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ABSTRACT
The Herschel Extragalactic Legacy Project (HELP) brings together a vast range of data from
many astronomical observatories. Its main focus is on the Herschel data, which maps dust-
obscured star formation over 1300 deg2. With this unprecedented combination of data sets, it
is possible to investigate how the star formation versus stellar mass relation (main sequence)
of star-forming galaxies depends on environment. In this pilot study, we explore this question
within 0.1 < z < 3.2 using data in the COSMOS field. We estimate the local environment from
a smoothed galaxy density field using the full photometric redshift probability distribution.
We estimate star formation rates by stacking the SPIRE data from the Herschel Multi-tiered
Extragalactic Survey. Our analysis rules out the hypothesis that the main sequence for star-
forming systems is independent of environment at 1.5 < z < 2, while a simple model in
which the mean specific star formation rate declines with increasing environmental density
gives a better description. However, we cannot exclude a simple hypothesis in which the main
sequence for star-forming systems is independent of environment at z < 1.5 and z > 2. We
also estimate the evolution of the star formation rate density in the COSMOS field, and our
results are consistent with previous measurements at z < 1.5 and z > 2 but we find a 1.4+0.3

−0.2

times higher peak value of the star formation rate density at z ∼ 1.9.

Key words: galaxies: evolution – galaxies: star formation – infrared: galaxies.

1 IN T RO D U C T I O N

Galaxies are found in different environments, from rich clusters,
to small groups, to isolated galaxies residing in cosmic voids. For

� herschel.sussex.ac.uk
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several decades, there has been substantial evidence that the envi-
ronment influences galaxy properties, such as star formation rate
(SFR), morphology and colour (e.g. Dressler 1980). The environ-
ment has been found to influence the timing of the quenching of
star formation (e.g. Wetzel et al. 2013), though the onset of star
formation is not necessarily caused by environment (e.g. Rettura
et al. 2011). This quenching leads to a decline in the fraction of
actively star-forming galaxies in clusters from ∼20 per cent at
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z ∼ 0.4 to almost zero in the local Universe (e.g. Butcher & Oemler
1984; Haines et al. 2013).

There are several ways to probe the SFR of a galaxy. For a
young stellar population, the radiation is dominated by the UV light
emitted from massive stars. Due to the short lifetime of these stars,
this emitted power is a good indicator for star formation. However,
not all emitted UV light escapes the galaxy. In the presence of dust,
a significant percentage of this light is absorbed and reradiated at
mid- and far-infrared (FIR) wavelengths. The total FIR luminosity
is therefore a function of the amount of obscured UV light, and
provides another method to measure the SFR (e.g. Kennicutt 1998;
Madau & Dickinson 2014).

Low-redshift galaxies in dense environments are redder on aver-
age than field galaxies (e.g. Kauffmann et al. 2004; Koyama et al.
2013; Scoville et al. 2013). This can be partly explained by a higher
dust content of galaxies or a lower SFR of individual systems. Al-
though these relations are well established at low redshift, it is still
open to debate whether the trends stop, or may even be reversed at
higher redshift (e.g. Elbaz et al. 2007; Tonnesen & Cen 2014).

The environment is not the only parameter that influences the
evolution of galaxies. Both internal and external effects determine
how much gas is available for forming stars, as the internal gas sup-
ply gets replenished by accretion of cold gas from the environment
(e.g. Dekel, Sari & Ceverino 2009). The availability of this cold gas
has a significant influence on the SFR of galaxies (e.g. Santini et al.
2014).

To distinguish between environment and internal influences, we
need to characterize them simultaneously. Recent studies indicate
that quenching is driven more by the internal properties of a galaxy
than by the environment (e.g. Hahn et al. 2015). However, the frac-
tional role of the internal and external processes in galaxy quenching
may depend on, e.g., redshift and stellar mass of galaxies (e.g. Peng
et al. 2010; Sobral et al. 2011; Darvish et al. 2016). We note that
separating the internal and external effects can be difficult because
they seem to be strongly connected with each other (De Lucia et al.
2012).

Another example of the importance of internal galaxy properties
on galaxy evolution is the strong relation, between SFR and stellar
mass for star-forming galaxies: termed the main sequence (MS;
Brinchmann et al. 2004). The MS has been found in both the local
Universe and at higher redshifts (e.g. Noeske et al. 2007; Sobral
et al. 2014; Delvecchio et al. 2015; Lehnert et al. 2015). A trend
is seen for galaxies on the MS, where the more massive a star-
forming galaxy is, the higher the SFR becomes. In relative terms,
the specific star formation rate (sSFR, the star formation rate per
unit stellar mass) appears to drop for higher mass galaxies: galaxies
with higher total stellar mass are redder and have relatively less
star formation per unit mass. The MS seems to be in place out to
z > 2.5 (Whitaker et al. 2012). However, the specific details of the
MS, such as slope and dispersion, vary between different studies
(e.g. Speagle et al. 2014). Moreover, the sSFR of galaxies on the
MS evolves with redshift as roughly (1 + z)3 out to redshift of
2–3 (Oliver et al. 2010; Johnston et al. 2015; Lehnert et al. 2015;
Pannella et al. 2015).

Whether or not the normalization of the MS depends on environ-
ment is still under discussion. Ricciardelli et al. (2014) found that
the MS is constant for void, void-shell and reference galaxies at
z < 0.12. Tyler, Rieke & Bai (2013) and Tyler, Bai & Rieke (2014)
found no difference between the MS in clusters and in the field.
Paccagnella et al. (2016) found a similar result, but also found a
population of galaxies with reduced SFR (departing from the MS)
within the virial radius of the cluster at z ∼ 0.1.

It has been argued that higher density environments only reduce
the fraction of galaxies that are star-forming and do not seem to
have a major effect on the average SFR of star-forming galaxies
(e.g. Peng et al. 2010; Wijesinghe et al. 2012; Darvish et al. 2014,
2016). However, at low redshift, von der Linden et al. (2010, z <

0.1) and Haines et al. (2013, 0.15 < z < 0.3) found a reduction of the
SFR of star-forming cluster galaxies, compared to their counterparts
in the field. Furthermore, Scudder et al. (2012a) found an enhanced
MS in isolated compact groups, but compact groups embedded in
larger systems do not have this enhanced SFR.

