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ABSTRACT
The abundance of galaxy clusters can constrain both the geometry and growth of structure in
our Universe. However, this probe could be significantly complicated by recent claims of non-
universality–non-trivial dependences with respect to the cosmological model and redshift. In
this work, we analyse the dependence of the mass function on the way haloes are identified and
establish if this can cause departures from universality. In order to explore this dependence,
we use a set of different N-body cosmological simulations (Le SBARBINE simulations), with
the latest cosmological parameters from the Planck collaboration; this first suite of simulations
is followed by a lower resolution set, carried out with different cosmological parameters. We
identify dark matter haloes using a spherical overdensity algorithm with varying overdensity
thresholds (virial, 2000, 1000, 500, 200 ρc and 200 ρb) at all redshifts. We notice that, when
expressed in terms of the rescaled variable ν, the mass function for virial haloes is a nearly
universal as a function of redshift and cosmology, while this is clearly not the case for the other
overdensities we considered. We provide fitting functions for the halo mass function parameters
as a function of overdensity, that allow us to predict, to within a few per cent accuracy, the
halo mass function for a wide range of halo definitions, redshifts and cosmological models.
We then show how the departures from universality associated with other halo definitions can
be derived by combining the universality of the virial definition with the expected shape of the
density profile of haloes.
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1 IN T RO D U C T I O N

In the cold dark matter (CDM) model, structures – up to proto-
galactic scales – form through the amplification of small density
fluctuations via gravitational instability (Longair 1998; Springel
et al. 2005; Mo, van den Bosch & White 2010; Angulo et al. 2012).
Dark matter haloes are objects which have been able to break away
from the expanding background, and collapse (Press & Schechter
1974; Springel et al. 2001). Small haloes form first, before merging
with one another to form ever more massive ones in a hierarchical
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process (Lacey & Cole 1993, 1994). As a result of repeated mergers,
dark matter haloes grow more massive in time (Tormen, Moscardini
& Yoshida 2004). Haloes hosting galaxy clusters represent the most
massive and recently formed structures in our Universe. The for-
mation and the merger rates of dark matter haloes are sensitive to
the expansion history of the Universe and so can be used to con-
strain cosmological parameters (Lacey & Cole 1993, 1994; Moreno,
Giocoli & Sheth 2008).

In particular, different theoretical studies have shown that the
halo mass function and its evolution are important probes of the
very early Universe, its expansion history, and the nature of grav-
ity (Press & Schechter 1974; Bond et al. 1991; Lacey & Cole
1993; Sheth, Mo & Tormen 2001). These have shown that, in
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appropriately scaled units, the mass function can be written in
an approximately universal form which is independent of power
spectrum and expansion history. Although this universality is only
expected to be approximate (Musso & Sheth 2012; Paranjape, Sheth
& Desjacques 2013), it vastly simplifies the process of constrain-
ing cosmological parameters from observational data sets, so it has
served as the basis for fitting functions whose parameters are cali-
brated using numerical simulations of the dark matter (Del Popolo
& Gambera 1998, 1999; Sheth & Tormen 1999, 2002; Jenkins et al.
2001; Warren et al. 2006). As simulated data sets have grown, it has
become possible to quantify (small) departures from universality
(Tinker et al. 2008; Crocce et al. 2010; Manera, Sheth & Scocci-
marro 2010; Wu, Zentner & Wechsler 2010; Courtin et al. 2011;
Corasaniti & Achitouv 2011; Murray, Power & Robotham 2013;
Watson et al. 2013). Several recent works have also concentrated
on the small but significant modifications by neutrinos (Castorina
et al. 2014), coupling between dark matter–dark energy (Cui, Baldi
& Borgani 2012; Giocoli et al. 2013) and different baryon physics
(Cui, Borgani & Murante 2014; Bocquet et al. 2015).

Many cosmological constraints have been obtained from cluster
counts (Vikhlinin et al. 2009; Rozo et al. 2010; Planck Collaboration
XX 2014) and other galaxy cluster properties (Evrard et al. 2008;
Ettori et al. 2009; Giocoli et al. 2012). For an extensive review,
see Borgani & Kravtsov (2011). However in the near future, many
wide-field surveys are expected to use the cluster mass function to
constrain cosmological parameters (Laureijs et al. 2011; Pillepich,
Porciani & Reiprich 2012; Boldrin et al. 2015; Sartoris et al. 2015).
In the light of these, a mass function calibrated to an accuracy of
a few per cent, and flexible enough to account for different halo
identification definitions, is of primary importance.

Departures of the halo mass function from universality may de-
pend on how haloes are defined. One of the main goals of this paper
is to explore this dependence. Our major result is that, if haloes
are defined using the virial density, and the fitting formula includes
a parameter which is related to this – as was done by Sheth &
Tormen (1999) – then the mass function can be considered universal
to within a few per cent. In this respect, our findings confirm those
of Courtin et al. (2011): departures from universality result from ig-
noring the redshift and cosmology dependence of these quantities.
Moreover, the departures from universality associated with other
halo definitions can be derived from combining the universality of
the virial definition with knowledge of the enclosed density profile
around haloes.

The paper is organized as follows: In Section 2, we describe the
cosmological simulations we use for our study. It also describes
our halo finder. We present our reference model for the halo mass
function in Section 3. In Sections 4 and 5, we discuss the univer-
sality associated with using the virial overdensity to define haloes
and show how the parameters of the halo mass function depend on
how haloes are defined. The bulk of this analysis is for spherical
haloes: Appendix A shows how our results are modified if haloes
are allowed to be ellipsoidal, and Appendix B describes how a num-
ber of more technical details affect our measurements. In Section
6, we show how the non-virial halo mass functions can be derived
from combining knowledge of the dark matter density profile with
the virial mass function. In Section 7, we present some compar-
isons with previous works. We discuss our results and conclude in
Section 8. Our analysis suggests that the most massive end of the
halo mass function is particularly simple, in the sense that it can
be described by a function with fewer free parameters. Appendix C
describes how this impacts cluster cosmology. All logarithms where
not explicitly stated in the text are in base ten.

2 T H E N U M E R I C A L S I M U L AT I O N S

2.1 Le SBARBINE simulations

Le SBARBINE simulations are a set of six dark-matter-only cos-
mological simulations run by the Padova cosmology group. These
simulations follow the evolution of 10243 particles, whose mo-
tions are assumed to be driven by gravitational instability, us-
ing the publicly available code GADGET-2 (Springel 2005). The
assumed background cosmology and initial conditions for these
runs are consistent with recent Planck results (Planck Collabora-
tion XVI 2014, hereafter Planck13). In particular, we have set:
�m = 0.307, �� = 0.693, σ 8 = 0.829 and H = 100 h km s−1

h−1 Mpc with h = 0.677. The initial power spectrum was generated
using the CAMB code (Lewis, Challinor & Lasenby 2000), and initial
conditions were produced by perturbing a glass distribution with
N-GenIC (http://www.mpa-garching.mpg.de/gadget); the realiza-
tions have been carefully chosen, in order to follow the initial power
spectrum even at large scales and thus to reduce the differences be-
tween the linear spectrum and that measured from the simulations.

The parameters of our main simulation set are listed in Table 1.
We used a different seed for the random number generator which
sets the initial conditions of each simulation, so as to have a sample
of independent realizations. Although each box contains the same
number of dark matter particles (10243), the comoving box lengths
are different, so the mass resolution in each box is different. The
box sizes were chosen so that the set provides good mass resolution
down to 107 h−1 M�.

Le SBARBINE simulations are complemented by a set of lower
resolution runs having different cosmological parameters. These
all have 5123 dark matter particles. In particular, for each set of
cosmological parameters we ran two simulations: one with box
size 150 h−1 Mpc and another with 1000 h−1 Mpc. These were
chosen to ensure good resolution both for intermediate and high-
mass haloes. This lower resolution set was produced specifically
to test the universality of the halo mass function with respect to
the cosmological model (see Section 4.2). The parameters of these
other simulations are listed in Table 2.

In addition, we also re-ran three simulations for which the ini-
tial conditions were generated using a second order Lagrangian
Perturbation Theory (2LPT) algorithm1 (Crocce, Pueblas & Scoc-
cimarro 2006). These are copies of Bice (10243 particles) and of
the two 5123 simulations with the WMAP7 cosmology (Komatsu
et al. 2011) namely (wmap7 and wmap7-big). As we discuss in
Appendix B4, there are small differences – not exceeding 5 per cent
– between the mass functions in simulations with Zel’dovich versus
2LPT initial conditions. But these differences appear only for high
ν and high redshifts, which play little role in our calibration of the
mass function parameters.

