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Abstract. It has been shown that the nonreversible overdamped Langevin dynamics enjoy better con-
vergence properties in terms of spectral gap and asymptotic variance than the reversible one ([12, 13,
16, 25, 20, 21, 8]). In this article we propose a variance reduction method for the Metropolis-Hastings
Adjusted Langevin Algorithm (MALA) that makes use of the good behaviour of the these nonreversible
dynamics. It consists in constructing a nonreversible Markov chain (with respect to the target invariant
measure) by using a Generalized Metropolis-Hastings adjustment on a lifted state space. We present two
variations of this method and we discuss the importance of a well-chosen proposal distribution in terms of
average rejection probability. We conclude with numerical experimentations to compare our algorithms
with the MALA, and show variance reduction of several order of magnitude in some favourable toy cases.

1. Introduction

This article proposes a new class of MCMC algorithms whose objective is to compute expectations

π(f) := Eπ(f) =

∫
Rd
f(x)π(dx), (1.1)

for a given observable f , with respect to a probability measure π(dx) absolutely continuous, with respect
to the Lebesgue measure, with density π(x) = e−U(x). We suppose, as it is the case in many practical
situations, that π is only known up to a multiplicative constant.

Many techniques have been developed to solve this problem. Deterministic quadratures can be very
efficient at low dimension. Yet, in the high dimensional case, these methods tend to become inefficient,
and MCMC methods can be used instead. The basic idea is to construct an ergodic Markov chain with
respect to π, and to approximate π(f) by the time average of this Markov chain. There are infinitely
many ways to construct such a discrete time process. The general idea is to use an approximate time
discretization of a time-continuous process known to be ergodic with respect to π. Generally, we cannot
expect this discrete time process to be ergodic with respect to π. Thus one can use a Metropolis-Hastings
acceptance-rejection step that ensures the detailed balance, and thus makes the chain reversible and
ergodic with respect to π. In the case of the Euler-Maruyama discretization of the overdamped Langevin
dynamics,

dXt = ∇ log π(X) +
√

2dWt, (1.2)

with (Wt)t≥0 a standard Brownian motion in Rd, the method is called Metropolis Adjusted Langevin
Algorithm (MALA, [22]).

Key words and phrases. Non-reversible diffusions, Langevin samplers, Markov Chain Monte Carlo, Metropolis-
Hastings, variance reduction, lifting method, MCMC.

1



2 ROMAIN PONCET

Yet, it has been noticed in several contexts that departing from the reversibility can improve the
performances of MCMC methods. This article aims to propose a generalization of the standard MALA
that can be able construct nonreversible Markov chains that can outperform classical MALA.

1.1. Nonreversible dynamics. On the continous time setting, analysis have been carried out to com-
pare the convergence properties of some time-continuous dynamics that are ergodic with respect to π
[12, 13, 16, 25, 20, 21, 8], based on two kinds of optimality criterion: the speed of convergence toward
equilibrium, measured in terms of spectral gap in L2(π), and asymptotic variance for the time averages.
Obviously from a computational point of view an increase of the spectral gap enables to reduce the burn-
in, and a reduction of the asymptotic variance leads to a decrease of the computational complexity of
the corresponding MCMC method. These analysis compare, for different vector fields γ, the overdamped
Langevin dynamics given by,

dXt = ∇ log π(Xt)dt+ γ(Xt)dt+
√

2dWt. (1.3)

