the bispectrum,
correspond to terms in the correlation function involving multiple
times the same galaxy. For the power spectrum, the halo model
gives the galaxy shot noise power spectrum

P shot
gal (k, z) = 1

ngal(z)
. (42)

With the constant-emissivity assumption, we get the angular power
spectrum

Cshot
	 =

∫ ∞

z=0

dz

r2

dr

dz
a2(z) j

2
ν(z) Pshot(k, z). (43)

The shot noise level can be predicted from number counts (see e.g.
Lacasa et al. 2012) as

Cshot
	 =

∫ ∞

z=0

∫ Scut

0
S2 d2n

dS dz
dS dz. (44)

These two formulae agree if indeed all sources have the same lu-
minosity, potentially depending on redshift. However, in reality,
sources do not have the same luminosity; and specifically equation
(44) will give more weight to bright galaxies – averaging S2 – as
compared to equation (43) – averaging S.

With the flux-abundance independence assumption, the distribu-
tion of luminosities can be incorporated in the model by introducing
the nth order emissivities:

j(n)
ν (z) = (1 + z)n r(z)2n−2

dr
dz

∫ Scut

0
Sn d2N

dS dz
dS, (45)

which effectively average Sn instead of S. Removing ngal(z) factors
from the shot noise 3D power spectrum, the shot noise angular
power spectrum becomes

Cshot
	 =

∫
dz

r2

dr

dz
a2(z) j(2)

ν (z) × 1, (46)

which can be shown to be equivalent to equation (44).
At any order, with the diagrammatic approach described in Sec-

tion 3.2, the shot noise terms can be computed and integrated over
redshifts with equation (39) provided the following modification.

For each contraction, jp
ν (z)/np−1

gal must be replaced by the pth
order emissivity j(p)

ν (z), where p is the order of the contraction
under consideration.

For example, for the bispectrum, the 3D shot noise contains three
terms (see Appendix B):

Bshot
gal (k1, k2, k3, z) = B

1h−1g
gal + B

1h−2g
gal + B

2h−2g
gal , (47)

with

B
1h−1g
gal (k1, k2, k3, z) = 1

n2
gal(z)

, (48)

B
1h−2g
gal (k1, k2, k3, z) = P

1h−2g
gal (k1) + P

1h−2g
gal (k2) + P

1h−2g
gal (k3)

ngal(z)
,

(49)

B
2h−2g
gal (k1, k2, k3, z) = P

2h−2g
gal (k1) + P

2h−2g
gal (k2) + P

2h−2g
gal (k3)

ngal(z)
.

(50)
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NG of the CIB anisotropies – I. Formalism 131

Now taking into account luminosity distribution, the 1-galaxy an-
gular shot noise takes the form

b
shot1g
	123

=
∫

dz

r4

dr

dz
a3(z) j(3)

ν (z) × 1, (51)

and the 2-galaxy shot noise

b
shot2g
	123

=
∫

dz

r4

dr

dz
a3(z) j(1)

ν (z) j(2)
ν (z)

×
[
P clust

gal (k∗
1 ) + P clust

gal (k∗
2 ) + P clust

gal (k∗
3 )
]
, (52)

with P clust
gal (k) = P 1h

gal(k, z) + P 2h
gal(k, z) and as usual k∗ = 	+1/2

r(z) .
In this formulation, the flux cut, or more generally the selection

function, is implemented in the p-order emissivities. The shot noise
terms are quite sensitive to the value of this flux limit, which in turn
depends on the instrumental setup used for the observation. Hence,
the amplitude of the shot noise terms may change depending on the
instrument considered.

4.4 Flux cut and low-redshift contribution

As can be seen in equations (46) and (51), the shot noise equations
diverge if the emissivities tend to a constant as z → 0. This is
indeed the case in the Euclidean case ( dn

dS
∝ S−5/2) where equation

(44) diverges if no flux cut is applied.
In practice, the flux cut reduces the contribution from low-redshift

sources which dominate the counts. This needs to be reflected in the
halo model, where the number of objects is dictated by the HOD.
For simplicity, we implement the flux cut in terms of a cut-off in
the redshift integrals at zcut. Below this redshift, a typical galaxy
with luminosity L� (the knee of the luminosity function) has a flux
S ≥ Scut:

Scut = L∗
4π d2

L(zcut)
, (53)

with dL being the luminosity distance.
The effect of the flux cut on the galaxy clustering has not been

considered previously in the CIB power spectrum literature, al-
though it is theoretically necessary. We found that it has a small
effect on the power spectrum, mostly on the 1-halo term and for
some values of the HOD parameters (α > 1). The redshift cut has
more effect on the bispectrum and potentially at higher order, as
they may be more sensitive to low redshift because of the r(z)2n − 2

denominator in equation (39) which goes to zero as z → 0.

5 R ESU LTS

5.1 The CIB angular bispectrum

In the following, we apply our formalism to the computation of the
bispectrum of the CIB. To this end, the HOD best-fitting parameters
were obtained so as to reproduce CIB power spectrum constraints
(Paper II). We also use the galaxy emission model by Béthermin
et al. (2011) at 350 μm = 857 GHz with a flux cut at 0.82 Jy (Planck
Collaboration 2011a), which implies a redshift cut at zcut = 0.03.

The obtained CIB bispectrum and its different terms are displayed
in Fig. 8 in some particular configurations: equilateral, orthogonal
isoceles, flat isoceles and squeezed. We consider a multipole range
of 	 = 30–2000. In this range of scales, shot noise terms are found
to be negligible, as happens for the power spectrum (Pénin et al.
2012). However, they are expected to dominate on smaller scales
(	 ∼ 5000 for the particular galaxy emission model used in the

present study). The 2- and 3-halo terms dominate on large scales
	 ≤ 300, while the 1-halo dominates on small scales, except in
the squeezed configuration where the 2-halo term dominates for
	 > 300.