All runs were performed in Padova on ‘Nemo’: a SuperServer
Twin 2U Dual Xeon Sandy Bridge composed by four independent
node servers each equipped with two Xeon Sandy Bridge 8 Core
E5-2670 and 128 GB of RAM, for a total of 64 cores or 128 CPU-
threads and 512 GB of RAM.

2.2 Halo catalogues

For each stored particle snapshot, we identify haloes using a spher-
ical overdensity (SO) algorithm (e.g. Tormen 1998; Tormen et al.

1 lhttp://cosmo.nyu.edu/roman/2LPT
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Table 1. Features of Le SBARBINE simulations run with Planck13 parameters �m = 0.307, �� = 0.693, σ 8 = 0.829 and h = 0.677 and containing
10243 dark matter particles. The last two columns report the total number of haloes identified with the spherical overdensity at redshift z = 0 that are
resolved with more than 10 and 300 particles, respectively.

Main set of simulations
Name Box (h−1 Mpc) zi mp(M� h−1) Soft (kpc h−1) Nh−tot(z = 0) Nh>300(z = 0) Colour

Ada 62.5 124 1.94 × 107 1.5 2264 847 103 852 Green
Bice 125 99 1.55 × 108 3 2750 411 129 674 Cyan
Cloe 250 99 1.24 × 109 6 3300 880 161 580 Blue
Dora 500 99 9.92 × 109 12 3997 898 191 793 Magenta
Emma 1000 99 7.94 × 1010 24 4739 379 176 633 Red
Flora 2000 99 6.35 × 1011 48 5046 663 75 513 Orange

Table 2. Details of the small set of 10 simulations with different cosmological parameters. Each contains 5123 dark matter particles
with initial conditions generated at redshift z = 99. For all the models the Hubble parameter is h = 0.6777, apart from the WMAP7
cosmology for which h = 0.704.

Secondary set of simulations
Name �m �� σ 8 box (h−1 Mpc) mp(M� h−1) Colour

Tea 0.2 0.8 0.7 150 1.396 × 109 Grey-square
Tea-big 0.2 0.8 0.7 1000 4.135 × 1011 Grey-square
Tina 0.2 0.8 0.9 150 1.396 × 109 Grey-triangle
Tina-big 0.2 0.8 0.9 1000 4.135 × 1011 Grey-triangle
Vera 0.4 0.6 0.7 150 2.791 × 109 Brown-square
Vera-big 0.4 0.6 0.7 1000 8.271 × 1011 Brown-square
Viola 0.4 0.6 0.9 150 2.791 × 109 Brown-triangle
Viola-big 0.4 0.6 0.9 1000 8.271 × 1011 Brown-triangle
Wanda (wmap7) 0.272 0.728 0.81 150 1.898 × 109 Blue-circle
Wanda-big (wmap7) 0.272 0.728 0.81 1000 5.624 × 1011 Blue-circle

2004; Giocoli, Pieri & Tormen 2008). We chose this rather than the
Friends-of-Friends (FoF) method of Davis et al. (1985), because
we believe it to be slightly closer to physical models of halo for-
mation, and because it is quite similar to how mass is defined in
observational data.

For each particle distribution, we estimate the local dark matter
density at the position of each particle by calculating the distance
di,10 to the tenth nearest neighbour. In this way, we assign to each
particle a local density ρi ∝ d−3

i,10. We then sort particles in density
and choose as centre of the first halo the position of the dens-
est particle. We grow a sphere around this centre, and stop when
the mean density within the sphere falls below a desired critical
value. At this point, we assign all particles within the sphere to
the newly identified halo, and remove them from the global list
of particles. We then choose the densest particle of the ones re-
maining, and repeat (i.e. grow a sphere around it until the mean
enclosed density falls below threshold, etc.). We continue in this
manner until none of the remaining particles has a local density
large enough to be the centre of a 10 particle halo (as we discuss
shortly, we apply a more stringent cut when we fit for the mass func-
tion); particles not assigned to any halo are called ‘field’ or ‘dust’
particles.

For the critical overdensity, we adopt six different definitions:
2000, 1000, 500 and 200 ρc(z), 200 ρb and the virial value. We chose
these values of overdensity since they are (or they are very close
to) the commonly used ones: 200 ρb is motivated by the spherical
collapse model in an Einstein-de-Sitter universe and – together
with 200 ρc – is a popular choice (Tinker et al. 2008); moreover,
200 ρc is often used to define galaxy cluster masses; 500 ρc (and the
higher overdensities) are used in X-ray analyses, and in general in
observations that are able to resolve only the inner parts of haloes.
The virial overdensity depends on redshift and cosmological model

(e.g. Bryan & Norman 1998); we use the numerical solutions of
Eke, Cole & Frenk (1996).

The comoving density of the background is

ρcom ≡ ρb = ρc(0)�m(0) = ρc(z)�m(z), (1)

where ρc(0) ≡ 3H 2
0 /8πG � 2.775 × 1011 h−1 M� h3 Mpc−3 is the

critical density. For the Planck cosmology adopted in the main
set of simulations, �vir(z = 0) � 319 ρb is greater than 200 ρb

(corresponding to �98 ρb) and lower than all the other thresholds
we consider. At high redshifts both 200 ρb and 200 ρc converge to
the virial definition, the first from below and the second from above.

Fig. 1 shows a schematic representation of the haloes identified
with our SO finder. In contrast to previous work, in which an FoF
catalogue is used as the basis for subsequent SO identifications, we
run our halo finder code from scratch for each threshold. Hence,
although a halo in one catalogue may be present in another, this
is not necessarily true. In particular, while the halo centred at 1 is
common to all catalogues, the ones at 2 and 3 belong only to 1000 ρc

and to the virial catalogue, respectively. This happens, as can be
noticed from their density profiles presented in the right part of the
figure, because while halo 1 is dense enough to go from overdensity
2000 ρc to 200 ρb – so is in common to all catalogues – haloes 2
and 3 reach only 1000 ρc and the virial overdensity, respectively,
and are present only in those catalogues.

Halo identification in each simulation snapshot was done with
the aim of studying the evolution the halo mass function. For each
snapshot–density threshold combination, we saved a catalogue con-
taining all the information about the identified haloes. So as not to be
biased by the mass and force resolution, we only consider systems
resolved with at least 300 particles (Macciò et al. 2007; Macciò,
Dutton & van den Bosch 2008; Velliscig et al. 2015). Therefore,
while the z = 0 catalogues of each simulation contain many haloes
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Figure 1. Schematic representation of the halo identifications in the par-
ticle density distribution at z = 0. Different colours represent the various
overdensities, from 2000 ρc down to 200 ρb. Since our SO halo finder starts
to grow the sphere starting from the densest particle, the halo centred at 1
is common to all the catalogues, whereas the ones at 2 and 3 belong only
to 1000 ρc and to the virial catalogue, respectively. This is clearer in the
right-hand panel of the figure which shows the density profiles of the three
systems.

over a wide mass range, only the high-mass end of the higher red-
shift outputs is reliably measured.

We also ran an ellipsoidal overdensity (EO) finder (Despali,
Tormen & Sheth 2013; Despali, Giocoli & Tormen 2014; Bonamigo
et al. 2015), which we used for estimating the triaxial properties of
the collapsed systems. In what follows we concentrate on the results
for SO haloes; a brief summary of the corresponding results for el-
lipsoidal haloes can be found in Appendix A. These are broadly
similar to spherical haloes, although the best-fitting mass function
parameters differ slightly from those for the SO case.

3 MO D E L F O R TH E H A L O M A S S F U N C T I O N

Let dn/dln M denote the comoving number density of haloes in a
logarithmic bin dln M around mass M. Then, the mass fraction in
such haloes is

f (M) dM = M

ρb

dn

d ln M
d ln M. (2)

It is usual to define

σ 2(M, z) ≡
∫

dk

k

k3Plin(k, z)

2π2
W 2[kR(M)], (3)

where Plin(k, z) is the initial power spectrum extrapolated to redshift
z using linear theory, W(x) ≡ 3 j1(x)/x, and R(M) is given by requir-
ing M/(4πR3/3) = ρb (recall that ρb is comoving, so it is indepen-
dent of redshift). In principle, σ (M, z) depends only on Plin(k, z) and
the smoothing filter W. In practice, the number of Fourier modes
that can be effectively sampled in the initial conditions depends on
some computational limits (e.g. box size, number of particles, etc.).
As a result, there are differences between the actual power spectra
in a box and the theoretical mean value. Appendix B illustrates the
impact on σ 2(M).