Under the condition of non explosion and that the vector field γ is taken such that ∇ · (γπ) = 0, this dy-
namic is ergodic with respect to π. Such vector fields can be constructed easily: for any skew-symmetric
matrix J , the vector field γ defined by γ(x) = J∇ log π(x) satisfies this divergence-free equation. More-
over, under this hypothesis, the following equation,

dXt = γ(Xt)dt, (1.4)

conserves the energy U , which justifies the Hamiltonian denomination of the term γ. Moreover, this
dynamic is time reversible if and only if γ = 0, and in this case, the detailed balance is satisfied (that is
to say that the generator of the diffusion (1.3) is self-adjoint in L2(π)). It is well known that among all
vector fields γ satisfying the non explosion condition and such that ∇ · (γπ) = 0, the dynamics given by
(1.2) in the reversible case (γ = 0) has the worse rate of convergence in terms of spectral gap in L2(π)
[12, 13, 16]. Recent work has been done to construct divergence free (with respect to π) perturbations
of the drift that achieve optimal convergence properties in the Gaussian case [16, 25]. Recent works also
show that breaking the non reversibility with such divergence free perturbations on the drift also leads
to improvement on the asymptotic variance. It is shown in [20] that the asymptotic variance decreases
under the addition of the irreversible drift. Moreover, is has been shown in [21] that the asymptotic
variance is monotonically decreasing with respect to the growth of the drift, and the limiting behavior
for infinitely strong drifts is characterized. More recently, in [8] the authors investigate the dependence
of the asymptotic variance on the strength of the nonreversible perturbation.

On the discrete time setting, classical methods that depart from reversible sampling consist in hybrid
(Hamiltonian) MCMC [7, 17] and generalized hybrid MCMC methods [15]. In the former method, the
drift direction is chosen isotropically at each time step and long time Hamiltonian integration is then
carried out in this direction. The latter can be seen as a generalization of the former that brings some
inertia in the direction of the Hamiltonian dynamics. Another class of nonreversible samplers is composed
by lifting methods. They are designed in the discrete state space case, to construct a Markov chain that
satisfies some skew detailed balance [6, 5, 11, 24]. They consist in increasing the state space to take into
account a privileged drift direction that is explored more efficiently. More recently, Bierkens proposed
an extension of the classical Metropolis-Hastings algorithm to generate unbiased nonreversible Markov
chain [2]. This is achieved by modifying the acceptance probability to depart from detailed balance.
Eventually, a recent and quite different approach has been proposed in [3] in the big data settings to
circumvent the poor scalability of standard MCMC methods. The authors construct a continuous time
piecewise deterministic Markov process. It is a constant velocity model where the velocity direction
switches at random times with a rate depending on the target distribution.
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1.2. Outline. We propose in this article a bias-free algorithm similar to MALA that aims to exploit the
asymptotic variance reduction of the nonreversible time-continuous process. The idea is to construct a
Markov chain with invariant measure π, by discretizing an equation of the form (1.3), instead of equation
(1.2), enhanced with an acceptance-rejection step. The main difficulty consists in unbiasing the unad-
justed chain. Indeed, it is not worth considering the use of a standard Metropolis-Hastings acceptance
probability since it is designed to impose detailed balance with respect to the target distribution π, and
thus to define a reversible Markov chain with respect to π. It would lead to a poor average acceptance
ratio. An elegant way would be to construct an adequate acceptance probability with respect to this
proposal, to ensure a high average acceptance ratio. In the setting of [2], it would consist in finding a good
vorticity kernel. Yet, we are not able to exactly do this. Instead, we propose a class of lifted algorithms
that rely on these unadjusted chains. More precisely the first algorithm is a generalized Metropolis-
Hastings algorithm in an enhanced state space, and the second one can be seen as the analogous of the
generalized hybrid Monte Carlo method for the overdamped Langevin equation.

In section 2 we present the first algorithm (generalized MALA). We discuss in 2.1 how its performances
are closely related to the choice of the transition kernel of the unadjusted chain. In section 2.2 we prove
geometric convergence of the Markov chain constructed with this algorithm under some hypotheses,
that ensure the existence of a central limit theorem. Then, in section 3 we propose a modification of
this algorithm (the generalized hybrid MALA). In section 4 we present numerical comparisons of these
algorithms with respect to classical MALA, which is followed by concluding remarks.