An interesting point is the configuration dependence of the bis-
pectrum. Fig. 9 shows the CIB bispectrum at 350 μm plotted in the
geometrical parametrization proposed in Lacasa et al. (2012). The
values of the bispectrum are colour coded from violet to red. In this
parametrization, each subplot shows a slice of the bispectrum at
a given perimeter, indicated in the bottom-left corner. All triangles
within the perimeter bin are shown in the subplot, with squeezed tri-
angles in the upper-left corner, equilateral triangle in the upper-right
corner and flat isosceles triangle in the bottom corner. The geomet-
rical parametrization permits us to visualize, at the same time, both
the scale and configuration dependence of the bispectrum. We do
not display the 1-galaxy shot noise term since it is constant.

As seen already in Fig. 8, the CIB bispectrum decreases generally
with scale, as it is the case for the power spectrum. A distinctive
feature of the CIB bispectrum is that it peaks in the squeezed config-
uration, as already noted by Lacasa et al. (2012). Figs 10–14 show
the different terms of the CIB bispectrum plotted in the geometri-
cal parametrization with the colour range adapted to each term to
highlight its variations.

It is worth noting that most terms peak strongly in the squeezed
configurations, except the 1-halo term. The latter has little con-
figuration dependence but strong scale dependence and is slightly
weaker in squeezed. The 3hcos term from perturbation theory is,
unlike other terms, more important in the flat configuration than in
the equilateral. This is due to the Fs kernel (equation 23) which is
more important in flat than in equilateral configurations.

5.2 Dependences on the HOD parameters

We now investigate how the bispectrum and its different compo-
nents vary with respect to the HOD parameters. We use a fidu-
cial set of HOD parameters inspired from previous studies of CIB
anisotropies, namely Viero et al. (2009), Amblard et al. (2011),
Planck Collaboration (2011b), and we vary them individually. Only
one parameter is varied, by typically 2σ (for instance, Planck Col-
laboration 2011b), while the others keep their fiducial values. We
consider αsat = 1.3, log Mmin = 12, Msat = 10 Mmin and σlog M =
0.65. As a reminder, increasing (decreasing) αsat leads to a higher
(lower) number of satellite galaxies. The value of Mmin rules the
mass at which a halo contains a central galaxy and Msat is the
average mass of a halo hosting satellite galaxies.

Fig. 15 displays the equilateral bispectrum at 350 μm and its
components. We do not display the 1-galaxy shot noise term as it is
independent of the HOD parameters. First, we see that the amplitude
of each component of the bispectrum is very sensitive to the value of
each HOD parameter. Indeed, the amplitude can increase/decrease
by up to two orders of magnitude. For instance, a higher αsat leads
to more power at all scales as it means more satellite galaxies as
compared to a lower αsat. The shape of the bispectrum terms only
varies slightly with the HOD parameters. Furthermore, variations
of different parameters induce similar changes on the equilateral
bispectrum suggesting degeneracies between the HOD parameters.
The degeneracy and how it could be broken are discussed in Paper II.

It is interesting to notice that αsat induces strong variations in
the relative contributions of each term of the bispectrum. Fig. 16
shows each component of the bispectrum for two values of αsat. For
αsat= 1.4 the 1-halo term dominates all the other contributions on
nearly all angular scales. The bispectrum thus appears much more
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132 F. Lacasa, A. Pénin and N. Aghanim

Figure 8. CIB bispectrum and its different terms in some particular configurations at 350 μm = 857 GHz. The squeezed configuration uses 	min = 32.

sensitive to αsat than the power spectrum. This effect might help to
alleviate the tension that exists today about the measured values of
αsat (see Paper II).

5.3 Halos contribution

We can now focus on halo contribution to the 3D galaxy bispectrum.
Most terms, except the 1-halo term, are not a simple integration
over halo mass, but include cross-terms between haloes of different
masses. The 3D galaxy bispectrum cannot be simply divided into
a sum of contributions of different mass bins. We may focus on
the dependence of the bispectrum on the halo mass upper cut-
off. In Fig. 17, we display the total 3D galaxy bispectrum in the
equilateral configuration, as a function of the halo mass upper cut-
off, respectively, at z = 0.1 and 1.

At z = 1, we see that the equilateral bispectrum saturates for a
cut-off at a few 1014 M�, except at small scales where saturation
is reached for ∼1015 M�. So at this redshift, haloes with masses
larger than a few 1015 M� contribute negligibly to the bispectrum,
as there are too few of them. At z = 0.1, massive haloes contribute
more importantly to the bispectrum, which saturates at a cut-off
∼1015 M� on small scales and at ∼4 × 1015 M� on large scales.
This reflects also the increase in number of massive haloes at low
redshift.

We checked each of the bispectrum terms and found that the
1-halo term is the most sensitive to massive haloes, while the 3-
halo terms (both 3h and 3hcos) are the least sensitive, saturating
at a few 1014 M� even at low redshift. This behaviour is ex-
pected since the 3-halo terms involve the product of three halo
mass functions. This penalizes massive haloes in the tail of the
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NG of the CIB anisotropies – I. Formalism 133

Figure 9. CIB bispectrum in the geometrical parametrization at 350 μm = 857 GHz. It exhibits a peak in the squeezed configurations (upper-left corner of
each subplot).

Figure 10. The 1-halo term of the CIB bispectrum in the geometrical
parametrization at 350 μm = 857 GHz. It has strong scale dependence
but few dependence on configuration.

Figure 11. The 2-halo term of the CIB bispectrum in the geometrical
parametrization at 350 μm = 857 GHz. It exhibits a peak in the squeezed
configurations (upper-left corner of each subplot).

mass function as there are few of them. On the contrary, the 1-
halo term involves only one mass function, and it gives more
weight to massive haloes containing more galaxies (see Ngal(M)3

weight).
The mass contribution to the angular bispectrum depends on the

galaxy emissivities which give weights to each redshift. It hence
depends on the specific galaxy evolution model chosen. This is
discussed in detail in the companion paper (Paper II).