We compute σ 2(M) for each box using the actual realization
of P(k) in it. This reduces bias and scatter in the mass function,
especially in the high-mass tail of each simulation, allowing us to
reach higher precision (down from ten to a few per cent) particularly
in the smaller boxes within which cosmic variance would otherwise
contribute substantially. In particular, the difference between the
theoretical input power spectrum and the one measured from each

simulation can be seen in Fig. B1, while the associated difference
in the mass function is shown in the bottom panel of Fig. B2.
Appendix B also discusses the impact of box size on the mass
functions, and compares a number of different prescriptions that
account for finite box-size effects on σ 2(M).

Although a number of workers so far have parametrized the mass
function in terms of σ alone (i.e. they write f(M) dM = f(σ )dσ and
work with f(σ )), Sheth & Tormen (1999) were careful to parametrize
in terms of

ν ≡ δ2
c (z)/σ 2(M), (4)

where δc(z) is the critical linear theory overdensity δlin(z) required
for spherical collapse divided by the growth factor (Carroll, Press
& Turner 1992). This quantity, which depends weakly on � for the
�CDM family of models, is well approximated by

δlin(z) ≈ 3

20
(12π)2/3[1 + 0.0123 lg �(z)] (5)

(Kitayama & Suto 1996). The rationale for including it came from
the fact that they used the virial density to find haloes, and the same
model which predicts this virial density also predicts δc. Courtin
et al. (2011) highlight the fact that this factor becomes increasingly
important at high masses; failure to include it can masquerade as
non-universality.

For this reason, our reference parametrization for the halo mass
function is that of Sheth & Tormen (1999):

f (M) dM = f (ν) dν (6)

where

νf (ν) = A

(
1 + 1

ν ′p

) (
ν ′

2π

)1/2

e−ν′/2 (7)

with ν ′ = aν. The parameters (a, p, A0) define the high-mass cut-
off, the shape at lower masses, and the normalization of the curve,
respectively. In addition, because Plin(k) determines the value of the
mass variance S(M) = σ 2(M) which enters in the definition of ν,
the initial power spectrum plays an important role. Since it enters
in the denominator of ν, one might say that the mass function is
‘non-perturbative’ in Plin(k).

4 T H E U N I QU E N E S S O F T H E V I R I A L
OV ERDENSI TY

This section studies the universality of the halo mass function for
haloes identified using the virial overdensity. We do so by finding
the set of parameters (a, p, A0) that best fit the z = 0 data from the
Planck13 simulations. We then use measurements at other redshifts
and cosmologies to test for universality. We start with the virial
overdensity because we believe it to be the most physically moti-
vated choice for identifying haloes. Later in the paper, we study
haloes identified using the other SO catalogues.

Our model for the mass function, equation (7), has three free
parameters (a, p, A0), whose values we adjust so as to minimize the
Chi square with respect to the measured binned mass function:2

χ2(a, p,A0) =
∑

i

(log(νf (ν))i − log(νf (ν))fit)
2

ε2
log(νf (ν))i

, (8)

2 Note that Sheth & Tormen (1999) only varied a and p: they fixed the value
of A by requiring that the integral over all masses give ρb.
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Figure 2. Halo mass function at four redshifts, for all SO haloes with more than 300 dark matter particles in the SO catalogues, identified using the redshift-
dependent virial density. Green, cyan, blue, magenta red and orange symbols show results for Ada, Bice, Cloe, Dora, Emma and Flora. Black dashed line,
same in all panels, shows the result of fitting the z = 0 points to equation (7). The middle panels show the residuals (in log space) from this best fit. The dashed
vertical lines show the maximum ν for which the bins contain at least 100 objects. The two solid vertical lines show the minimum ν at which we may expect
differences of at least 5 per cent in the halo mass function accounting for 2LPT initial condition, adopting the rescaling of equation (11) by Reed et al. (2013),
for the simulations starting at z = 99 and 124 (right and left lines, respectively). Red solid line shows the best-fitting mass function obtained using the data
from all the snapshots with z ≤ 1.25. The bottom panels show residuals from the fit to the scaled counts from all snapshots up to z = 1.25. The departures at
high redshift are reduced, so universality is even more pronounced.

where the sum is over binned counts. The bins are equally spaced in
log10(ν), with �log10(ν) = 0.05 and we neglect covariances between
the binned counts when fitting.3 We discard bins with fewer than 30
objects (typically the high-ν bins), to set a limit on the Poissonian
error εlog (νf(ν)) in a bin. There were no significant differences in the
best-fitting parameters when we repeated the analysis using only
bins with at least 100 objects.

4.1 The halo mass function at different redshifts and
overdensities

4.1.1 Virial haloes

The best-fitting values for the z = 0 virial overdensity halo counts
are

(a, p,A0)= (0.794 ± 0.005, 0.247 ± 0.009, 0.333 ± 0.001). (9)

The dashed black curves, same in all panels of Fig. 2, show equation
(7) with these parameters. The symbols in the different panels show
the measured virial halo mass function at four different redshifts as
labelled. Green, cyan, blue, magenta, red and orange points show
results from the six simulations of the main set: Ada, Bice, Cloe,
Dora, Emma and Flora. Note the excellent agreement among the
simulations despite the very different volume that each samples.
This is because the way we calculate ν(δc, σ ) largely eliminates the
impact of cosmic variance.

The middle panels of Fig. 2 show logarithmic residuals from the
best fit to the z = 0 counts. These indicate the goodness of our fit,

3 We do not include a bin that counts the mass fraction which is not assigned
to haloes. See Manera et al. (2010) for an algorithm which does not require
binned counts, and does account for the unassigned mass fraction.

which was calibrated in log space. The residuals are close to zero at
small and intermediate values of ν. They are larger at high ν, where
the best fit predicts more haloes than we find in the simulations at
z = 0. Some of this is due to the Poisson uncertainty in the small
number counts; at higher redshifts the effect is reduced since the
high ν tail becomes populated by lower mass haloes. The smallness
of the residuals in the other panels indicates that the z = 0 model is a
good description of the virial halo mass function at higher redshifts
as well.

The vertical lines in the bottom panels show the regime of in-
fluence of two numerical effects: First, the dashed grey vertical
line shows the maximum ν for which there are at least 100 (rather
than 30) haloes in the bin. This matters only at high redshifts and
in the high-mass regime and, as mentioned before, the best-fitting
parameters are not significantly different; Secondly, we addressed
the effect of not using 2LPT initial conditions for our simulations:
we rescaled our points using equation (11) of Reed et al. (2013)
(calibrated only for 1 � ν � 5), which gives an estimate of the bias
in the halo mass function between ZA (Zel’dovich approximation)
and 2LPT methods; the two solid vertical lines show the minimum
ν at which we may expect differences of at least 5 per cent, for the
simulations starting at z = 99 (right) and z = 124 (left). Such dis-
crepancies would mainly affect the high-z and high-ν data points;
they do not affect the counts in the z ≤ 1.25 range we will adopt
to calibrate the parameters of equation (7). The rescaling equation
by Reed et al. (2013) and the ZA/2LPT difference are discussed in
detail in Appendix B4.

From the figure and the discussion above, we conclude that
there is no significant systematic deviation from universality within
8 per cent for ν � 10 at redshifts z ≤ 5. Therefore, we can combine
measurements at many different redshifts to increase the precision
in the estimate of (a, p, A0). In addition to increasing the statistics,
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Halo mass function 2491

Figure 3. Change in the best-fitting mass function when one parameter at
a time is changed by up to ±30 per cent (in increments of 10 per cent). Blue
and red curves show cases where the parameter values are larger or smaller
than the reference one.

adding the high-redshift data fills-in the high-ν tail, allowing it to
play a greater role in determining the best-fitting parameters. We de-
termined the best-fitting parameters using the virial halo data from
all the snapshots between z = 0 and 1.25 (a total of 15 snapshots).
At z ≥ 1.25, the data no longer samples the whole mass function,
preventing a reliable fit. The resulting best-fitting parameters are:

a = 0.7663 ± 0.0013

p = 0.2579 ± 0.0026

A0 = 0.3298 ± 0.0003. (10)

The differences between this all-z fit and the previous z = 0
fit are of the order of �a � 3 per cent, �p � 4 per cent and

�A0 � 1 per cent. This leads to per cent level differences in the
mass function which reduce the residuals at high redshift. The red
solid line in each panel of Fig. 2 shows this all-z best fit: it can hardly
be distinguished from that for z = 0 only (black dashed curve) but,
as shown by the residuals in the lower panels, it traces the high-ν
part of the mass function more closely.