2. Generalized MALA

In this section, we construct a nonreversible Markov chain, ergodic with respect to a target distri-
bution π known up to a normalizing constant. The algorithm is similar to MALA in the sense that it
constructs a Markov chain from the discretization of an overdamped Langevin dynamic, augmented with
an acceptance-rejection step that makes it ergodic with respect to π. The difference is that we construct
a Markov chain on the discretization of a nonreversible Langevin equation to try to benefit from the
smaller asymptotic variance of this kind of Markov processes, than the reversible ones. The main issue is
then to choose a right acceptance probability that preserves the good ergodic properties of the underlying
Markov process.

To state our algorithm, we slightly modify Equation (1.3). For ξ ∈ R, we consider the diffusions,

dXt = ∇ log π(Xt)dt+ ξγ(Xt)dt+
√

2dWt, (2.1)

with divergence-free condition ∇ · (γπ) = 0. This way, ξ specifies the direction and the intensity of the
nonreversibility. We denote now by Qξ a proposal kernel that correspond to some discretization of the
diffusions (2.1) with parameter ξ. We propose the following algorithm that we call Generalized MALA
(GMALA),

Algorithm 2.1 (Generalized MALA). Let h > 0, (x0, ξ0) ∈ Rd × R be an initial point and an initial
direction. Iterate on n ≥ 0.

(1) Sample yn+1 according to Qξ
n

(xn, dy).
(2) Accept the move with probability

Aξ
n

(xn, yn+1) = 1 ∧ π(yn+1)Q−ξ
n

(yn+1, xn)

π(xn)Qξn(xn, yn+1)
. (2.2)

and set (xn+1, ξn+1) = (yn+1, ξn); otherwise set (xn+1, ξn+1) = (xn,−ξn).

The important part of this algorithm is that the direction ξn of the Hamiltoninan exploration must be
inverted at each rejection to ensure its unbiasedness. A good choice of Qξ is given in the next section.
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Unbiasedness is obvious since this algorithm is actually built as a Generalized Metropolis-Hastings
algorithm on the increased state space E = Rd × {−ξ0, ξ0}. To simplify notations, we denote by xξ all
element (x, ξ) ∈ E. We set S the involutive transformation defined for all element xξ ∈ E by S(xξ) = x−ξ.

We extend the definition of π on E by π(xξ) = π(x)
2 for xξ ∈ E. Obviously π is unchanged by S. Then,

the algorithm constructs a Markov chain with transition kernel density P given by,

P (xξ, yη) = Qξ(x, y)Aξ(x, y)1ξ(η) + δS(xξ)(yη)

(
1−

∫
Rd
Qξ(x, z)Aξ(x, z)dz

)
,

where 1xi denotes the characteristic function and δS(xξ) a Dirac delta function, that satisfies the following
skew detailed balance,

∀xξ, yη ∈ E, π(xξ)P (xξ, yη) = π(yη)P (S(yη), S(xξ)). (2.3)

Heuristically, we hope that the discretization of the time-continuous process (1.3) specified by Qξ

benefits from the same good behavior in terms of asymptotic variance reduction. Since the Markov chain
is constructed as parts of the discretization of the time-continuous dynamics between the rejections, then
the closer to one is the average acceptance probability, the longer are these parts, and the more we can
hope to benefit from this good behavior. Thus, to give a hint about the relevance of this algorithm, we
compute in section 2.1 these average acceptance probabilities, and we show that they are of the same
order of those for MALA for some well-chosen discretization. Moreover, we numerically show in section
4 that it can outperform MALA by several order of magnitude in terms of asymptotic variance.