At intermediate redshift (0.4 ≤ z ≤ 0.8), Vulcani et al. (2010)
found that the SFR of cluster star-forming galaxies was a factor of
1.5 lower than in the field. This result is in agreement with Patel
et al. (2011) at 0.6 < z < 0.9. However, Lin et al. (2014) did not
find evidence (out to z ∼ 0.8) for an environmental dependence
of the MS, although they did find a significant reduction of the
sSFR by 17 per cent in cluster environments (Mhalo > 1014 M�).
At z ∼ 0.5, Darvish et al. (2015b) also showed that [O II] EW (a
measure of sSFR) versus stellar mass relation is independent of
environment (filament versus field), indicating the environmental
invariance of the MS. Furthermore, Darvish et al. (2014) showed
the environmental (filament, cluster, field) independence of the MS
in the COSMOS field (Scoville et al. 2007) at z ∼ 0.84.

At higher redshift (z ∼ 1.5), Koyama et al. (2014) found no
direct evidence for an environmental dependence of the MS for
Hα emitters. Furthermore, Koyama et al. (2013) found that the
difference between the field and cluster MS is less than 0.2 dex in
redshifts smaller than ∼2 based on Hα emitters.

The dependence of the MS on the large-scale environment is
still under discussion; however, a clear correlation seems to exist
between SFR and paired galaxies. Melnyk et al. (2015) found that
paired massive (log(M∗/M�) > 11.5) galaxies have higher SFR
than isolated galaxies, and this same result was found for lower
mass galaxies with the galaxy pairs in the Sloan Digital Sky Survey
(e.g. Ellison et al. 2010; Scudder et al. 2012b) and for major-merger
pairs in Herschel (Cao et al. 2015).

No consensus has yet been reached on how the MS depends on en-
vironment or redshift. This is partially because the aforementioned
methods differ in how they select the galaxies, how they estimate
star formation and how they measure environment. The selection
of which method to use to determine the environment can cause
differences in which galaxies are selected to be in a certain density
regime, and therefore different results (Muldrew et al. 2012).

To accurately probe the normalization of the MS, it is necessary
to measure the SFR in a wide range of different environments over
cosmic time. For the SFR, we use the FIR data from the Herschel
Multi-tiered Extragalactic Survey (HerMES; Oliver et al. 2012). In
order to probe the environment and the stellar mass, we exploit the
rich multi-wavelength data and volume of the COSMOS field.

The Herschel Extragalactic Legacy Project (HELP; Vaccari 2016;
Oliver et al., in preparation) aims to collate and homogenize obser-
vations from many astronomical observatories to provide an inte-
grated data set covering a wide range of wavelengths from the radio
to the UV. The key focus of the HELP project is the data from the
extragalactic surveys from ESA’s Herschel mission (Pilbratt et al.
2010), covering over 1300 deg2. HELP will add value to these data in
various ways, including providing selection functions and estimates
of key physical parameters. The data set will enable users to probe
the evolution of galaxies across cosmic time and is intended to be
easily accessible for the astronomical community. The aim is to pro-
vide a census of the galaxy population in the distant Universe, along
with their distribution throughout the three-dimensional space.

MNRAS 462, 277–289 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/462/1/277/2589387 by guest on 10 Septem
ber 2021



HELP: star formation with Herschel 279

Another key feature of HELP will be the generation of galaxy
density maps. In this paper, we apply our chosen methodology for
measuring density fields to publicly available data in the COSMOS
field to explore the environmental dependence of star formation as
probed by Herschel.

The format of this paper is as follows. We describe the data we
use in Section 2. We describe our methods of determining the en-
vironment of the galaxy (Section 3.2), our stacking analysis (Sec-
tion 3.3) and how we obtained SFRs (Section 3.4). The results
are described in Section 4. The discussion and conclusions can be
found in Sections 5 and 6. We use a standard flat cosmology with
�M = 0.3 and H0 = 70 km s−1 Mpc−1.

2 DATA

2.1 The HerMES survey

We use the SPIRE data (Griffin et al. 2010) from the HerMES
(Oliver et al. 2012) survey to compute the SFRs of our sample
of galaxies. We use all 250, 350 and 500 μm SPIRE bands in the
COSMOS field from the second data release, DR2 (5σ depth of
15.9, 13.3, 19.1 mJy at 250, 350 and 500 μm, respectively; Viero
et al. 2015). The HerMES (and in future also the HELP) data can
be obtained from the HeDAM data base.1

One of the challenges at the longer wavelengths probed by SPIRE
is extragalactic confusion (e.g. Nguyen et al. 2010), whereby many
sources detectable with higher resolution shorter wavelength imag-
ing are located within a single SPIRE beam, and therefore appear
as one SPIRE source. The SPIRE full width at half-maximum for
250, 350 and 500 μm is 18.1, 25.5 and 36.6 arcsec, respectively
(Griffin et al. 2010; Viero et al. 2015). To estimate the SPIRE flux
density for individual galaxies, we need to exploit prior information
of the position, mass and redshift of the galaxies. We use a stacking
method to obtain these flux density estimates, with a method that
will be addressed in Section 3.3.

2.2 Multi-wavelength catalogue

Photometric redshifts for our sample are obtained from the
COSMOS UltraVISTA Ks-band selected catalogue (McCracken
et al. 2012; Ilbert et al. 2013). The catalogue contains 30 bands rang-
ing from UV to NIR in broad, intermediate and narrow bands, and
contains 220 000 galaxies. The photometric redshifts were obtained
using the LE_PHARE code (Ilbert et al. 2006) and calibrated against
spectroscopic redshifts. Due to the large range in wavelength, the
availability of intermediate-bandwidth photometric filters and the
good quality of the data, the estimated redshifts are very accurate.
For z < 1.5, Ilbert et al. (2013) obtained a precision of σ�z/(1 + z) =
0.008 at i+ < 22.5 (<1 per cent catastrophic outliers) and even for
faint (i+ � 24) sources the accuracy is better than 3 per cent. At
higher redshift (1.5 < z < 4), the precision is given by σ�z/(1 + z) ≈
0.03 (Ilbert et al. 2013). Furthermore, the photometric redshifts are
characterized by their full probability distribution function (PDF).

Stellar masses are derived from the SED using the stellar popu-
lation synthesis model of Bruzual & Charlot (2003) in combination
with the Chabrier (2003) initial mass function (IMF). The stellar
masses are model dependent and can vary by 0.1–0.15 dex depend-
ing on the model. The sample of star-forming galaxies is complete

1 hedam.lam.fr

Figure 1. The colour selection used to separate the star-forming and qui-
escent galaxies. Galaxies with MNUV − Mr > 3(Mr − MJ) + 1 and
MNUV − Mr > 3.1 are considered to be quiescent.

above a stellar mass of ∼108 M� at z = 0.2 and or ∼1010 M� at
z = 3.0.