Figure 12. The 3-halo term of the CIB bispectrum in the geometrical
parametrization at 350 μm = 857 GHz. It exhibits a peak in the squeezed
configurations (upper-left corner of each subplot).

Figure 13. The 3-halo cos term of the CIB bispectrum in the geometrical
parametrization at 350 μm = 857 GHz. It exhibits a peak in the squeezed
configurations (upper-left corner of each subplot), and in the flat configura-
tions (down corner of each subplot) for some perimeter bins.

6 D I SCUSSI ON

6.1 Comparison with empirical prescription

A simple empirical prescription for the CIB bispectrum based on
its power spectrum was proposed by Lacasa et al. (2012). It reads

bCIB
123 = α

√
CCIB

	1
CCIB

	2
CCIB

	3
, (54)
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134 F. Lacasa, A. Pénin and N. Aghanim

Figure 14. 2-galaxy shot noise term of the CIB bispectrum in the geometri-
cal parametrization at 350 μm = 857 GHz. It exhibits a peak in the squeezed
configurations (upper-left corner of each subplot).

where α is a proportionality constant that can be computed with the
number counts of IR galaxies and their flux cut.

We compare this prescription with the CIB bispectrum obtained
from the halo model theory. For the prescription, we used the CIB
power spectrum predicted by the halo model with the same param-
eters as for the bispectrum, and the best-fitting value α = 2.25 ×
10−3 (compared to α = 3 × 10−3 found by Lacasa et al. 2012 on
simulations by Sehgal et al. 2010). Fig. 18 shows both bispectra at
350 μm (the prescription is in red and the halo model in black).

We see that the prescription reproduces reasonably well the shape
of the bispectrum in equilateral, orthogonal and flat configurations.
However, the empirical prescription shows an excess of power at in-
termediate multipoles 	 ∈ [100, 1000] in the equilateral and isosce-
les orthogonal configurations. Finally, the prescription does not re-
cover the bispectrum in the squeezed configuration, departing from

Figure 15. Equilateral bispectra at 350 μm for several sets of the HOD parameters. Only one parameter is varied while the others keep their fiducial values.
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Figure 16. Equilateral bispectrum at 350 μm with αsat= 1 and αsat= 1.4. The other HOD parameters are fixed at their fiducial values.

Figure 17. Total galaxy equilateral bispectrum at redshift 0.1 and 1, as a function of the halo mass upper cut-off from Mcut = 5.7 1012 M� to 1017 M�.

the halo model at 	 ∼ 300, i.e. when the 2-halo term begins to
dominate the squeezed bispectrum (see Fig. 8).

The empirical prescription therefore gives a reasonable overall fit
of the CIB bispectrum, for the considered galaxy emission model
and HOD parameters. Furthermore, the prescription gives a sep-
arable template (i.e. b123 = f(	1)f(	2)f(	3) for some function f); it
thus provides a convenient way to assess quickly the overall level
of CIB NG present in a CMB map. This is useful in particular to
assess the level of contamination of fNL estimation (see Lacasa &
Aghanim 2012). Nevertheless, the empirical prescription does not
reproduce completely the theoretical bispectrum derived from the
halo model. Additionally, in the companion paper (Paper II), we
show that galaxy evolution models which are indistinguishable at
the power spectrum level can produce distinguishable theoretical
bispectra with the halo model. On the contrary, for different galaxy
models the empirical prescription would give indistinguishable bis-
pectra, as it is based on the power spectra. A full computation of
the bispectrum using the halo model is thus necessary if one were
to interpret a CIB NG measurement.

6.2 Comparison with radio sources and CMB bispectra

At microwave frequencies, several extragalactic signals other than
the CIB are present. In particular, the CMB and radio sources which
emit mostly at low frequencies, ν ≤ 217 GHz (Ade et al. (Planck
Collaboration) 2013). We thus compare the bispectra of those extra-
galactic signals with the CIB theoretical bispectrum derived from
the halo model.

Radio sources can be considered distributed randomly on the sky
(Toffolatti et al. 1998), at least for the brightest sources. Hence,
the extragalactic radio background has a white noise distribution
entirely characterized by the number counts dN

dS
. The expected power

spectrum and bispectrum is

CRAD
	 =

∫ Scut

0
S2 dN

dS
dS (55)

bRAD
	1	2	3

=
∫ Scut

0
S3 dN

dS
dS (56)
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Figure 18. CIB bispectrum computed with the halo model (black line) and
with the prescription (red line) at 350 μm.

in Jy2 sr−1 and Jy3 sr−2, respectively, with dN
dS

in gal Jy−1 sr−1 and
Scut the flux cut. The radio bispectrum is hence flat, with neither
scale nor geometrical dependence.

In the following, we use number counts from Tucci et al. (2011)
and flux cuts from Planck Collaboration (2011a).

In the standard paradigm, inflation generates close to Gaus-
sian perturbations which evolve to Gaussian-distributed tempera-
ture fluctuations of the CMB. In the last decade, interest has in-
creased for the search of CMB NG (e.g. Komatsu et al. 2011), as it
would be a signature of non-standard inflation (violating any of the
following assumption: slow-roll single-field inflation with standard
kinetic term and Bunch–Davies initial condition, see Bartolo et al.
2004, for a review), or any physical process generating the primor-
dial perturbations, or of non-linear evolution (e.g. Pitrou, Uzan &
Bernardeau 2010). With the recent Planck measurements, the CMB
appears to be very close to a Gaussian field (Planck Collaboration
XXIV 2013).