Fig. 3 shows how the virial mass function changes as each of
the parameters (a, p, A0) is varied by ±30 per cent, while the other
two are kept fixed. While the mass function is sensitive to both
A0 and a – which modify the normalization and the high-mass
cut-off, respectively – this is less true for p. Even if p changes by
±30 per cent, the mass function changes by 5 per cent at most, for
ν � 0.1 and ν > 10. In what follows, we use the values in equation
(10) as our reference model.

4.1.2 Other overdensity thresholds

We now study the mass functions associated with the other five
density thresholds. It is tempting to identify these thresholds with
an ‘effective formation redshift’, and hence with an effective value
of δc(z) when defining ν. Since the role of a in equation (7) is simply
to rescale ν, one might wonder if these other halo definitions lead
to universal mass functions which differ from those for the virial
overdensity only in the value of a.

Table 3 shows the values of the best-fitting parameters at z = 0
for the different threshold densities. Clearly the other parameters,
p and A0, also depend strongly on how the haloes were identified.
Moreover, as we will show below, universality clearly does not
hold for any of these other definitions: in all cases, the best-fitting
parameters for the higher redshift counts depart significantly from
those at z = 0.

To illustrate this, Fig. 4 shows the halo mass functions at z = 0,
1, 2 and 5 for haloes identified using 200 ρb as density threshold.
The dashed curve, which is the same in all four top panels, shows
the best fit to the z = 0 data points. The middle panels, which show
the residuals with respect to this fit, show that it overestimates the
counts at all higher redshifts. These departures from universality
are in agreement with previous work on 200 ρb haloes (e.g. Tinker
et al. 2008). The solid curves in the upper panels show the result
of rescaling our universal virial counts as described in the next

Table 3. Dependence of best-fitting parameters on the overdensity used to identify SO haloes. In
the top part, we show the three parameters calculated at z = 0; then we report those obtained by
fitting the virial halo counts from all snapshots up to z = 1.25 (i) of the Planck simulations and
(ii) of all the simulations with different cosmologies together. The bottom row shows the parameters
which best fit the Mvir ≥ 3 × 1013 h−1 M� counts from all cosmologies and all redshifts.

ρ (SO) a p A

z = 0
200 ρb 0.739 ± 0.005 0.206 ± 0.008 0.360 ± 0.001
�vir 0.794 ± 0.005 0.247 ± 0.009 0.333 ± 0.001
200 ρc 0.903 ± 0.006 0.322 ± 0.009 0.287 ± 0.001
500 ρc 1.166 ± 0.009 0.344 ± 0.012 0.236 ± 0.001
1000 ρc 1.462 ± 0.012 0.349 ± 0.015 0.197 ± 0.001
2000 ρc 1.821 ± 0.017 0.413 ± 0.017 0.158 ± 0.001

All z – Planck cosmology
�vir 0.7663 ± 0.0013 0.2579 ± 0.0026 0.3298 ± 0.0003

All z and cosmologies
�vir 0.7689 ± 0.0011 0.2536 ± 0.0026 0.3295 ± 0.0003

All z and cosmologies – cluster counts: Mvir > 3 × 1013 M� h−1

�vir 0.8199 ± 0.0010 0 0.3141 ± 0.0006
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2492 G. Despali et al.

Figure 4. Same as Fig. 2, but for haloes identified using 200 ρb instead of �vir. Middle panels show residuals with respect to the best fit at z = 0 (dashed
curve, same in all top panels); these show that the mass function is not universal across all redshifts. Lower panels show residuals with respect to our rescaled
model [equation (12); solid curves, different in each top panel].

Figure 5. Same as Fig. 2, but for haloes identified using 200 ρc; middle panels show that the universality is broken in the opposite sense to when the threshold
was 200 ρb, and bottom panels show that our rescaled model accounts for this quite well.

section; the bottom panels show the residuals with respect to it,
which provides a much better fit.

Fig. 5 shows a similar analysis of haloes identified using
200 ρc(z). In this case, the best-fitting relation at z = 0 underesti-
mates the counts at higher z. Finally, Fig. 6 shows haloes identified
using threshold values of 500, 1000 and 2000 ρc(z), at redshifts z= 0
and 1. The trends are qualitatively similar to those for 200 ρc(z),
with the z = 0 fit underestimating the counts at higher z.

4.2 The halo mass function for different cosmologies

Having established that the virial mass function is universal with
respect to redshift, we now test if it is universal across other back-

ground cosmological models. To do so, we use the halo catalogues
in our secondary set of 5123 simulations, whose properties are sum-
marized in Table 2.

First, for virial haloes, we used the best-fitting parameters of
equation (10) which were calibrated using the 10243 particle sim-
ulations of a Planck13 cosmology. The four panels in Fig. 7 show
the logarithmic difference from this best fit at redshifts z = 0, 1,
2, 5. Following the colour code of Table 2, grey points are for
�m = 0.2, brown for �m = 0.4 and light blue for �m = 0.272
(the WMAP7 cosmology); squares and triangles represent σ 8 = 0.7
and 0.9, respectively. For halo mass definitions that are close to
the virial value the residuals are relatively small, indicating that
our relation – calculated exclusively from the Planck13 cosmology
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Figure 6. Same as Fig. 2, but for haloes identified using 500, 1000 and
2000 ρc instead of �vir, at z = 0 and 1.

data – remains valid for the other cosmological models as well. In
addition, although we do not show this explicitly, for these cosmo-
logical models also, universality is broken when considering other
overdensities. This demonstrates universality of the virial relation

with respect to other cosmological models. However, departures
from this universality may arise if one considers more extreme de-
partures from Planck13. For example, (Courtin et al. 2011) explore
models in which the growth factor, growth history and virial density
differ more radically from that of the Planck cosmology, and find
correspondingly larger departures from universality.

Fig. 8 shows the results from all our simulations and redshifts
together. Different colours represent the different simulations (with
the same colour code as in previous figures), and different symbols
distinguish the four redshifts (and not the different simulations).
The best fit to all the virial halo catalogues out to z = 1.25 has

a = 0.7689 ± 0.0011

p = 0.2536 ± 0.0026

A0 = 0.3295 ± 0.0003, (11)

and is shown by the solid black line. Lower panel shows the loga-
rithmic residuals. These best-fitting parameter values equal – at the
per mil level – the values obtained in the last section from our first
set of simulations, which assumed a Planck13 cosmology (equation
10), thus further confirming the universality as a function of the
background cosmological model.

Table 3 compares the three sets of best-fitting values for the virial
haloes. The bottom row shows the parameters which best fit the
counts of cluster-mass haloes: Mvir ≥ 3 × 1013 h−1 M�. Note that
at these high masses p = 0, so that the mass function is like that of
Press & Schechter (1974). We discuss this further in Appendix C
in the context of cosmological constraints in the �m–σ 8 plane from
cluster counts.

Covariances between the best-fitting parameters are shown in
Fig. 9. Contours show 1σ , 2σ and 3σ levels for each pair of param-
eters. While A0 and a are not strongly degenerate, p correlates with
both a and A0. Manera et al. (2010) show that such correlations can
be understood as resulting from requiring the model to reproduce
the total measured mass fraction in haloes (the mass fraction is
measured with much greater precision than is the detailed shape of
the mass function; also see Fig. 3).

5 R E S C A L I N G TH E M A S S F U N C T I O N :
A U N I V E R S A L PA R A M E T R I Z ATI O N

We now describe a simple method that allows one to derive the halo
abundances associated with other overdensities at any redshift by a
straightforward rescaling of the virial halo mass function.