We treat the star-forming and the quiescent galaxies differently, as
we expect their FIR properties to be quite distinct. To discriminate,
we use the indicator from Ilbert et al. (2013). This indicator is based
on a rest-frame colour selection: galaxies with MNUV − Mr > 3(Mr

− MJ) + 1 and MNUV − Mr > 3.1 are considered to be quiescent
(Fig. 1). This colour selection was chosen instead of a U − V versus
V − J selection because of the larger dynamical range. The NUV
rest frame can also be sampled by optical data while the U band falls
out of this wavelength range at z > 2. Furthermore, the NUV−r
seems to be a better indicator of current star formation activity (e.g.
Martin et al. 2007; Ilbert et al. 2013).

Because we only use the colour–colour selection, we do not segre-
gate starburst galaxies (galaxies that lie above the MS). This means
that our average SFR estimates for the MS will be enhanced by
12.1 per cent relative to other methods which exclude the starburst
galaxies from their sample (Sargent et al. 2012). This 12 per cent
represents the increase in the mean SFR changing from a single log-
normal distribution for the MS only to an MS+starburst distribution
as described by two offset lognormals (Sargent et al. 2012).

3 M E T H O D

3.1 Sample selection

Many methods have previously been used to probe the environment
of galaxies. The most reliable methods of determining if a galaxy
is located in a cluster, has close companions or resides in a dense
environment rely on the use of spectroscopic redshifts. However,
spectroscopy is time-consuming to obtain and is not practical for
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Table 1. Number of galaxies (Ngal) in the percentile bins we use for stacking, and the star-forming fraction (fsf). Every bin of
star-forming galaxies contains over 1400 galaxies, leading to a reliable stacked signal. The density percentile bins were chosen to
approximately obtain the same number of galaxy in every density percentile bin, but for comparison we fixed the density percentile
bins over redshift. Due to this combination, there is a slight variation in the number of galaxies per density bin.

Density percentile Redshift ranges
0.1<z<0.5 0.5<z<1.0 1.0<z<1.5 1.5<z<2.0 2.0<z<3.2

Ngal, fsf Ngal, fsf Ngal, fsf Ngal, fsf Ngal, fsf

0–40 4148 0.91 8353 0.91 7505 0.90 5756 0.95 3493 0.95
40–55 3037 0.91 6471 0.90 5612 0.90 3528 0.94 2870 0.95
55–65 2751 0.92 5480 0.89 4739 0.90 2869 0.94 2384 0.95
65–75 3292 0.89 6981 0.88 5666 0.90 3368 0.95 2952 0.95
75–85 4292 0.89 9247 0.87 7086 0.90 3995 0.95 3607 0.95
85–90 2770 0.86 5694 0.86 4342 0.89 2358 0.94 2213 0.95
90–95 3587 0.85 7274 0.84 5040 0.89 2688 0.94 2509 0.96
95–97.5 2401 0.82 4581 0.83 3057 0.89 1614 0.93 1489 0.96
97.5–100 4048 0.66 7168 0.76 3952 0.87 2051 0.93 1726 0.97

All 30 326 0.85 61249 0.86 46 999 0.90 28 277 0.94 23 243 0.95

large numbers of galaxies over a large luminosity and redshift range,
which are needed to exploit the full potential of HELP.

To avoid this problem, we use photometric redshifts. The main
disadvantage of photometric redshifts is that they are not accurate
enough to associate a given galaxy with a given structure; the phys-
ical scale associated with the uncertainty in photometric redshift is
normally much larger than the size of a galaxy cluster. However, for
a large galaxy sample, we can statistically infer that galaxies found
in dense regions according to their photometric redshifts will also
be in dense environments in real space (Lai et al. 2015).

Several methods have been developed to extract the environ-
mental density of galaxies using their spatial distribution. Some of
the most commonly used methods are the Nth nearest-neighbour
method (N divided by the area containing N neighbours), galaxy
counts in a circular (adaptive) kernel and the Voronoi tessellation
method (e.g. Muldrew et al. 2012; Scoville et al. 2013).

The redshift range we used to make maps of the density of galax-
ies was selected carefully to optimize the accuracy of the density
map. For lower redshifts, the volume of the COSMOS field is too
small to be useful, and does not accurately probe a range of en-
vironments. On the other hand, at higher redshift the photometric
redshifts become more uncertain and the number densities decrease,
so we restrict ourselves to the range 0.1 < z < 3.2 (Darvish et al.
2015a). The typical photometric redshift error increases with mag-
nitude, so we only consider galaxies with KsAB < 24. We made this
magnitude cut to use all available galaxies with accurate redshifts.
However, by making this cut, we only select relatively bright galax-
ies in the mass range for which we are incomplete. This can result in
an overestimation of the mean SFR for low-mass galaxies because
we do not detect galaxies with a low SFR. Note that we cannot see
this effect in Fig. A1 because the galaxies are weighted according to
their mass, leading to a very small contribution of the few galaxies
below the mass limit. Furthermore, we only consider those galaxies
outside the optically masked areas defined by Ilbert et al. (2013).

To obtain sufficiently large samples, while exploring the evolution
across time and environment, we divide galaxies into bins of redshift
and density. We defined nine bins in environment and five in redshift
so that each subset would contain approximately 11 per cent of the
actively star-forming galaxies at that redshift. This yields >1400
actively star-forming galaxies in every bin (Table 1).

In Section 3.2, we describe how we obtained the environmental
information for our sample of galaxies, and in Section 3.3 we de-
scribe our method to assign flux densities to the galaxies with the
use of stacking.

3.2 Density estimates

The density maps are constructed using the adaptive Gaussian kernel
procedure from Darvish et al. (2015a). This method uses a Gaussian
kernel (with an adaptive width) to smooth the map, and therefore
gives an estimate for the density at the scale of the kernel width.
This choice of method was made on consideration of tables 3 and
4 of Darvish et al. (2015a), where the kernel method performed
best in simulations. Another advantage of the kernel method is its
simplicity and the intuitive way in which the weights are assigned to
a galaxy. We adopt the same adaptive kernel size, angular position
cut, magnitude selection and overlap between redshift slices as used
by Darvish et al. (2015a). However, we make some changes in the
application of weights and the edge corrections.

Our method is as follows.

(i) We construct a series of redshift slices starting at z = 0.1
and with a width (δz = 2�zmed), where �zmed is the median of
the photo-z uncertainty of galaxies within that redshift slice. Each
redshift slice starts in the middle of the previous slice. For galaxies
without a second peak in the PDF (with a probability larger than
5 per cent for the second peak), we make a Gaussian assumption
for the shape of the PDF (Darvish et al. 2015a).