Among the many primordial NG shapes, the most studied is the
‘local’ type NG parametrized by a factor fNL, where the Bardeen
potential takes the form (Komatsu & Spergel 2001)


(x) = 
G(x) + fNL · (
G(x)2 − 〈
G(x)2〉) (57)

with 
G being the Gaussian part of the potential. This primordial
NG generates a CMB bispectrum of the form (Komatsu, Spergel &
Wandelt 2005)

bCMB
	1	2	3

= fNL

∫
r2dr α	1 (r) β	2 (r) β	3 (r) + perm., (58)

with an integral along the line of sight, and filters

α	(r) = 2

π

∫
k2dk gT,	(k) j	(kr) (59)

Figure 19. CIB (red line), radio (blue line) and CMB (green line) bispectra
at 220 GHz in dimensionless units �T/T. The latter is for fNL = 1, and we
plot its absolute value as it is mostly negative, diamond indicate positive
points.

β	(r) = 2

π

∫
k2dk P (k) gT,	(k) j	(kr) (60)

where gT,	 is the radiation transfer function, which can be computed
with a Boltzmann code,5 and P (k) ∝ kns−4 is the primordial power
spectrum, with a spectral index ns.

The CMB physics, e.g. acoustic peaks and Silk damping, is en-
coded into its bispectrum thanks to the radiation transfer function.

We show, in Fig. 19, the bispectra of radio sources and the CMB
for fNL = 1 together with the CIB bispectrum derived from the halo
model, in units of relative temperature elevation �T/T, at 1380 μm
= 220 GHz. At this frequency, radio and IR point sources have
comparable contributions, whereas radio sources dominate at lower
frequencies and IR sources dominate at higher frequencies.

We see that the CMB dominates on large angular scales, but
plummets at high multipoles and becomes negligible for 	 ≥ 500,
except in the squeezed configuration where the CMB dominates at
all scales. Indeed for local type NG, the CMB bispectrum peaks
strongly in the squeezed limit (Bucher, van Tent & Carvalho 2010).
The CIB bispectrum also peaks on large angular scales, albeit less
strongly than the CMB. It dominates the radio bispectrum up to 	 ∼
700−800 and becomes negligible afterwards except in the squeezed
limit where it dominates the radio over the whole multipole range.
Based on this simple comparison, it seems that detecting the CIB
bispectrum can be possible above 220 GHz. At 220 GHz, if most
of the CMB can be removed by a component separation method
(which estimates a CMB map through multifrequency analysis, see
Delabrouille & Cardoso 2007, for a review), the detection of the
CIB bispectrum is possible at 	 ≤ 700. Furthermore, the application
of a lower flux cut would lower the level of the radio bispectrum and

5 We used CAMB (Lewis, Challinor & Lasenby 2000).
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uncover the CIB one. For instance, the CIB bispectrum has been
detected in the South Pole Telescope (SPT) data in a multifrequency
analysis using 95, 150 and 220 GHz channels (Crawford et al. 2013),
and in the Planck data with a signal-to-noise ratio S/N = 5.8 at
217 GHz (Planck Collaboration XXX 2013).

7 C O N C L U S I O N

We have presented a framework which allows us to predict galaxy
clustering at all orders with the halo model including shot noise con-
sistently. We have developed a new diagrammatic method which
allows a clear representation and understanding of the different
terms involved in the computation of the 3D galaxy polyspectrum.
It further allows us to avoid cumbersome computation at high or-
ders by replacing them with diagram drawings. This diagrammatic
framework is adaptable to different galaxy-tracing signals and we
apply it to the CIB. The latter being integrated over a large range of
redshift, we show how the polyspectrum of the CIB anisotropies is
projected on the celestial sphere. We further show how to account
for the particular case of the shot noise terms.

This framework allows us to compute the CIB angular bispectra
at any frequency. We have investigated how the different terms
of the resulting CIB bispectrum depend on the scale and on the
triangle configuration. We recover that the total bispectrum peaks
in the squeezed limit as it is also the case for primordial NG of the
local type. We discuss how the terms of the CIB bispectrum vary
with the HOD parameters. We show that they vary similarly with
respect to the different HOD parameters indicating degeneracies.
Furthermore, we show that the bispectrum is much more sensitive
to the variation of these parameters than the power spectrum.

We explore the halo mass contribution to each term of the 3D
galaxy bispectrum, recovering that the 1-halo term gives more
weight to massive haloes compared to the 2- and 3-halo terms. The
halo mass contribution of the angular CIB bispectrum depends on
the specific galaxy evolution model which is examined in Paper II.

Our predictions are finally compared to a previously proposed
empirical prescription and to the bispectrum of radio galaxies and
that of the CMB assuming a local-type primordial NG. First, we
find an overall agreement with the prescription, although the halo
model is needed for an accurate description of the bispectrum, in
particular, in the squeezed configuration. Secondly, we show that
the detection of the CIB bispectrum is possible at frequencies above
220 GHz, where the CIB bispectrum is contaminated; this detection
has indeed been performed by SPT and Planck recent results.

This physically based model opens up the possibility to use, in
the future, information present in NG measurement to constrain
CIB models so as to extract a maximum of information of present
and future surveys.
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computation of the redshift cut-off discussed in Section 4.4 and M.
Langer for a thorough reading of the manuscript.

R E F E R E N C E S

Ade P. A. R. et al. (Planck Collaboration), 2013, A&A, 550, A133
Amblard A. et al., 2011, Nature, 470, 510
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A P P E N D I X A : D E R I VATI O N O F TH E G A L A X Y
POWER SPEC TRU M EQUATIONS

Using equation (3), the computation of the 2-point correlation func-
tion of δgal

ζ2pt(x1 − x2) = 〈ngal(x1) ngal(x2)〉 − n2
gal

n2
gal

= 〈δgal(x1) δgal(x2)〉

(A1)

yields a double sum over halo and galaxy indexes
∑

i1,i2

∑
j1,j2

which can be split into three terms:
∑

i1 �=i2

∑
j1 �=j2

(2-halo term),∑
i1=i2

∑
j1 �=j2

(1-halo 2-galaxy term) and
∑

i1=i2

∑
j1=j2

(1-halo
1-galaxy term). So that

ζ2pt(x1 − x2) = ζ 2h
2pt(x1 − x2) + ζ

1h−2g
2pt (x1 − x2)