We calculated the best-fitting parameters for all the six halo cat-
alogues at all outputs between z = 0 and 1.25. For the overdensities
≥500 ρc(z), we only fitted the data points out to z ∼ 0.4 so as to be
sure of having good statistics for both the shape and the cut-off of
the mass function, i.e. p and a, respectively. At higher redshifts the
small number of haloes which probe a smaller range of ν cannot
break degeneracies in the determination of the three parameters.
Nevertheless, even after restricting to z ∼ 0.4, we obtain very good
results. As the reference virial halo mass function we used the fit
from equation (11). Fig. 10 shows how the best-fitting parameters
vary as a function of x = log (�(z)/�vir(z)).

As noted in Tinker et al. (2008, albeit for a different func-
tional form), the best-fitting parameters (a, p, A0) are smooth func-
tions of the critical density threshold. As can be seen in the top
panel of Fig. 10, the normalization A0 decreases linearly with the
overdensity – a natural consequence of the decrease in halo mass –
while a and p both increase with threshold overdensity. The trends
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2494 G. Despali et al.

Figure 7. Cosmology independence of the virial halo mass function. We show the logarithmic difference from the best fit calculated using the Planck
cosmology for redshifts z = 0, 1, 2 and 5. Following the colour code of Table 2, grey points indicate the results of the simulations with �m = 0.2, brown for
�m = 0.4 and light blue for �m = 0.272; squares and triangles represent σ 8 = 0.7 and 0.9, respectively.

Figure 8. Universality of the virial halo mass function. Symbols show
measurements from all our simulations – both from the main and secondary
set – at four redshifts: z = 0, 1, 2, 5. Although we show measurements at
these four redshifts, the fit, which was calibrated on all simulations, used
only the z ≤ 1.25 snapshots.

can be described using linear or quadratic polynomials:

a = 0.4332 x2 + 0.2263 x + 0.7665,

p = −0.1151 x2 + 0.2554 x + 0.2488,

A = −0.1362 x + 0.3292, (12)

shown by the blue solid lines in Fig. 10. While a and A behave very
regularly, the determination of p is less certain. This does not have
a big influence on the rescaling method, since the mass function is
less sensitive to p than to the other parameters (see Fig. 3). The red
dashed curves in Fig. 10 show the trends obtained by fitting to the
z = 0 counts only:

a = 0.3881 x2
0 + 0.2776 x0 + 0.7837,

p = −0.07459 x2
0 + 0.2016 x0 + 0.2518,

A = −0.1337 x0 + 0.3315, (13)

where x0 ≡ log (�(z0)/�vir(z0 = 0)). These trends are very similar
to the previous ones.

The above relations show that both a and p increase with increas-
ing threshold, qualitatively consistent with Manera et al. (2010)
who studied FoF rather than SO haloes. (They found that a and p
increase as the FoF linking length is decreased, and it is well known
that shorter linking lengths return denser haloes.) In addition, upon
noting that a multiplies δc(z) in equation (7), the increase of a with
density threshold is qualitatively consistent with the notion that the
denser inner parts of a halo virialized at higher redshift, so mass
functions for higher density thresholds are qualitatively like those
for higher redshifts. Unfortunately, the agreement is not quantita-
tive. To see this, consider the thresholds 2000 and 200 ρc which
differ by a factor of 10. If the mass associated with the denser
threshold virialized at (1 + z2000)3 ∼ 10, we would expect the as-
sociated δc to be larger by a factor of (1 + z2000) ∼ 101/3. If this
increase is to be provided by increasing a, then a must be larger by

Figure 9. Covariance between fitted parameters of the virial halo mass function (the 10243 and 5123 runs, and all redshifts to z ≤ 1.25): contours show 1σ ,
2σ and 3σ reference levels for each pair of parameters.
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Figure 10. Dependence of best-fitting parameters a, p, A0 on
x = log (�(z)/�vir(z)) for z = 0 to 1.25. Different coloured symbols repre-
sent different overdensities; smooth curve shows equation (12).

102/3. This is considerably larger than the ratio of a values for 2000
and 200 ρc in Table 3.

Even though we do not have a quantitative physical understanding
of the scaling in equations (13) and (12) – a question we return to
in Section 6 – they can still be used to predict the mass functions at
overdensities of current interest that are not considered in our work.
These precise fitting formulae are able to follow the evolution of
the non-virial mass functions at all redshifts, at the level of a few

per cent – which is comparable to the intrinsic uncertainty in the
mass function.

To show this, we return to the solid lines and the bottom panels
in Figs 4–6. The black solid curves in Figs 4–6 show equation
(12, recall that the dashed curves show the best z = 0 fits) and the
bottom panels show the logarithmic difference from our model. The
agreement is indeed very good: the residuals are generally smaller
than a few per cent; this is quite acceptable given the intrinsic scatter
of the mass function is of this order. The middle and bottom panels
show that our model curves are able to account both for the change
in the normalization and the tilt of the mass function as z changes.

To conclude: our results provide an efficient way for predicting
the halo mass function for any redshift and overdensity in a Planck
�CDM-like model. Once log (�(z)/�vir(z)) has been calculated, it
is straightforward to obtain the other parameters.

Returning to the other cosmological models, Fig. 11 shows the
logarithmic differences from our reference rescaling models for all
the mass functions of the secondary set, at redshifts z = 0, 1. At
both redshifts, the residuals are very small showing that our fitting
relations also work for any cosmological model once mass and
redshift are appropriately rescaled to ν.

6 MATC H E D H A L O E S

So far, we used the halo catalogues derived independently at each
overdensity threshold from the particle density distribution saved in
the snapshot files. As already noted, the number of haloes identified
using different overdensities at a certain redshift is not the same.
This means that we are not looking at a ‘rescaled version’ of the
virial population, but at different halo samples (see Fig. 1). For
example, virial haloes may contain many smaller higher density
peaks, each of which could correspond to a massive substructure
within the virial radius. On the other hand, the 200 ρb threshold is
lower than the virial one and so – at low redshifts – the identified
haloes will be larger and more massive than the virial ones. In
general, in this latter case we may have fewer haloes than in the
virial catalogues, since the particles corresponding to more than
one smaller virial halo may be included in a single 200 ρb halo (cf.
the virial halo 3 in Fig. 1).

In this section, we analyse the halo mass function of ‘matched
haloes’ which we create as follows. For each virial halo, we select
from the different halo overdensity catalogues the object whose
centre of mass is closest to that of the virial halo. For the haloes
identified with a threshold that is denser than virial, we only keep
the object which corresponds most closely to the virial one. To
ensure good resolution (and hence a match) in the inner regions, we
only considered virial haloes with more than 103 particles. In this
way, we define a series of approximately concentric spheres of ever
higher density within the virial radius: a density profile.

If we average together all the profiles for a narrow bin in virial
mass, then we can use this mean profile, and the scatter around it, to
model the ‘matched halo’ mass function associated with different
overdensity thresholds � ≥ �vir, because

dn�

dM�

=
∫

dMvir
dnvir

dMvir
p(M�|Mvir). (14)

If p(M�|Mvir) is sharply peaked around M� = g�(Mvir) Mvir say,
then

dn�

dM�

= dnvir

dMvir

dMvir

dM�

, (15)
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2496 G. Despali et al.

Figure 11. Mass functions for other cosmological models: logarithmic dif-
ference from our best-fitting models in the secondary set of 5123 simulations,
at two different redshifts (z = 0, 1) and for all the overdensities. Grey, brown,
light blue show results for �m = 0.2, 0.4 and 0.272. Squares and triangles
show results for σ 8 = 0.7 and 0.9. For the virial haloes, we use the fit
obtained from stacking all z outputs of the Planck cosmology. For the other
cases, the residuals are with respect to equation (12).

so that

[νf (ν)]� = g�(Mvir) [νf (ν)]vir (16)

as in Bocquet et al. (e.g. 2015). But if the scatter around the mean
profile is not negligible, then the full convolution of equation (14)
must be performed.

In principle, p(M�|Mvir) could be determined directly by fitting
an NFW profile Navarro, Frenk & White (1996) to each virial halo
in the stack. This functional form has just one free parameter, the
concentration c, so p(M�|Mvir) is simply related to the mean c at
fixed Mvir, and the scatter around this mean, which is known to be
lognormal with width σ ln c|m = 0.25.

In practice, we have not measured the profile shapes. Rather, we
use the fact that the concentration of a halo is related to its mass
accretion history (Zhao et al. 2009), which we also do not measure.
Rather, we estimate it, and hence c, using the model of Giocoli et al.
(2012). We then use the mean c along with the assumption that the
scatter is negligible, to compute the value of g� to insert in equation
(16) for the desired �.