(ii) Every galaxy is distributed between all slices according to the
PDF (Burton et al. 2013). If a galaxy has a probability of 60 per cent
to be in slice a and 20 per cent to be in slice b, then the weight (w)
in slice a will be 0.6 and for slice b will be 0.2. In Darvish et al.
(2015a), a galaxy can influence the density maps in adjacent slices
since slices are overlapped.

(iii) Within a slice, the local density (�̂i) at a galaxy position (r̄i)
is determined by a weighted adaptive kernel estimator with a global
width h of 0.5 Mpc, following Darvish et al. (2015a):

�̂i = 1∑N
j=1,j 	=i wj

N∑
j=1,j 	=i

wiK(r̄i , r̄j , h), (1)
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HELP: star formation with Herschel 281

Figure 2. One of the redshift slices in the COSMOS field. On the left, we show the density map, using essentially the method of Darvish et al. (2015a), with
slight modifications of the original method. On the right, we show the same map but divided by the average of 40 mock maps. Regions where the mock map
has a density less than half of the mean density in the slice are not taken into account (white areas).

K(r̄i , r̄j , h) = 1

2πh2
exp

(−|r̄i − r̄j |2
2h2

)
, (2)

where r̄j is the position of a galaxy with weight wj. Rather than
adopting a uniform value for h over the whole field, the local kernel
width changes adaptively in accordance with the density of galaxies,
with smaller kernel values in more crowded regions:

hi = 0.5 Mpc
(
G/�̂(r̄i)

)0.5
, (3)

where �̂(r̄i) is the galaxy density at position r̄i calculated with h =
0.5 Mpc and G is the geometric mean of all �̂(r̄i). The density field
(�(r̄)) is then obtained by

�(r̄) = 1∑N
i=1 wi

N∑
i=1

wiK(r̄ , r̄i , hi), (4)

where r̄ = (x, y) is the location in our 2D grid map.
(iv) As a convenient, dimensionless, measure of the galaxy envi-

ronment, we define the overdensity for a galaxy at position r̄ by the
density at that position in the map divided by the median density of
every position in the slice:

1 + δ = �(r̄)

median (�(r̄))
. (5)

(v) For scientific analysis, Darvish et al. (2015a) discarded those
galaxies that were close to the edge or masked areas. We correct
for the underestimation of densities near edges and masked areas
using a different method. We create 40 mock maps in which the
galaxies within a given redshift slice are given angular coordinates
of galaxies selected randomly from all redshift slices. We divide
the observed density field by the average of the mock density field.
To avoid errors introduced by large corrections in the proximity of
heavily masked regions, we exclude all areas in which the density
in the mock map is less than half the mean. With this method we
can still use galaxies relatively near the edge without introducing
spurious low-density environments (see Fig. 2).

Our density maps optimally exploit the redshift PDF information
for a smoothing kernel that is adaptively smoothed in the transverse
direction, but is convolved with a discrete, top-hat kernel in the radial
direction. In future work for HELP, we will amend the method to
provide an adaptive kernel in 3D.

Having determined the density field, we can then assign a density
to each galaxy. This assigned density is the measurement of the
density at the angular position of the galaxy in the redshift slice
where the photo-z PDF is highest.

Since the absolute density and the overdensity field evolve sig-
nificantly with time through gravitational instability, we define the
environment with reference to the surface density percentiles. In
each redshift bin, we compute the density percentiles using every
redshift slice within that redshift bin. We use these percentiles to
create nine density bins, and we assign galaxies to the density bin
appropriate to their density (Table 1). To some extent, the environ-
ments defined by density percentiles are fixed with cosmic time, i.e.
galaxies in the densest 5 per cent of the Universe today are expected
to have been in the densest 5 per cent regions at an earlier time.

3.3 SIMSTACK

Our aim is to measure the average star formation activity of galaxies
aggregated by redshift and environment, while taking into account
variations across bins, e.g. in the empirical relation between star
formation and stellar mass – the ‘MS’. To do this, we use a flux
stacking technique, with a weighting scheme to account for these
known variations. We are using a stacking technique to get around
the confusion problem: for one individual galaxy, we cannot say
what the contribution from non-correlated background sources is,
but the mean contribution for a random stacked sample goes to zero
in a mean subtracted map.

We use SIMSTACK (Viero et al. 2013b) as our stacking tool. SIMSTACK

simultaneously estimates the average flux density for a number of
samples of galaxies, modelling the SPIRE map by assuming all
galaxies in this sample to have the same flux density. Viero et al.
(2013b) segregated galaxies according to their stellar mass and
redshift, and characterized how the FIR emission depended on these
parameters.

The SIMSTACK algorithm has been used and tested by several papers
(Alberts et al. 2014; Banerji et al. 2015; Béthermin et al. 2015; Viero
et al. 2015; Webb et al. 2015; Noble et al. 2016). It works optimally
for large samples of galaxies which are expected to have a similar
flux density.

Even in our highest redshift bin, we have over 23 000 galax-
ies simultaneously fitted by SIMSTACK, so random foreground and
background sources will not affect our results.

In Table 1, we list the number of galaxies in each redshift bin used
in our stack. We ran SIMSTACK simultaneously on the star-forming
and quiescent sample to avoid overestimating the SFR in dense envi-
ronments due to confusion with nearby quiescent sources. Because
SIMSTACK simultaneously fits all galaxies, it will give reliable values
for the stack in both the field and for cluster galaxies. Only galaxies
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below the detection limit (in Ks) and correlated with our target sam-
ple can affect the result. This effect should be larger in the clusters,
but we expect these ‘non-detected galaxies’ to have low SFR (and
low flux density in the SPIRE bands) and therefore they should not
change our results very much. If they have any effect, it would be
to increase our estimates of the SFR in dense environments.

To account for the known internal variation within the bins, we
model the relationship between the FIR emission, stellar mass and
the redshift of the galaxies. Since we are interested in relative mea-
surements of SFR (in different environments), we do this by using
weights in the stacking code. Essentially, these weights scale the
contribution of each galaxy in the flux stack to what would be emit-
ted by a reference galaxy at the centre of the redshift bin and with a
reference stellar mass, see Sections 3.3.1 and 3.3.2 for more detail.