+ ζ
1h−1g
2pt (x1 − x2) (A2)

with computations giving

ζ 2h
2pt(x1 − x2) =

∫
dM1

〈Ngal(M1)〉 dnh
dM

∣∣
M1

ngal

×
∫

dM2

〈Ngal(M2)〉 dnh
dM

∣∣
M2

ngal

×
∫

d3x′
12 u(x1 − x′

1|M1) u(x2 − x′
2|M2)

× ζ halo
2pt (x′

1 − x′
2|M1, M2), (A3)

ζ
1h−2g
2pt (x1 − x2) =

∫
dM

dnh

dM

〈Ngal(Ngal − 1)〉
n2

gal

×
∫

d3xh u(x1 − xh|M) u(x2 − xh|M), (A4)

ζ
1h−1g
2pt (x1 − x2) = δ3(x1 − x2)

ngal
, (A5)

where dnh
dM

is the number of haloes with mass M per comoving
volume a.k.a. the halo mass function, u(x|M) is the halo profile
(with integral normalized to unity) and ζ halo

2pt (x|M1,M2) is the halo
correlation function conditioned to masses M1 and M2. In this paper,
we use the Sheth & Tormen mass function (Sheth & Tormen 1999)
and the associated bias functions, as it is the most recent one for
which the second order bias is available.

At tree level, the halo correlation function takes the form (see
Cooray & Sheth 2002, and Appendix C)

ζ halo
2pt (x|M1, M2) = b1(M1) b1(M2) ζ lin

2pt(x), (A6)

where b1(M) is the first order halo bias and ζ lin is the dark matter
correlation function at linear/first order in perturbation theory.

The correlation functions defined by equations (A3) and (A4)
involve convolutions in real space, which become multiplications
in Fourier space. Hence the galaxy power spectrum – defined by
ζ2pt(x) = ∫

d3 k
(2π)3 P (k) eik·x – becomes

Pgal(k) = P 1h
gal(k) + P 2h

gal(k) + P shot
gal (k), (A7)

where the shot noise contribution (corresponding to the 1h1g term)
is examined in more detail in Section 4.3.

The 1-halo contribution is

P 1h
gal(k) =

∫
dM

dnh

dM

〈Ngal(M)(Ngal(M) − 1)〉
n2

gal

|u(k|M)|2 , (A8)

And the 2-halo contribution

P 2h
gal(k) =

∫
dM1

〈Ngal(M1)〉 dnh
dM

∣∣
M1

ngal
u(k|M1)

×
∫

dM2

〈Ngal(M2)〉 dnh
dM

∣∣
M2

ngal
u(k|M2) Phalo(k|M1, M2)

= Plin(k)

(∫
dM

〈Ngal(M)〉 dnh
dM

ngal
b1(M) u(k|M)

)2

(A9)

where as precedently, all redshift dependence are implicit to sim-
plify notations.

A P P E N D I X B : D E R I VAT I O N O F T H E G A L A X Y
BI SPECTRUM EQUATI ONS

Similarly to the 2-point correlation function, using equa-
tion (3), the computation of the 3-point correlation func-
tion of δgal can be split into six terms:

∑
i1 �=i2 �=i3

∑
j1 �=j2 �=j3

(3-halo term),
∑

i1=i2 �=i3

∑
j1 �=j2 �=j3

+ perm. (2-halo 3-
galaxy term),

∑
i1=i2 �=i3

∑
j1=j2 �=j3

+ perm. (2-halo 2-galaxy
term),

∑
i1=i2=i3

∑
j1 �=j2 �=j3

+ perm. (1-halo 3-galaxy term),∑
i1=i2=i3

∑
j1=j2 �=j3

+ perm. (1-halo 2-galaxy term) and finally∑
i1=i2=i3

∑
j1=j2=j3

+ perm. (1-halo 1-galaxy term). So that

ζ3pt(x1, x2, x3) = ζ 3h
3pt(x1, x2, x3) + ζ

2h−3g
3pt (x1, x2, x3)

+ ζ
2h−2g
3pt (x1, x2, x3) + ζ

1h−3g
3pt (x1, x2, x3)

+ ζ
1h−2g
3pt (x1, x2, x3) + ζ

1h−1g
3pt (x1, x2, x3), (B1)

with computations giving

ζ 3h
3pt(x1, x2, x3) =

∫
dM123

[ 〈Ngal(Mi)〉 dnh
dM

∣∣
Mi

ngal

]
i=123

×
∫

d3x′
123

(
u(xi − x′

i |Mi)
)

i=123

× ζ halo
3pt (x′

123|M123), (B2)

ζ
2h−3g
3pt (x1, x2, x3) =

∫
dM1

〈Ngal(M1)
(
Ngal(M1) − 1

)〉 dnh
dM

∣∣
M1

n2
gal

×
∫

dM3

〈Ngal(M3)〉 dnh
dM

∣∣
M3

ngal

×
∫

d3x′
13 u(x1 − x′

1|M1)u(x2 − x′
1|M1)

× u(x3 − x′
3|M3) ζ halo

2pt (x′
1 − x′

3|M1M3)

+ perm., (B3)

ζ
2h−2g
3pt (x1, x2, x3) = ζ

2h−2g
2pt (x1 − x3) δ(3)(x1 − x2)

ngal
+ perm. (B4)
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ζ
1h−3g
3pt (x1, x2, x3) =

∫
dM

〈Ngal

(
Ngal − 1

) (
Ngal − 2

)〉
n3

gal

dnh

dM

×
∫

d3x′ u(x1 − x′|M)u(x2 − x′|M)

× u(x3 − x′|M), (B5)

ζ
1h−2g
3pt (x1, x2, x3) = ζ

1h−2g
2pt (x1 − x3) δ(3)(x1 − x2)

ngal
+ perm., (B6)