The symbols in the left-hand panels of Fig. 12 show the mass
function of the haloes in the different catalogues matching the virial
systems, at redshift z = 0 and 1 for the catalogues constructed
considering 200, 500, 1000 and 2000 ρc as thresholds. The solid
curves, following the corresponding data points, show the virial
mass function rescaled to the different overdensities.

The panels on the right of Fig. 12 show the logarithmic residuals
of the data points with respect to the corresponding rescaled models.
They all remain well below 10 per cent – apart from the high-ν
tail – indicating that the precision of the rescaled mass functions
is of the same order as of the ‘true’ virial mass function. Some
of the discrepancy may be caused by the fact that not all haloes
follow NFW profiles all the way down to the very centre (Einasto
1965; Retana-Montenegro et al. 2012; Ludlow et al. 2013; Dutton
& Macciò 2014).

The case of 200 ρb must be treated separately, since the more
massive haloes identified using 200 ρb may include more than one
smaller virial overdensity haloes in their outskirts which we exclude
(e.g. object 3 in Fig. 1). Nevertheless, in this case also, the rescaled
relation captures the behaviour of the mass function measured in the
simulations with a precision comparable to the other overdensities.
Recall that the rescaled mass function at 200 ρb at z = 1 is almost
the same as the virial mass function, since �vir at high redshift is
nearly equal to 200 ρb.

Fig. 13 shows how different these rescaled mass functions are
from the original fits of Table 3. The upper panels show the two
mass functions – the rescaled one in dashed lines and the original
ones in solid lines – for all the density thresholds; the lower panel
shows the differences in halo counts between the two cases. Note
that the matched mass functions ‘lose’ haloes: because some of the
smaller denser systems are halo substructures. This is true for all
the overdensities except for 200 ρb: as we said, in this case we are
outside the virial haloes and so we may in fact have more haloes
than those found at the virial overdensity.

7 C O M PA R I S O N W I T H PR E V I O U S WO R K

Fig. 14 shows the residuals between our virial mass function νf(ν)
– the one calibrated from all z ≤ 1.25 outputs of the 10243 and the
5123 simulations – and the mass functions derived in previous work
(as indicated). The shaded region in each panel shows the range in
ν, at z = 0, over which the various authors have calibrated their
mass functions. The two vertical dot–dashed lines show the range
in ν over which we have performed our calibration.

To facilitate comparison, the main features of these works are
listed in Table 4. Most of these authors used an FoF algorithm to
identify the haloes in their simulations: while b = 0.2 is the most
common choice for the linking length, Manera et al. (2010) use
three different values (b = 0.15, 0.168, 0.2); moreover, Warren
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Halo mass function 2497

Figure 12. Top left: z = 0 halo mass functions of the matched haloes. Different colours show different overdensities, while the black solid curves show the
corresponding rescaled mass functions, obtained from equation (16). Top right: logarithmic residuals from the rescaled mass functions of the upper panel. The
scatter with respect to the rescaled mass function is of the same order of the intrinsic scatter of the mass function (shown by the virial case). Bottom: same as
top, but for z = 1.

et al. (2006) discuss how to correct the FoF masses, claiming that
the identification is influenced by how well an halo is resolved and
thus the same linking length may identify structures with different
enclosed overdensities. The same argument is discussed also in
Courtin et al. (2011) and More et al. (2011) and they predict a linking
length equivalent to our virial overdensity (at z = 0) of 0.193 and
0.206, respectively. Sheth & Tormen (1999) and Tinker et al. (2008)
use SO algorithms, while Watson et al. (2013) compares the results
of the two methods (in Fig. 14, we show only their universal FoF
fit). At intermediate masses all the analytical mass functions agree
quantitatively. Larger differences arise for more massive systems:
in this range, the precision of the fit is strongly affected by the

resolution of the simulation and consequently by the number of
high-mass haloes.

The main purpose of our work is to analyse the impact of the den-
sity threshold chosen to identify the haloes on the universality of the
mass function: the majority of the identification algorithms use a
threshold � of 178 or 200 for all redshifts (e.g. Tinker et al. 2008 and
Watson et al. 2013). Since we have argued that ignoring the redshift
evolution of � causes most of the observed non-universality one
must carefully match density thresholds when comparing different
works. This is shown more clearly in the lower panels of Fig. 14,
where we compare our results with those of Tinker et al. (2008):
we tried to match their SO thresholds as closely as possible to ours,
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Figure 13. Difference between the mass functions of Table 3 (solid lines)
and the rescaled ones from the matched haloes as in Fig. 12 (dashed lines);
the lower panel shows the residuals between the two relations on the halo
counts.

to test their compatibility. The figure shows – from top to bottom
– the residuals between: (i) their � = 200 fits with our virial fits;
(ii) their � = 300 fits with our virial fits; (iii) their � = 200 fits
with our 200 ρb fits. The agreement for cases (ii) and (iii) is much
better than for (i). Since our virial overdensity at z = 0 is closer to
� = 300 than 200, this shows that different analyses converge pro-
vided one compares compatible halo identification schemes (Knebe
et al. 2013). Moreover, not only are our 200 ρb fits close to the main
result of Tinker et al. (2008), but the non-universality they report is
compatible with the redshift evolution of our 200 ρb mass function
(Fig. 4): the systematic deviation from universality is primarily due
to the choice of the overdensity threshold used in the halo identifica-
tion method. The agreement, once overdensities have been correctly
matched, is even more reassuring when one notes that Tinker et al.
(2008) fit their counts to a functional form that differs from our
equation (7).

Additional reassurance comes from the fact that, while one may
expect trends arising from differences in halo identification meth-
ods, our SO results lie in between the l = 0.168 and 0.15 FoF results
of Manera et al. (2010), just as they should.

As a final remark we note that, even when the computational
schemes are theoretically similar, the mass function for structures
identified with different codes (in the same simulation!) can differ
by up to 10 per cent (Knebe et al. 2011). This might explain some
of the discrepancies between our best-fitting model and those of
other works. Finally, we underline that there could be other effects
depending on the assumed cosmological parameters as explored by
Murray et al. (2013).

Figure 14. Comparison with some previous work. In all panels, the dotted
vertical grey lines show our range in mass (for virial haloes at z < 1.25)
and the grey region show an estimate of the range in mass of the other
works; we calculated this last converting their mass ranges in ν, so it may
not be perfectly the same but it gives an estimate of the overlapping regions.
Top: we show the relative residuals of our virial mass function νf(ν) with
respect to the models of other works. From top to bottom, we compare our
model with Sheth & Tormen (1999), Jenkins et al. (2001), Warren et al.
(2006), Watson et al. (2013) and Manera et al. (2010). For this last, we show
the results obtained from FoF catalogues with linking lengths of 0.2, 0.168
and 0.15, which they fit to the same functional form we do. Our results lie
between their fits to the smaller linking catalogues, as they should, over
the whole range of masses. Bottom: we compare our results with those of
Tinker et al. (2008) at different overdensities. First, we show the relative
residuals of their � = 200 reference model with our best fit calculated at the
virial density; secondly, we compare their model with our best fit at 200 ρb.
Finally, we test the opposite situation, comparing our virial model with their
mass function at � = 300, an overdensity closer to the value of �vir adopted
in this work.

8 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we analysed a set of cosmological simulations in order
to study the halo mass function and its dependence on redshift,
cosmology and the halo identification method. In what follows we
summarize our main results.
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Table 4. Schematic (i.e. incomplete) summary of the main features of the other works to which we compare our results in Fig. 14 (Sheth & Tormen
1999; Jenkins et al. 2001; Warren et al. 2006; Tinker et al. 2008; Manera et al. 2010; Watson et al. 2013). We list the resolution and scale of their
simulations and the main algorithm with the associated threshold used to identify the haloes.