3.3.1 Redshift weighting

Within each redshift bin, there is a distribution of redshifts. The
nearby ones will appear to be brighter, without having intrinsically
higher luminosity or SFR. We correct for this effect following Oliver
et al. (2010). We weight the galaxies by wd, which comes from the
square of the luminosity distance (DL) relative to that of the middle
of the redshift bin (zref):

wd =
(

DL(zref )

DL(z)

)2

. (6)

Another adjustment originates from the K-correction; the SPIRE
flux densities sample different parts of the rest-frame spectrum (Iλ)
for galaxies at different redshifts. We estimate the weight (wk) for
the K-correction for an observed frequency (ν0) and luminosity (Lν)
to be the ratio of the rest-frame flux density for an object at redshift
z to that of the value at the middle of the bin:

wk = 1 + z

1 + zref

Lν([1 + z]ν0)

Lν([1 + zref ]ν0)
. (7)

We use template SEDs provided by Berta et al. (2013), which
fits the median SED in the FIR (with at least seven FIR bands)
for different spectral types of galaxies. As a first approxima-
tion, we use the spiral galaxy template for the star-forming sys-
tems, and the elliptical template for the quiescent galaxies. Later
this formed the basis for an iteration described at the end of
Section 3.3.2.

Another weight (we) arises from the known evolution in the MS
with roughly (1 + z)γ ; that is if a galaxy has a higher redshift, we
expect a higher flux density due to relatively higher star formation:

we =
(

1 + z

1 + zref

)γ

. (8)

Here we initially used γ = 3, and again this was the basis for an
iteration. The overall effect of all these corrections is summarized in
Table 2. Since all of the corrections depend on redshift, we combine
them to obtain a redshift-dependent combined weight (wz) for every
galaxy in the stack:

wz = wd × wk × we. (9)

3.3.2 Mass weighting

To characterize the stellar mass dependence of the FIR emission,
we follow the procedure explained by Viero et al. (2013b). We
bin galaxies according to mass, redshift and galaxy type. We
need several mass bins to obtain a good fit for the MS. For the

Table 2. Mean square deviation of the redshift-dependent weights. Each
weight, w, normalizes galaxies at different redshifts to a reference point at
the centre of the bin. Columns 2 to 4 show the weight that arises from the
change in observed SED due to the K-correction. The fifth column shows
the weight for the evolution of the MS over time. The last column shows
the weight for the luminosity distance. For this table, no distinction is made
between galaxies in different environments.

Redshift bin Weighting
〈w2

k 〉 〈w2
e 〉 〈w2

d 〉
250 µm 350 µm 500 µm

0.1–0.5 0.040 0.067 0.099 0.038 3.552
0.5–1.0 0.015 0.042 0.077 0.039 0.313
1.0–1.5 0.002 0.016 0.038 0.024 0.094
1.5–2.0 0.000 0.006 0.018 0.016 0.046
2.0–3.2 0.000 0.012 0.035 0.037 0.125

star-forming galaxies, we select the mass bins to contain either a
total stellar mass of 1014 M� and a minimum of 100 galaxies, or
1015 M� and 50 galaxies. These mass bins were chosen so that
each yields a clear detection of the stacked results in the SPIRE
maps, and in the case that the slope of the MS is 1, these bins
will all have approximately the same total signal. The quiescent
galaxies are all placed in one bin.

From this set of stacked results, we can fit a mass versus (redshift-
corrected) SPIRE flux density relation. This relation can be seen as
an MS (Elbaz et al. 2011) though with the redshift-corrected (wz,
equation 9) FIR flux density as a proxy for SFR. We exploit the fact
that the integrated FIR flux density is expected to be proportional
to the SFR; therefore, we can use the model normally used to fit the
MS:

log SFR ∝ log SSPIRE = α log(M) + β. (10)

Here SSPIRE is the measured flux density with SIMSTACK. We fit the
parameters α and β, constraining the slope, α, to be the same for
the three bands. The results are shown in Fig. A1. This enables us
to apply a weight in comparison with a galaxy of reference stellar
mass, Mref:

wmass = 10α log(M)+β

10α log(Mref )+β
= 10α log(M/Mref ). (11)

We set Mref to a stellar mass of 1010 M�, so that the stacked results
give us the average flux density of a star-forming 1010 M� stellar
mass galaxy at the middle of the redshift bin. We also use this slope
α for the quiescent bin.

Having determined the weighting factors, we can use SIMSTACK to
compute the mean, normalized SPIRE flux densities, aggregated in
bins of redshift and environment. Our procedure also allows us to
normalize the known variations with redshift and stellar mass to the
centre of each redshift bin and for this reference stellar mass.

Our results are independent of choice of Mref. If we had selected
a different Mref, then wmass would change for every galaxy accord-
ingly, and the output of SIMSTACK would be the flux density of the
new Mref (we fit all the galaxies at the same time given the weights
calculated in equations 9 and 11). The underlying assumption for
this is that all the galaxies follow the same slope in the mass versus
SFR plane (α, equation 10), at a certain redshift. With SIMSTACK, we
find the normalization of this line at Mref, and it is this normalization
that we track in different environments.

In total, we had four runs with SIMSTACK. The first run was with
the parameters described above, from which we got a first estimate
for our best SED template, α and γ . For the second run, we used
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these best values as input for our weights (equations 9 and 10). A
third run was used to optimize the results for the fourth and final
run, Section 3.4.

3.4 SFR estimation

Having determined the mean, normalized SPIRE flux densities in
each SPIRE band, we estimate a total integrated FIR luminosity
(and hence SFR) for each redshift and density bin.

We find the best-fitting SED through a least-squares fit from the
library of Berta et al. (2013) to the mean normalized flux densities in
the three SPIRE bands. The SPIRE bands probe the peak of the SED
for intermediate redshifts, and this gives us the most accurate SED
normalization. PACS data (Poglitsch et al. 2010) could be added
and would probe the peak of the FIR emission better in our lowest
redshift bin; however, due to differences in the map-making proce-
dure (i.e. the non-linear map making in PACS), and higher noise in
the PACS data, we choose not to include these data in our analysis
to avoid introducing biases into the sample (Lutz et al. 2011).

Different SEDs are allowed for star-forming galaxies and passive
galaxies and for different redshift slices. However, we use the same
template for different stellar mass bins and environments at the
same redshift. The best templates for every redshift bin are listed in
Table A1.

With this SED template, we compute the total FIR luminosity
LFIR integrated over the rest-frame spectrum (Lν) between 8 and
1000 μm. This process is performed iteratively with the weighting
processes in Section 3.3, i.e. applying the K-correction using the
optimum template.

We then compute the SFR from LFIR, using the following cali-
bration (Rowan-Robinson et al. 1997, 2008; Oliver et al. 2010):2

LFIR

L�
= 0.51 × 1010 SFR

M� yr−1
. (12)

Here the fraction of ultraviolet energy absorbed by dust has been
assumed to be ε = 2/3. Because we are stacking, we use a fixed
value of ε, but ideally we would need this value for every galaxy. The
HELP project will eventually assist in obtaining more information
about the variation of ε, but that is beyond the scope of this paper.