ζ
1h−1g
3pt (x1, x2, x3) = δ(6)(x1 = x2 = x3)

n2
gal

, (B7)

where ζ halo
3pt (x123|M123) is the halo 3-point correlation function con-

ditioned to masses M1 M2 and M3, and for which we take (see
Appendix C)

ζ halo
3pt (x123|M123) = b1(M1) b1(M2) b1(M3) ζ DM

3pt (x123)

+ b1(M1) b1(M2) b2(M3) ζ lin
2pt(x1 − x3)

× ζ lin
2pt(x2 − x3) + perm., (B8)

where b2 is the second order halo bias.
The 3D galaxy bispectrum can be computed from equations (B2)

to (B5) through Fourier transform

ζ3pt(x1, x2, x3) =
∫

d3k123

(2π)9
B(k1, k2, k3) (2π)3δ(k1 + k2 + k3)

× ei(k1·x1+k2·x2+k3·x3)

giving

Bgal(k1, k2, k3) = B1h
gal(k1, k2, k3) + B2h

gal(k1, k2, k3)

+ B3h
gal(k1, k2, k3) + B

shot2g
gal (k1, k2, k3)

+ B
shot1g
gal (k1, k2, k3), (B9)

where we have the 1-halo term

B1h
gal(k1, k2, k3) =

∫
dM

〈Ngal(Ngal − 1)(Ngal − 2)〉
n3

gal

dnh

dM

× u(k1|M) u(k2|M) u(k3|M). (B10)

The 2-halo term

B2h
gal(k1, k2, k3) =

∫
dM1

〈Ngal(Ngal − 1)〉 dnh
dM

∣∣
M1

n2
gal

×
∫

dM3

〈Ngal(M3)〉 dnh
dM

∣∣
M3

ngal

× u(k1|M1)u(k2|M1)u(k3|M3)

× Phalo(k3|M1, M3) + perm. (B11)

= Plin(k3)
∫

dM1

〈Ngal(Ngal − 1)〉 dnh
dM

∣∣
M1

n2
gal

× b1(M1) u(k1|M1)u(k2|M1)

×
∫

dM3

〈Ngal(M3)〉 dnh
dM

∣∣
M3

ngal
b1(M3) u(k3|M3)

+ perm. (B12)

And the 3-halo term

B3h
gal(k1, k2, k3) =

∫
dM123

(
Ngal(Mi)

dnh
dM

∣∣
Mi

ngal

)
i=123

|u(ki |Mi)|i=123

× Bhalo(k1, k2, k3|M1,M2,M3) (B13)

= Blin(k123)
∫

dM123

(
Ngal(Mi)

dnh
dM

∣∣
Mi

ngal

× b1(Mi) u(ki |Mi)

)
i=123

+
∫

dM123

(
Ngal(Mi)

dnh
dM

∣∣
Mi

ngal
|u(ki |Mi)|

)
i=123

× b1(M1) b1(M2) b2(M3) Plin(k1)Plin(k2)

+ perm., (B14)

with

BDM(k1, k2, k3) = 2 fNL

((
k3 kH

k1 k2

)2

Plin(k1) Plin(k2) + perm.

)
︸ ︷︷ ︸

primordial NG

+ 2 F s(k1, k2) Plin(k1) Plin(k2) + perm.︸ ︷︷ ︸
gravity non−linearity at 2PT

(B15)

with

k2
H = 4πG ρ a2(t), (B16)

which stems from the Poisson equation linking density contrast to
Bardeen potential involved in the definition of fNL (equation 57)
and

F s(ki , k j ) = 5

7
+ 1

2
cos(θij )

(
ki

kj

+ kj

ki

)
+ 2

7
cos2(θij ), (B17)

which stems from non-linear evolution at second order in perturba-
tion theory (Fry 1984; Gil-Marı́n et al. 2012).

At the scales of interest in this paper kH � k1, 2, 3 so that we can
neglect the primordial NG term (e.g. compared to the 2PT term in
equation B15).

The equations above can be somewhat simplified if we introduce
some notations (where we reintroduced the redshift dependence to
show where it intervenes):

F1(k, z) =
∫

dM
〈Ngal(M)〉

ngal(z)

dnh

dM
(M, z) b1(M, z) u(k|M, z),

(B18)

F2(k, z) =
∫

dM
〈Ngal(M)〉

ngal(z)

dnh

dM
(M, z) b2(M, z) u(k|M, z),

(B19)

G1(k1, k2, z) =
∫

dM
〈Ngal(Ngal − 1)〉

ngal(z)2

dnh

dM
(M, z)

× b1(M, z) u(k1|M, z) u(k2|M, z) (B20)
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and the Fs kernel can also be computed through the formula

F s(kα, kβ ) = 2k4
γ − 5

(
k4

α + k4
β

) + 3k2
γ

(
k2

α + k2
β

) + 10k2
αk2

β

28k2
αk2

β

,

(B21)

where γ is the third index.
With these notations the 2-halo term takes the form

B2h
gal(k1, k2, k3, z) = G1(k1, k2, z) Plin(k3, z)F1(k3, z)

+ G1(k1, k3, z) Plin(k2, z)F1(k2, z)

+ G1(k2, k3, z) Plin(k1, z)F1(k1, z) (B22)

and the 3-halo term

B3h
gal(k1, k2, k3, z) = F1(k1, z)F1(k2, z)F1(k3, z)

× [
F s(k1, k2) Plin(k1, z) Plin(k2, z) + perm.

]
+ F1(k1, z)F1(k2, z)F2(k3, z)

× Plin(k1, z) Plin(k2, z) + perm. (B23)

Last, the shot noise terms are

B
1h−1g
gal (k1, k2, k3, z) = 1

n2
gal(z)

(B24)

B
1h−2g
gal (k1, k2, k3, z) = P

1h−2g
gal (k1) + P

1h−2g
gal (k2) + P

1h−2g
gal (k3)

ngal(z)

(B25)

B
2h−2g
gal (k1, k2, k3, z) = P

2h−2g
gal (k1) + P

2h−2g
gal (k2) + P

2h−2g
gal (k3)

ngal(z)
.