Npart Box (h−1 Mpc) Cosmological models Algorithm Threshold

Sheth & Tormen 1999 (3 sim) 2563 85, 141 S/O/�CDM SO � = �vir

Jenkins et al. 2001 2563, 5123, 109 84–3000 τ /�CDM FoF b=0.2
Warren et al. 2006 10243 96–3072 �CDM FoF b corrected
Watson et al. 2013 30723–60003 11–6000 �CDM (WMAP5) FoF (SO) b=0.2 (�=178)
Manera et al. 2010 (49 sim) 6403 1280 �CDM FoF l=0.15, 0.168, 0.2
Tinker et al. 2008 5123–10243 80–1280 �CDM (WMAP1–3) SO �=n x �bg

(i) We demonstrated and confirmed the universality of the virial
halo mass function, by comparing the measured mass function at
many different redshifts and in simulations with different cosmo-
logical models. As stated in Sheth & Tormen (1999) and Courtin
et al. (2011), the halo mass function at any time, and for any cos-
mological model, can be well described by a single functional form
once mass and redshift are appropriately parametrized in terms of
ν = δ2

c (z)/σ 2(M).
(ii) We showed that only the virial overdensity leads to a univer-

sal halo mass function: most of the non-universality seen in other
works arises from not using the virial value when identifying haloes.
Commonly used values of 178 or 200× the critical or background
density induce non-universal trends.

(iii) We derived three different sets of the best-fitting parameters
for the virial halo mass function:

(a) a = 0.794, p = 0.247 and A = 0.333 – from the z = 0 virial
mass function in the Planck cosmology;

(b) a = 0.7663, p = 0.2579 and A = 0.3298 – from the virial
mass function in the Planck cosmology, using all the data points up
to z = 1.25 (15 snapshots × 6 runs);

(c) a = 0.7689, p = 0.2536 and A = 0.3295 – from the mass
functions in all cosmologies, using all the data points up to z = 1.25
(15 snapshots × 16 runs).

The last two are in remarkable agreement – at the per mil level for
the best-fitting parameters, and sub per cent for the mass function),
illustrating the level of the universality as a function of cosmology.
In general, the normalization is the most stable parameter, while a
and p change between the first and the other two cases: when using
only the z = 0 points, the high-ν tail is less well resolved, and so
the fit is less precise in the determination of the full shape of the
mass function.

(iv) We presented a simple rescaling method which allows one to
estimate the three parameters of the fitting function through first- or
second-order scaling relations. The three parameters (a, p, A0) are
smooth functions of the overdensity, for any redshifts. Equations
(12) are able to describe the change in slope and normalization of
the mass function (as a function of redshift and overdensity) with
good precision (Figs 4, 5, 6 and 11).

(v) Finally, we studied the mass function of ‘matched haloes’: the
counterparts of virial haloes at different overdensities. We provide
an efficient rescaling method, equation (16), which uses knowledge
of the mass density profile and the concentration–virial mass rela-
tion, to estimate their mass function with a high precision (Fig. 12).

These rescaling methods are useful for comparing analyses which
use different definitions of halo mass. In particular, they can be
used to translate our universal virial halo mass functions to the non-
universal form associated with halo definitions which are closer to
those commonly used in observational studies – ranging from the
X-ray and Sunyaev-Zel’dovich (SZ) to the visible and near-infrared.

We conclude that – over the range of redshifts and cosmological
models in our simulation set – the virial halo mass function is, to
within 5–8 per cent for a wide range of masses, a universal function
of redshift and cosmology. Non-universal behaviour can be an arte-
fact induced by the halo identification method and by the choice of
the overdensity threshold. Other, true departures from universality
may be sought in the other components of the universe or in more
extreme cosmological models. Future extremely well-resolved sim-
ulations should allow a per cent level estimate of the universality of
the mass function.
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Macciò A. V., Dutton A. A., van den Bosch F. C., 2008, MNRAS, 391, 1940
Manera M., Sheth R. K., Scoccimarro R., 2010, MNRAS, 402, 589
Mo H., van den Bosch F. C., White S., 2010, Galaxy Formation and Evolu-

tion. Cambridge Univ. Press, Cambridge
More S., Kravtsov A. V., Dalal N., Gottlöber S., 2011, ApJS, 195, 4
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APPENDI X A : R ESULTS FOR ELLI PSOI DA L
H A L O E S

We identified haloes using the ellipsoidal halo finder of (Despali
et al. 2013) and repeated the analysis described in the main text.
Although the best-fitting parameters are systematically different,
the results are otherwise consistent with those found for SO haloes:
the virial overdensity yields universality, and others do not.

Fig. A1 shows the measured mass function for EO virial haloes
and the residuals with respect to the best-fitting relation (calcu-
lated at z = 0), similarly to what was done in Fig. 2. Table A1

Table A1. Parameters of the best-fitting mass function for EO haloes at
z = 0.

ρ (EO) a p A

200 ρb 0.6730 ± 0.004 0.1783 ± 0.007 0.4237 ± 0.001
�vir 0.7369 ± 0.004 0.2089 ± 0.007 0.3894 ± 0.001
200 ρc 0.8286 ± 0.005 0.2776 ± 0.009 0.3335 ± 0.001
500 ρc 1.0223 ± 0.007 0.3417 ± 0.009 0.2672 ± 0.001
1000 ρc 1.2576 ± 0.009 0.3803 ± 0.012 0.2181 ± 0.001
2000 ρc 1.6088 ± 0.015 0.3824 ± 0.018 0.1755 ± 0.001

Figure A1. Same as Fig. 2, but for the haloes in the EO catalogue.
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summarizes how the best-fitting z = 0 parameters depend on over-
density threshold. They behave regularly, just as for the SO haloes
shown in Fig. 10, and are well modelled by equations (A1) (equiv-
alent to the blue curves in Fig. 10).

For EO haloes, we have obtained analogous relations to those of
equation (13):

a = 0.7057 + 0.2125x + 0.3268x2,

p = 0.2206 + 0.0.1937x − 0.04570x2,

A0 = 0.3953 − 0.1768x. (A1)

APPENDIX B: ISSUES FROM THE INITIAL
C O N D I T I O N S

The initial power spectrum P(k) plays an important role when trans-
lating from halo mass M to the scaled variable ν = δ2

c /σ
2(M), since

it determines the value of the mass variance S(M) = σ 2(M).
In principle, σ (M) should be the same for any simulation run

with the same cosmological parameters. In practice, the number of
Fourier modes that can be effectively sampled in the initial con-
ditions depends on some computational limits: (i) the box size
determines the minimum mode in the power spectrum that can be
sampled by a specific simulation; (ii) each of our simulations started
from a different random realization of the displacement field. If not
properly accounted for, these effects may increase the scatter – and
possibly bias – the halo mass function measured in the simulation
with respect to theoretical model predictions.

For example, using the theoretical linear power spectrum when
computing σ yields a precision which cannot be reduced below
about 10 per cent. However, future wide field missions (e.g. Euclid;
Laureijs et al. 2011) require per cent level precision. As we describe
below, to achieve this, we calculate σ (M) from the actual realization
of the initial power spectrum in each simulation box – scaled using
linear theory to z = 0 – and not from the theoretical linear power
spectrum.

B1 Power spectrum of each realization

Fig. B1 shows some detailed results on the computational effects
introduced in the initial P(k) regarding (i) the random number seed
choice and (ii) the box size. The top panel shows S = σ 2(M) as
a function of mass M, for all the simulations of the main set; the
black line shows the theoretical power spectrum from CAMB. To
compute S(M) for each simulation, we integrated the initial power
spectrum from the minimum mode resolvable in each box (see
equation 3). The bottom panel shows the relative difference between
the measured S(M) and the one calculated using the theoretical P(k).
For comparison, the lower panel shows the initial power spectrum
for each simulation of our main set and the relative differences with
respect to the theoretical one. The use of the actual power spectrum
for each simulation allows us to achieve a more precise estimate of
ν for the box, and hence greater precision on the measured mass
function.

B2 The random seed for the initial displacement field

The six simulations from the main set are independent, meaning
that they have all been generated from different realizations of the
displacement field. However, these simulations also differ in box
size, etc. To isolate the effect of the random seed, we re-ran two of
the simulations of the secondary set (‘uno’ and ‘wmap7’) using two
different random seeds. We found few per cent-level differences

Figure B1. Top: measured mass variance and residuals with respect to the
theoretical calculation. Bottom: initial power spectrum measured from each
simulation and relative difference with respect to the theoretical case.

in the high-mass tail, with one of the two seeds generating greater
departures from the universality. See e.g. the last blue triangle in the
z = 0 panel of Fig. 2 or the grey and brown ones in the corresponding
panel of Fig. 7. This is despite the fact that we use the actual
realization of the power spectrum when computing σ (M). Thus,
even when all other parameters are held fixed, some of the scatter in
the measured halo mass function is introduced by the initial seed.