4 R ESULTS

4.1 SFR in different environments

Our resulting SFRs for the reference stellar mass in different envi-
ronments and different redshifts are shown in Fig. 3. We test our
results against a constant MS for all environments and a toy model
for which we fit a straight line to the SFR versus percentile density.
A fit to the evolution of this reference SFR (i.e. a normalization
of the MS) yields (1 + z)2.4; this evolutionary rate was used to
iteratively re-calculate the weights, we, used in Section 3.3.

We construct the error bars (σ tot) as a quadrature sum of the
jackknife error (σ JK), which covers the random errors associated
with the sample variations within a bin, and the error (σ z) from re-
sampling our redshifts from the PDF (which covers the systematic
errors from the uncertainty in the redshift of each galaxy):

σ 2
tot = σ 2

JK + σ 2
z . (13)

2 This calibration is based on a Salpeter (1955) IMF; to convert to other mass
functions, we refer to Madau & Dickinson (2014) and Rowan-Robinson et al.
(1997) for conversion factors.

From Fig. 3, we can see that there is no dramatic trend in the
reference SFR as a function of environment at any epoch. Because
our reference SFR has scaled every galaxy to the MS, this indicates
that the MS is roughly the same in every environment. However,
we can confirm that the SFR for star-forming system increases over
cosmic time with roughly (1 + z)2.4.

An additional subtle trend is worth noticing. In the range 0.1 <

z < 2, there appears to be a slight decline in SFR towards higher
densities. We quantified this by calculating the reduced χ2 for a
declining toy model. This toy model (red dashed line in Fig. 3) has
a lower reduced χ2 in all of our redshift bins, indicating a lower
MS in dense environments. This is in agreement with Vulcani et al.
(2010) and Patel et al. (2011) who found a lower SFR for star-
forming galaxies in cluster environments. Similarly, Allen et al.
(2015) found that the mean observed F814W−F160W colours for
star-forming cluster galaxies at z ∼ 2.1 are 20 per cent (3.6 σ ) redder
(indicating a lower SFR) than for field galaxies at the same masses,
indicating a suppressed MS. Note that in Fig. 3 we have not included
the systematic error on the SFR, because the effect of taking the
wrong SED template is to move all data points up or down together.
We have omitted this error for our comparisons of different regions
(see Appendix B for more detail about the error analysis).

In the redshift range 1.5 < z < 2, the declining toy model has a re-
duced χ2 close to one, indicating a good fit, where the environment-
independent model has a reduced χ2 greater than three. We conclude
that our data at 1.5 < z < 2 are inconsistent with the hypothesis
of an environment-independent MS with significance at level of
1 per cent, measured using p-value. However, this is a small effect
and all our data fall well within the 0.2 dex intrinsic scatter of the
SFRs in the MS. In the other redshift bins, we cannot exclude the
simple hypothesis.

We can also use the stacked, normalized, SFRs to assign an
estimated SFR to every galaxy (taking into account its stellar mass
and the weights applied). With this SFR for each galaxy, we can
produce estimates for the SFR density (SFRD) in the COSMOS
field.

4.2 Cosmic variance

Fig. 3 does not include the effect of ‘cosmic variance’, i.e. the
possibility that our measurements in the COSMOS field may not
be representative of the Universe as a whole.3 We consider this
to be an uncertainty only in the environmental metric, i.e. that the
characterization of the SFR for a population is unaffected by cosmic
variance but that the density percentile ascribed to that population
is.

Our primary environmental metric is the percentile of the density
field. This is based on the overdensity estimate, δ, and so we consider
the uncertainty in this in the following way.

The fractional error in overdensity, δ, for dark-matter haloes, or
galaxy populations in a finite volume, is determined by the statis-
tics of the density field and is the normal ‘cosmic-variance’ metric.
The ‘cosmic variance’ depends on the geometry of the field and
the clustering strength or ‘bias’ of the population under considera-
tion. Moster et al. (2011) provide a tool, GETCV, for calculating this
variance using a halo occupation model to characterize the galaxy

3 We use the term ‘cosmic variance’ here, as is common in the galaxy
cluster literature, although we appreciate the phrase is also used to refer to
uncertainties due to the finite size of the observable Universe, and therefore
some prefer ‘sampling variance’ for uncertainties for a finite field size.
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Figure 3. SFR of a 1010 M� stellar mass star-forming galaxy in the COSMOS field versus environmental density for different redshift bins. 1010 M� is the
used Mref in equation (11), and is the normalization of the MS with slope α at the given density percentile. The black symbols represent the weighed mean of
the calculated SFR of the three SPIRE bands (Fig. A2). The purple line represents the average value, the value of the SFR which should arise from a constant
MS over different environments. In the top-left corner, the χ2 value for an environment-independent star formation (8 degrees of freedom, Ndof ) is noted in
black. It is clear that the SFR increases at higher redshift (the mean SFR is significantly higher in every higher redshift band). At intermediate redshift (0.1 <

z < 2), a simple toy model (the line with the lowest χ2 in dashed red, 7 degrees of freedom) of a declining MS over environment seems to be a better fit (has

a lower χ2

Ndof ) ). In the redshift range 1.5 < z < 2, this toy model has a reduced χ2 around one (indicating a good model), where the purple line has a χ2

Ndof ) >

3 indicating that we can exclude this model for this redshift range. This effect is small (though marginally significant in a statistical sense), though small and
both models (red and purple) are well within the intrinsic scatter of the SFRs in the MS.

bias and clustering as a function of redshift and stellar mass. Our
populations are segregated by local environment rather than stellar
mass, and so we cannot use this tool directly. Instead, we approxi-
mate it by assuming that bias follows the rarity of the samples under
consideration, e.g. if we take the galaxies in the top 11 per cent of
dense environments, we assume that they will have the same bias
(and thus cosmic variance) as the 11 per cent most massive galaxies
(as in abundance matching). Using the same stellar mass function
as Ilbert et al. (2013) then allows us to estimate the stellar mass of
galaxies with the same abundance.

To map this uncertainty in overdensity to an uncertainty in per-
centile density is less straightforward. We take a conservative ap-
proach, assuming that the uncertainty in percentile is compounded
by the uncertainty in the mean density of the COSMOS field as a
whole. Again we use the code GETCV to determine cosmic variance
for dark-matter haloes in our redshift bin, which can be translated
to the uncertainty on the mean density of the field.

Combining the variance estimates on the density for certain type
of galaxy in quadrature with the variance on the mean density
provides us with an estimate of the effect of cosmic variance on our
galaxy bins (see Table 3).