Yet, before showing these results, we present a heuristic justification about this algorithm. In the
reversible case, the time-continous equation satisfies the detailed balance with respect to π,

∀x, y ∈ Rd,∀h > 0, π(x)Ph(x, y) = π(y)Ph(y, x),

where Ph(x, y) denotes the density of the transition kernel to go from x to y after a time h for the
dynamics (1.2). Moreover, MALA imposes that the Markov chain also satisfies the detailed balance with
respect to π. In the nonreversible case, the time continuous process (2.1) satisfies a skew detailed balance
as stated by the following lemma,

Lemma 2.1. For all x, y ∈ Rd, for all ξ ∈ R and for all h > 0, the following relation holds,

π(x)P ξh(x, y) = π(y)P−ξh (y, x), (2.4)

where P ξh(x, dy) is the transition probability measure of the h-skeleton of the process (Xξ
t )t≥0, solution of

Equation (2.1).

The analogous of the reversible case would be to construct a π-invariant Markov chain that satisfies
the same kind of skew detailed balance. Because the skew detailed balance (2.4) can be seen as a detailed
balance on the enhanced state space E up to the transformation S,

∀x, y ∈ Rd,∀ξ ∈ R,∀h > 0 π(x)Ph(xξ, yξ) = π(y)Ph(S(yξ), S(xξ)), (2.5)

where Ph(xξ, yξ) = P ξh(x, y), the Generalized Metropolis-Hastings method given by algorithm 2.1 is
actually the classical way to construct such a Markov chain. Nevertheless, the main difference between
the time-continous and the discrete time dynamics is the fact that the latter requires some direction
switching of the nonreversible component of the dynamics. As stated previously, the idea of lifting the
state space to construct a nonreversible chain has been used in the discrete state space setting. Yet, the
idea is quite different. With classical lifting methods, the goal is to switch between several directions
with well-chosen probabilities, to quickly explore the state space in all of these directions. In our case,
we do not aim to switch between several nonreversible directions. Yet, we are forced to do so at each
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rejection, and we have no choice but to reverse the current nonreversible directions. That is to say that
we control neither the probability of switching nor the direction.

Proof of Lemma 2.1. We denote by Lξ the generator of diffusion (2.1). One can show that,

Lξ = S + ξA,

where S = ∇ log π(x)∇·, and A = γ ·∇. Then, one can show that S and A are respectively the symmetric
and the antisymmetric parts of L1, with respect to L2(π). Moreover, one can show that for all ξ ∈ R, Lξ
and L−ξ are adjoint from one another. This amounts to show that D((L−ξ)∗) ⊂ D(Lξ), which follows
from the injectivity of the operator (L−ξ)∗ − iI, and the surjectivity of the operator Lξ − iI. It follows

that the semigroups eL
ξt and eL

−ξt are adjoint from one another (Corollary 10.6 [18]). Then, for all
bounded functions f and g,∫

(Rd)2
f(x)g(y)P ξh(x, dy)π(dx) =

∫
Rd
f(x)eL

ξhg(x)π(dx),

=

∫
Rd
e(Lξ)∗hf(x)g(x)π(dx),

=

∫
Rd
eL

−ξhf(x)g(x)π(dx),

=

∫
(Rd)2

f(y)g(x)P−ξh (x, dy)π(dx).

�

2.1. Choice of the proposition kernel. The method presented above can be tuned with the choice
of the proposition kernel Qξ. It should be chosen such that it approximates the law of the transition

probability of the h-skeleton of the process (Xξ
t )t≥0 solution of equation (2.1). The basic idea is to define

Qξ as the density of the law of an approximate discretization of equation (2.1). Doing so, we can hope
that the skew-detailed balance for the unadjusted chain would be almost satisfied (since it is satisfied for
the time-continous dynamics), that is to say we can hope to benefit from an acceptance ratio close to
one. Moreover, we recall that the choice of the proposal kernel is the only degree of freedom that enables
to tune the rate of the direction switching. Formally, the closer the proposal kernel is from the transition
kernel of the h-skeleton of the continuous process, the higher the acceptance ratio is (and thus the less
frequent is the direction switching).