(B26)

A P P E N D I X C : H A L O C O R R E L AT I O N
F U N C T I O N S

We assume that the halo density field follows the local bias scheme
(Fry & Gaztanaga 1993)

δh(x|M) =
+∞∑
n=1

bn(M)

n!
δDM(x)n (C1)

where δDM is the dark matter density field predicted through pertur-
bation theory and bn(m) is the nth order bias

bn(M) = 1

f (ν)

∂nf (ν)

∂δn
. (C2)

Because of the smallness of δDM, it is sufficient to develop the
computation of halo correlation functions to tree level.

Hence the 2-point correlation function conditioned to mass M1

and M2 is

ζ hh
2pt(x1 − x2|M1, M2) ≡ 〈δh(x1|M1) δh(x2|M2)〉

= b1(M1) b1(M2) 〈δDM(x1) δDM(x2)〉
+ o

(
δ2
)

� b1(M1) b1(M2) ζ lin
2pt(x1 − x2). (C3)

Going to Fourier space gives the power spectrum

Phh(k) = b1(M1) b1(M2) Plin(k). (C4)

At tree level the 3-point correlation function conditioned to mass
M1 M2 and M3 is

ζ hhh
3pt (x123|M123) =

〈(
b1(M1)δDM(x1) + b2(M1)

2!
δDM(x1)2

)

×
(

b1(M2)δDM(x2) + b2(M2)

2!
δDM(x2)2

)

×
(

b1(M3)δDM(x3) + b2(M3)

2!
δDM(x3)2

)〉

= b1(M1) b1(M2) b1(M3) ζ DM
3pt (x1, x2, x3)

+ b2(M1)

2!
b1(M2) b1(M3)

× 〈δlin(x1)2 δlin(x2) δlin(x3)〉 + 2 perm. (C5)

= b1(M1) b1(M2) b1(M3) ζ lin
3pt(x1, x2, x3)

+ b2(M1) b1(M2) b1(M3)

×
[ 〈δ2

DM〉
2!

ζ lin
2pt(x2−x3)

+ ζ lin
2pt(x1−x2) ζ lin

2pt(x1−x3)

]
+ 2 perm., (C6)

where we expanded the 4-point correlation function (at line C5)
through Wick’s theorem as the field is close to Gaussian, and where
ζ DM

3pt (x1, x2, x3) contains two contributions: primordial NG which
is observationally constrained to be small, and NG generated by the
non-linearity of gravity at second order in perturbation theory.

Going to Fourier space gives the bispectrum (for k1, k2, k3 �= 0):

Bhhh(k123|M123) = b1(M1) b1(M2) b1(M3) BDM(k1, k2, k3)

+ b2(M1) b1(M2) b1(M3) Plin(k2) Plin(k3)

+ 2 perm. (C7)

A P P E N D I X D : PO LY S P E C T R A I N F O U R I E R
S PAC E A N D O N T H E SP H E R E

Let ak be the Fourier transform of a random field. For example, this
may be the 3D galaxy density field, in which case ak = δgal(k, z).
The polyspectrum of order n is then defined via the connected
correlation function in Fourier space

〈ak1 . . . akn 〉c. (D1)

Under the assumption of statistical homogeneity and isotropy, this
correlation function vanishes unless k1 . . . kn form a polygon. This
polygon may be parametrized by the lengths of its sides k1. . . kn

and by diagonals kd
1 . . . kd

m needed to fix the shape via a chosen
triangulation. The correlation function of order n thus has 2n − 3
degrees of freedom in 2D (i.e. m = n − 3), as can be seen in Fig. D1
at fourth (trispectrum) and nth order.

Correspondingly, the correlation function of order n has 3n − 6
degrees of freedom in 3D (m = 2n − 6), as can be seen in Fig. D2
at fourth order (trispectrum).

MNRAS 439, 123–142 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/439/1/123/970409 by guest on 18 D
ecem

ber 2021



NG of the CIB anisotropies – I. Formalism 141

Figure D1. Parametrization of the 2D polyspectrum, with diagonals in
dashed lines, at fourth (trispectrum) and nth order.

Figure D2. Parametrization of the 3D trispectrum with two diagonal de-
grees of freedom in dashed lines.

The polyspectrum of order n, P (n)(k1 . . . kn, k
d
1 . . . kd

m) , is then
defined by

〈ak1 · · · akn 〉c =
∫

dDkd
1

(2π)D
· · · dDkd

m

(2π)D
P (n)

(
k1 . . . kn, k

d
1 . . . kd

m

)
×
∏

g

(2π)D δ (k1(g) + k2(g) + k3(g)) , (D2)

where D is the dimension of the random field (D = 3 for the galaxy
distribution), and g indexes the chosen triangulation of the polygon
[e.g. for the 2D trispectrum g = (1, 2) and the triangulation is
(k1, k2, kd

1 ); (−kd
1 , k3, k4)].

Note that at orders ≥4, polyspectra have more degrees of freedom
in 3D than in 2D. However, this does not happen at the bispectrum
level which does not have diagonal degrees of freedom, as a triangle
is flat and can be parametrized solely with its sides.