This effect could be represented as a horizontal error bar in Fig. 3.
However, it should be kept in mind that this is a systematic effect
and not a measurement error. The values in Table 3 suggest that if we

Table 3. Cosmic variance quantified in percentage error on 1 + δ

over our redshift bins. The two values in the second column repre-
sent the cosmic variance for the lowest and highest density region,
respectively.

Redshift bin Effect of cosmic variance in (1 + δ)

0.1–0.5 13.1–14.5 per cent
0.5–1.0 7.2– 8.1 per cent
1.0–1.5 6.0–7.5 per cent
1.5–2.0 5.9–7.8 per cent
2.0–3.2 5.0–10.0 per cent

had carried out the same analysis on a different part of the sky, we
would have found different values of 1 + δ for the galaxies. If one
wishes to compare our absolute results with those from a different
field, this effect should be taken into account. However, the density
estimates for our individual galaxies originate from the same field,
and so the relative environmental ranking should be unaffected by
cosmic variance; for this reason, we did not plot this error bar in
Fig. 3.

An example of the effect of cosmic variance in the COSMOS
field is the z = 0.73 large-scale structure found by Guzzo et al.
(2007). The effect of such a structure is that the mean density of
that particular redshift slice increases. Therefore, the overdensities
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Figure 4. SFRD for galaxies with stellar mass >108 M� as a function
of redshift (black symbols); error bars include variance in the bias from
choosing different templates, as well as the jackknife errors over the map.
The green squares represent our completeness-corrected sample (and include
the uncertainty associated with this correction). For comparison, the results
from Madau & Dickinson (2014) and Ilbert et al. (2013) are shown in red
(dotted) and blue, respectively. The results from Ilbert et al. (2013) are
converted to a Salpeter IMF using the conversion constant from Madau &
Dickinson (2014).

assigned to the galaxies in that redshift slice will be slightly lower
than the overdensity we assign to a galaxy in a similar environment
in another redshift slice.

4.3 SFR density

With our estimates of individual galaxy SFRs, we can calculate the
SFRD (for galaxies with stellar mass >108 M�) of the COSMOS
field, and we plot this in Fig. 4. We correct for incompleteness
by using the mass function of Ilbert et al. (2013) to calculate the
number (and the mass) of galaxies which we do not observe. With
our estimate for the MS, we can assign an SFR to these galaxies
and add this to the observed SFRD.

We estimate errors in these SFRDs using jackknife samples over
the map combined in quadrature with errors from the mass function
correction (Ilbert et al. 2013) and an estimate of the systematic
error in the template fitting. The full error analysis is discussed in
Appendix B.

Our SFRD results follow the curve of Madau & Dickinson (2014),
with only a difference in the peak which is higher by a factor of
1.4+0.3

−0.2. This result is in agreement with recent SFRD estimates
from the FIR, using 500 μm detected sources (Rowan-Robinson
et al. 2016).

We can also use the same SFRs and arrange the galaxies over
the density regions to obtain SFRD estimates for different density
environments over cosmic time (Fig. 5). With this analysis, we
cannot see a significant difference in the evolution of the SFRD for
different environments. From our highest to lowest density sample,
we find a 73, 79 and 86 per cent decline in the SFRD.

This result is in slight tension with Guglielmo et al. (2015) who
found a steeper decline in the SFRD for cluster galaxies than for

Figure 5. SFRD for four different percentile density regions as a function
of redshift. The volume used to calculate the density is the volume of the
percentile region, not the total volume of the field. There are no significant
differences in the evolutionary trends of the four sub-samples. This fig-
ure also shows that although galaxies corresponding to the highest density
sample themselves might have a lower star formation per unit mass, this
population of galaxies still has a higher star formation per unit volume than
the low-density sample at every redshift. All data points have been corrected
for incompleteness, but the bias in the templates is not taken into account
here.

field galaxies. Guglielmo et al. (2015) used local cluster/field galax-
ies and probed the SFRD(z) by constructing the SFR history of these
samples. We look at the total instantaneous SFR as a function of
cosmic time and environment. These two different ways to deter-
mine the SFR could lead to different results (e.g. Shamshiri et al.
2015).

5 D I SCUSSI ON

It is interesting to explore possible explanations for the weak evi-
dence that the typical SFR might be lower in denser environments,
particularly in the range 1.5 < z < 2. This lower MS was previously
found at redshifts lower than 1 (e.g. Vulcani et al. 2010; Patel et al.
2011; Paccagnella et al. 2016). This result may be spurious if the
photometric redshift errors are significantly larger for the more ex-
treme star-forming systems (i.e. those with higher sSFR) at higher
redshift, scattering them out of overdense regions. But if real, this
could be very interesting. These redshifts correspond to the epoch
of the peak of star formation activity, and it is possible that we are
actually witnessing the transition from star-forming to quiescent
galaxies. At z > 2, the densest regions appear to follow the same
star formation relation as lower densities. However, below z < 2,
those star-forming galaxies might be expected to fall into the cluster
and star formation begins to shut down. During the first part of this
process, these galaxies will still be classified as ‘star-forming’, but
the SFR is reduced relative to the stellar mass, lowering the average.
This explanation would fit with results that show that Herschel maps
exhibit strong clustering, compatible with halo models in which star
formation at z ∼ 2 occurs in rich groups (Viero et al. 2013a).
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It is important to remember that the subtle, but statistical sig-
nificant differences we find in the MS over different environments
are smaller than the intrinsic scatter (of 0.2 dex) of the SFR in the
MS. Our results come from a mean stack which includes starburst
galaxies, i.e. galaxies off the MS. These small environmental effects
may come from MS galaxies or starburst galaxies. At low redshift
starbursts are merger driven and more prominent in intermediate
and less dense environments (e.g. Scudder et al. 2012b; Madau
& Dickinson 2014). However, at higher redshift the clustering of
Herschel sources (Cooray et al. 2010) and maps (Amblard et al.
2011; Viero et al. 2013a) indicates that galaxies with high SFR are
found in denser environments.

At z < 1.5 and z > 2.0, we cannot formally exclude a hypothesis
that the SFR verses stellar mass relation (i.e. the ‘MS’) is the same
for every environment. That hypothesis has been supported by other
observations, although it is somewhat surprising theoretically, im-
plying that environmental effects can change the relative proportion
of galaxies that are star-forming or passive, but not the average SFR
of the star-forming galaxies themselves (e.g. Peng et al. 2010). This
implies that the environmental effects result in a rapid truncation of
star formation (Darvish et al. 2016).