B3 Mass variance definition

The top part of Fig. B2 compares different definitions for the mass
variance S(M). The relative differences are presented with respect
to the theoretical prediction – i.e. integrating the theoretical power
spectrum(black solid curve). The green line in the top panel (orange
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Figure B2. Top: comparison of the variance as a function of mass using the
different prescriptions described in the text to account for the finite box size,
for our smallest and largest simulation boxes. Bottom: differences between
the measured mass functions when the prescriptions shown in the top panel
are implemented, and when the box size is effectively infinite.

line in the middle panel) shows the prediction for S(M) in our small-
est (largest) simulation Ada (Flora) where we sum over the modes
in the initial conditions, starting from the k mode corresponding
to the box size. The blue short dashed line represents one way of
accounting for the limited box size of the simulation: we subtract
from the theoretical one the mass variance computed using a top-hat
filter with scale

RBox =
(

3 MBox

4πρb

)1/3

= LBox

(
3

4π

)1/3

. (B1)

The red long dashed curve shows the case in which we compute
S(M) accounting for the fact that the periodic boundary conditions
of the simulation mean that the Fourier modes within the box are

Figure B3. Difference in the measured mass function for different IC meth-
ods. For four redshifts (in different colours), we show the logarithmic resid-
uals between the results obtained using the Zel’dovich Approximation (ZA
– obtained with N-GenIC) and second-order lagrangian perturbation theory
(2LPT – obtained with 2LPTic) to generate the initial conditions. The solid
curves are calculated from Reed et al. (2013), where the authors present a fit
to the expected ratio between the two methods, which is in good agreement
with our measurements.

constrained to give the background density on the scale of the box.
This constraint modifies the expression for the variance to

s → s

(
1 − S2

x

sSBox

)
= s

(
1 − S2

x

S2
Box

SBox

s

)
,

where

Sx(M) =
∫

dk

k

k3Plin(k, z)

2π2
W [kR(M)]W [kRbox] (B2)

represents the cross-correlation variance between the lagrangian
scale of the halo and that of the simulation box (e.g. Musso & Sheth
2014a,b). For large boxes SBox 
 s so Sx/Sbox ≈ 1 and the correction
to s becomes vanishingly small.

The bottom panels show the z = 0 mass function residuals in
Ada and Flora which result from using different prescriptions for
accounting for the finite box size (with respect to the case in which
the box size is infinite). For the larger box, Flora, the effect is
negligible, but for the smaller box, Ada, it is not. If the mass variance
does not properly account for the limited box size, the rescaling to
ν results in non-negligible bias at small masses and large scatter at
large masses.

B4 ZA or 2LPT?

For all our simulations, we used N-GenIC to generate the initial con-
ditions (IC) from a glass distribution; N-GenIC uses first-order per-
turbation theory, calculated through the ZA. Not including second-
order perturbations in the IC has a strong impact on the results
obtained at outputs ‘close’ to the initial conditions Crocce et al.
(2006): the differences are larger for simulations with small boxes
and/or late starting redshifts. We chose z = 99 as a starting redshift
for all our simulations with a box size larger than 100 h−1 Mpc; for
Ada, which has a box of only 62.5 h−1 Mpc, we generated the ICs at
z = 124. To test the impact of ICs on our results, we ran an identical
copy of Bice and of the two WMAP7 simulations, using exactly
the same parameters and seeds, but generating the IC with 2LPTic
instead of N-GenIC. The symbols in Fig. B3 show the differences in
the measured mass functions; different coloured solid curves show
the relation of Reed et al. (2013):

dnZA/dn2LPT = e
−0.12

ai
af

ν2.5
1 , (B3)
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even though it was only calibrated for 1 � ν1 � 5. Note that their
ν is defined differently than ours: their ν1 ≡ √

ν = δc(z)/σ (M, z).
At the four redshifts shown, the differences are on average very
small – less than 5 per cent at small and intermediate masses and
less than 10 per cent in the very high-ν tail – which lies within the
intrinsic scatter (e.g. that due to the random initial seed) seen in
the mass function. A small difference between the two definitions
can be seen at high redshift (i.e. at z = 5 in the figure), but this
also lies within the intrinsic scatter of the mass function. Since our
best fits are calibrated using data at z ≤ 1.25, they are not affected
by second-order effects in the initial condition density field. For
example, the best-fitting parameters obtained using Reed-rescaled
points (all z, all cosmologies) are a = 0.7603, p = 0.2549 and
A0 = 0.330 – similar at per mil level to the ones calculated with the
original data.

APPENDIX C : C LUSTER MASS FUNCTION

One of the most important application that necessitate of an accu-
rate and well-calibrated mass function is the study of the observed
cluster counts (Vikhlinin et al. 2009; Rozo et al. 2010; Planck Col-
laboration XX 2014; Sartoris et al. 2015). Degeneracies between
fitted parameters mean that the best-fitting parameters to fits re-
stricted to cluster mass haloes (M ≥ 1013 h−1M�) may differ from
those returned from fitting a larger range of masses (we refer to
these as the CMF and HMF, for cluster and halo mass functions,
respectively). This appendix discusses the expected level of system-
atic bias this may induce on cosmological constraints derived from
the observed number of clusters per square degree.

The black circles in the top panel of Fig. C1 show the halo
mass function extracted from all cosmologies and redshifts from
our simulation suite. The main text shows that a good fit to the bins
that contain at least 30 haloes (red triangles) is given by a Sheth
& Tormen (1999) mass function with the following parameters:
A0 = 0.3295, p = 0.2536 and a = 0.7689. However it is worth
mentioning that according to the points density distribution in the
considered area, this curve may be less accurate in describing the
shape of the most massive haloes: the cluster mass function. To
test the difference, and to better describe the objects more massive
than Mvir ≥ 3 × 1013 h−1 M� that are typically associated with
groups and clusters of galaxies, we have performed a fit to the
orange crosses only. The best-fitting parameters are A0 = 0.8199,
a = 0.3141, and p = 0, as reported in Table 3. The value p = 0 is
due to the fact that it is mainly the small masses which determine
p (Sheth & Tormen 1999). In the first bottom subpanel, we show
the relative difference – in log space – of the two fits for the halo
mass function tail. For comparison, the other two subpanels show
the relative residuals of the data points with no error bars to the two
corresponding fits.

A relative difference in the number of clusters per square degree
may appear using the fitting function computed using only the clus-
ters (hereafter cluster mass function) or all haloes over a broader
range of masses (halo mass function). To quantify this difference in
Fig. C2, we present the relative difference in cluster counts – Mvir >

3 × 1013 M� h−1 – per square degree in the �m–σ 8 plane between
the CMF and the HMF fits. To compute the count N, we have in-
tegrated the HMF and CMF fits over Mvir > 3 × 1013 M� h−1 and
comoving volume. The figure shows that in our reference Planck13
cosmology the relative difference in the cluster counts between the
two fits is ∼4 per cent. It increases to ∼10 per cent for small values
of both �m and σ 8. At high �m and σ 8 the difference between the
HMF and CMF-derived counts is smaller.

Figure C1. Halo mass function for all considered cosmologies and redshifts
extracted from our simulation suite (black circles). Red triangles show bins
with at least 30 counts, while the orange crosses also require that the haloes
be more massive than 3 × 1013 M� h−1. The solid and dashed curves
represent the best fit to the red triangles and orange crosses – accounting
for the associated Poisson error bars. The first subpanel shows the relative
difference – in log space – of the two fits, while the other two present the
relative difference of the data points with respect to their corresponding
best-fitting curve.

Figure C2. Relative difference in the cluster counts – systems with Mvir >

3 × 1013 M� h−1 per square degree – in the �m–σ 8 plane, resulting from
the best-fitting parameters obtained for clusters (CMF) and all haloes (HMF)
as presented in Fig. 8.
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Figure C3. Relative cosmological constraints between the CMF and the
HMF in the �m–σ 8 plane for systems with Mvir > 3 × 1013 M� h−1.

In Fig. C3, we present the relative cosmological constraints for
the cluster counts in the �m–σ 8 plane between the HMF and the
CMF. The relative difference is well below 10 per cent in the whole
range and the diagonal shape shows the degeneration region in the
parameter space.

This suggests that, notwithstanding the small difference between
the two fits, caution may be necessary when using fits to the halo
mass function for precision cosmology. For cluster counts, the CMF
reported in the last row of Table 3 may be more appropriate than
the HMF, and may yield better than 4 per cent accuracy.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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