For some random fields (e.g. Gaussian or white noise), the
polyspectra may not depend on diagonal degrees of freedom,
such polyspectra are called diagonal independent and can be
parametrized solely with the length of the sides k1. . . kn. In this
case, equation (D2) takes the simpler form

〈ak1 . . . akn 〉c = (2π)D δ(k1 + . . . + kn) × P (n)(k1...n). (D3)

The case of random fields on the sphere is similar to the 2D Fourier
case, and can be defined simply with the replacements∫

d2kd

(2π)2
→ ∑

	dmd (D4)

(2π)2δ(k1 + k2 + k3) → G123, (D5)

the nth order polyspectrum has 2n − 3 degrees of freedom and is
defined through

〈a	1m1 . . . a	nmn 〉c =
∑

	d
1 . . . 	d

n−3

md
1 . . . 	d

n−3

P (n)
(
	1...n , 	d

1...(n−3)

)

×G1...n

(
	d

1...(n−3), m
d
1...(n−3)

)
, (D6)

with

G1...n

(
	d

1...(n−3), m
d
1...(n−3)

) = G1,2,1d × G1d∗,3,2d × · · ·
× G(n−4)d∗, n−2,(n−3)d × G(n−3)d∗,(n−1),n. (D7)

The polyspectrum is diagonal independent if P (n) does not vary
with 	d

1 . . . 	d
n−3. In this case, equation (D6) takes a simpler form

〈a	1m1 . . . a	nmn 〉c = P (n)(	1...n) × G1,...,n (D8)

with

G1,...,n =
∫

d2n̂ Y1...n(n̂) =
∑

	d
1...(n−3)

md
1...(n−3)

G1...n

(
	d

1...(n−3), md
1...(n−3)

)
.

(D9)

A P P E N D I X E : PRO J E C T I O N O F 3 D
P O LY S P E C T R A O N T H E S P H E R E

Noting for simplicity g(z) = dr
dz

a(z), we have

a	m = i	

∫
d3k
2π2

dz g(z) j	(kr) Y ∗
	m(k̂) jν(k, z). (E1)

Hence the n-order correlation function takes the form

〈a	1m1 . . . a	nmn 〉 = i	1+···+	n

∫
d3k1...n

(2π2)n
dz1...n

[
g(zi) j	i

(kiri)

× Y ∗
	imi

(k̂i)
]
i=1...n

× 〈[
jν(ki , zi)

]
i=1...n

〉
︸ ︷︷ ︸

(2π)3 P (n)

j
(k1...n,z1...n) δ(3)(k1+···+kn)

(E2)

= (2π)3

(2π2)n
i	1+···+	n

∫
k2

1...ndk1...n dz1...n

× [
g(zi) j	i

(kiri)
]
i
P (n)

j (k1...n, z1...n)

×
∫

d2k̂1...n

[
Y ∗

	imi
(k̂i)
]
i
δ(3)(k1 + · · · + kn)︸ ︷︷ ︸

≡A(n)(	1...n,m1...n,k1...n)

,

(E3)

if P (n)
j is diagonal independent, and with

A(n)(	1...n, m1...n, k1...n) =
∫

d2k̂1...n

d3x
(2π)3

× [
Y ∗

	imi
(k̂i)
]
i
ei(k1+···+kn)·x (E4)

= (4π)n

(2π)3

∫
d2k̂1...n d3x

×
∑

	′
1...nm′

1...n

i	′
1+···+	′

n

[
Y ∗

	imi
(k̂i)

× Y	′
im

′
i
(k̂i) j	′

i
(kix) Y ∗

	′
im

′
i
(x̂)
]

i
(E5)
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= (4π)n

(2π)3
i	1+···+	n

∫
x2dx

[
j	i

(kix)
]
i

×
∫

d2n̂
[
Y ∗

	imi
(n̂)
]
i=1...n︸ ︷︷ ︸

≡G1...n

, (E6)

where we introduced the Fourier form of the Dirac in line E4, the
Rayleigh expansion of eiki ·x in line E5, used the orthonormality of
the spherical harmonics and the definition of the generalized Gaunt
coefficient in line E6 and the fact that it is a real number.

Hence the n-order (diagonal-independent) polyspectrum is

P (n)
IR (	1, . . . , 	n) =

(
2

π

)n

(−1)	1+···+	n

∫
k2

1...ndk1...n dz1...n x2dx

× [
g(zi) j	i

(kiri)j	i
(kix)

]
i
P (n)

j (k1...n, z1...n),

(E7)

=
(

2

π

)n

(−1)	1+···+	n

∫
k2

1...ndk1...n dz1...n x2dx

×
[
a(zi)

dr

dz

∣∣∣∣
zi

j	i
(kiri) j	i

(kix) j (ν, zi)

]
i

× P (n)
gal (k1...n, z1...n) (E8)

where for the last line, we used P (n)
j = j

n P (n)
gal (valid for non-shot

noise terms, with the flux-abundance independence assumption).
We can assume that, as a function of ki, P (n)

gal varies slowly com-
pared to the Bessel functions oscillations (the so-called Limber
approximation). Then we have

∫
k2

1...ndk1...n

[
j	i

(kiri) j	i
(kix)

]
i
P (n)

gal (k1...n, z1...n)

≈ P (n)
gal (k

∗
1...n, z1...n)

∫
k2

1...ndk1...n

[
j	i

(kiri) j	i
(kix)

]
i︸ ︷︷ ︸

=
[

π
2x2 δ(ri−x)

]
i=1...n

, (E9)

where k� = (	 + 1/2)/r is the peak of the Bessel function.
And equation (E8) simplifies to

P (n)
IR (	1, . . . , 	n) =

∫
r2dr

r2n
an(z) j

n
(ν, z)P (n)

gal (k
∗
1...n, z), (E10)

with k� = (	 + 1/2)/r, r = r(z), and because of parity invariance
	1 + ··· + 	n is even (otherwise P (n) is zero).

In particular at order 3, we get the bispectrum

b	1	2	3 =
(

2

π

)3

(−1)	1+	2+	3

∫
k2

123dk123 dz123 x2dx

[
a(zi)

dr

dz

∣∣∣∣
zi

j (ν, zi) j	i
(kiri) j	i

(kix)

]
i=123

× Bgal(k123, z123). (E11)

And Limber approximation simplifies it to

b	1	2	3 =
∫

dz

r4

dr

dz
a3(z) j

3
(ν, z) Bgal(k

∗
123, z). (E12)

Again, except for shot noise terms which are treated in Section 4.3.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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