This tantalizing result raises several questions, which are beyond
the scope of this paper. For example, can we confirm this weak
trend with better statistics including other fields with less cosmic
variance, and where we can see a broader range of environments?
Does our result depend on how we classify galaxies to be star-
forming or quiescent? How do our results depend on the accuracy
of the photometric redshifts, both within COSMOS and extending
to regions with poorer phot-z estimate? This shows the exciting
opportunities that will come from exploiting the whole HELP data
set, which will enable such an analysis using multi-wavelength data
over several fields.

6 C O N C L U S I O N S

We have undertaken an investigation of the dust-obscured star for-
mation activity as a function of environment and redshift. We con-
structed a galaxy density field using an adaptive kernel smoothing
and exploiting the full photometric redshift PDF from the deep
optical, NIR and IRAC data in the COSMOS field. We char-
acterized the density fields in terms of percentiles to facilitate
comparisons between redshifts. We employed a ‘stacking’ tech-
nique to estimate the normalization of the ‘MS’ (i.e. the correla-
tion between the SFR and stellar mass). This techniques fits the
Herschel SPIRE data from HerMES to all galaxies with pho-
tometric redshifts and stellar masses in the same redshift bin
simultaneously.

A simple model in which the mean sSFR for star-forming galax-
ies declines with increasing environmental density gives a better
description at 0.1 < z < 2 and is significantly better at 1.5 < z <

2.0 with a reduced χ2 ∼ 1 (q.v. χ2 ∼ 3 for constant normalization).
At z < 1.5 and z > 2.0, we cannot exclude a simple hypothesis
in which the MS for actively star-forming systems is independent
of environment over the range. We also estimate the evolution of
the universally averaged SFRD in the COSMOS field, and we find
similarly strong evolution to previous studies though with a 1.4+0.3

−0.2

times higher peak value of the SFRD at z ∼ 1.9. When deconstruct-
ing the contributions to this evolution by density percentiles, we do
not see any significant differences in the shape of the evolution and
note that the higher density regions of the Universe contribute more
to the cosmic star formation history despite having a lower sSFR.

This work demonstrates the power of the Herschel SPIRE data
when coupled with high-resolution data sets and demonstrates
methodology that we will build upon to extend these studies to
rarer higher density regions when exploiting the full 1300 deg2 of
data from HELP.
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APPENDI X A : D ETAI LED I NFORMATI ON
A B O U T T H E G A L A X I E S A N D T E M P L AT E S
USED I N THE STACK

A1 The MS fit

To be able to probe the environmental dependence of the MS, we
need to obtain the weights in the flux density contribution for every
galaxy in this MS. For this purpose, we used the fit from Fig. A1.

Figure A1. Stacked flux densities for the three different SPIRE bands,
250 µm (blue, dash–dotted), 350 µm (green, dotted) and 500 µm (red,
dashed) plotted against the stellar mass of the galaxies for different red-
shifts. The dashed lines are the best fits of the model (equation 10). For
every redshift and every SPIRE band, we can see a clear correlation of mass
with flux density, so this plot is effectively another way to show the MS.
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Figure A2. SFR from the stacked Ks selected star-forming galaxies in the COSMOS field for different redshifts and environments. The blue, red and green
symbols represent the estimates from the 250, 350 and 500 µm SPIRE bands. The purple line represents the average value, the value of the SFR which would
arise from a constant MS over different environments.

Table A1. SED templates used in the final run; for detailed information
about the templates see Berta et al. (2013).

Redshift bin Star-forming template Quiescent template

0.1–0.5 Mod-SF-glx Cold-glx
0.5–1.0 SF-glx-1 Cold-glx
1.0–1.5 Ly-break Cold-glx
1.5–2.0 WeakPAH-SF-flx-1 Blue-SF-glx
2.0–3.2 Si-break Spiral

This fit can be used to predict the flux density for a galaxy with a
given mass, and so make an estimate of its weight in the stacking. In
combination with the choice of best SED (as shown in Table A1),
we could apply the K-correction weights to determine a weight
for every galaxy within the stack. By running SIMSTACK with these
estimates, we are able to investigate the offset of the MS in a certain
region of the Universe.

Our final result is the MS as a function of environment, as mea-
sured by each single SPIRE band as shown in Fig. A2. For every
data point, we constructed the jackknife errors over the map and
the errors associated with a re-sampling of the data from the red-
shift PDF (equation 13). The estimates for the SFR from the three
different SPIRE bands are in line with each other (have a reduced
χ2 � 1), and we combine them to construct Fig. 3.

A P P E N D I X B: ER RO R E S T I M AT I O N

For Fig. 3, we constructed the errors by using both the variance over
the map (using jackknife) and in redshift space. In this calculation,

we assumed that we had the correct SED to transform from the
SPIRE flux density to SFR.

If instead we had chosen an SED with an FIR peak with an offset
from the intrinsic one, our three SPIRE estimates would have given
very different SFR values, allowing us to rule out this FIR peak
location. But if the peak is only slightly wrong, or if all three SPIRE
bands are longwards of the FIR peak, then several SED templates
(with different SFRs) would all give a reasonable fit. On the other
hand, the K-correction and the other corrections applied to obtain
to our stacking list would still be roughly the same for these ‘good’
SED fits.

Because our corrections are roughly the same, we will find the
same result (SPIRE flux density versus density), and so we do
not take this error in the SFR into account. If we had picked the
wrong SED, then all of our data points would move up or down
together, leading to the same conclusion in whether or not the MS
is dependent on environment.

For the SFRD in the COSMOS field, we constructed the errors
based on a tile-selected jackknife over the map, in combination with
the error on the SFR of the stacked galaxies and the error of the
mass function, see Ilbert et al. (2013). In this case, we have to take
the error in the template into account, because we want to compare
with previous results for the SFRD relation.

We quantified this uncertainty by not only running the SIMSTACK

code for the best SED template, but also for the second to fifth best
templates. These different templates give different SFR estimates.
We constructed a weighted mean of these SFRs by weighting each
SFR by the reduced χ2 (on which we based our choice of best
templates).
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By enforcing the reduced χ2 of this mean to be 1, we enlarge
these errors. These enlarged errors based on our best templates give
a better estimate of the uncertainty in the SFRD by also including
the bias from selecting a specific template for the SED.

For our environment-dependent SFR, we did not take this bias
into account. In each of the chosen top five SEDs, the same envi-
ronmental trend can be seen as we observe for our best template;
so by taking the bias in SFR into account for this plot, we will

wash out any observed correlation. Therefore, we can say that there
is an extra uncertainty on the SFR estimates (as seen in Fig. 4),
but our environmental results would already be seen in using the
higher SPIRE flux densities fitted to the map, justifying the use of
the smaller error bars in Fig. 3.
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