The basic idea would be to propose according to the Maruyama-Euler approximation of equation (2.1),

as it is done for MALA. We denote by Qξ1 this kernel. That is to say Qξ1(x, dy) is given by the law of y,
solution of

y = x− h∇U(x)− hξγ(x) +
√

2hχ, (2.6)

where χ a standard normal deviate. Then, Qξ1 is given by

Qξ1(x, dy) =
1

(4πh)d/2
exp

(
1

4h
||y − (x− h∇U(x)− hξγ(x))||2

)
dy. (2.7)

Sadly, even though the simplicity of this proposal is appealing, this proposition kernel leads to an average
rejection rate of order h when ξ 6= 0 and γ is non-linear as stated in Proposition 2. It is significantly
worse than MALA that enjoys an average rejection rate of order h3/2 (see [4]). As shown later by the
numerical simulations, this bad rejection rate is not a pure theoretical problem: it forbids to use large
discretization steps h, and thus the method only generates highly correlated samples.
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To overcome this problem, we propose to implicit the resolution of the nonreversible term in equation
(2.1) with a centered point discretization. More precisely, we propose a move yξ from xξ, such that y
would be distributed according to the solution of

Φhξx (y) = x− h∇U(x) +
√

2hχ, (2.8)

where χ a standard normal deviate, and Φhξx is the function defined by,

Φhξx : Rd → Rd, y 7→ y + hξγ

(
x+ y

2

)
. (2.9)

Existence of such a proposal kernel, denoted by Qξ2, is ensured under the hypothesis that U is twice
differentiable with uniformly bounded second derivative.

Assumption 1. We suppose that U is twice differentiable with uniformly bounded second derivative.

Proposition 1. Under Assumption 1, there exists h0 > 0, such that for all h < h0, for all xξ ∈ E, for
all χ ∈ Rd, there exists a unique y ∈ Rd, solution of equation (2.8), and if χ denotes a standard normal
deviate, the function Yξ defined almost surely as the solution of equation (2.8) is a well-defined random

variable, with law Qξ2(x, dy), given by,

Qξ2(x, dy) =
1

(4πh)d/2
| Jacφξhx (y)| exp

(
1

4h
||φhξx (y)− (x− h∇ log π(x))||2

)
dy. (2.10)

Moreover

x− y =
√

2hχ+O
(
h ||∇U(x)||+ h3/2 ||χ||

)
,

and there exists C > 0, independent of x, χ, and h, such that,

||∇U(y)|| ≤ (1 + Ch) ||∇U(x)||+ C
√

2h ||χ|| .

Proof of Proposition 1. The first point is a corollary of Lemma 2.2 below. The second point can be
proven by making use of the fact that ∇U is Lipschitz. �

The following lemma is used to prove Proposition 1. We can note that the h0 given by this lemma
depends on the Lipschitz coefficient of ∇U .

Lemma 2.2. Under Assumption 1, there exists h0 > 0, such that for all h < h0, for all xξ ∈ E, the
function Φhξx : Rd → Rd, defined by (2.9) is a C1-diffeomorphism.

Proof of Lemma 2.2. The proof that Φhξx is bijective relies on Picard fixed point theorem. For any fixed

z ∈ Rd, we define Ψ on Rd by Ψ(y) = z−hξJ∇U
(
x+ y

2

)
. Then, since ∇U is supposed to be Lipschitz,

then for small enough h this application is a contraction mapping from Rd to Rd. The fact that Φhξx is
everywhere differentiable is clear, and the fact that its inverse is everywhere differentiable as well comes
from the fact that the determinant of the Jacobian of Φhξx is strictly positive for sufficiently small h. �

Sampling from the this proposal kernel can be done by a fixed point method when no analytical
solution is available since the proof of Lemma 2.2 uses a Picard fixed point argument. This transition

kernel leads to a rejection rate of order h3/2 (see Proposition 2), which is en improvement from Qξ1.
The main advantage of this kernel is that the computation of | Jacφξhx (y)| can be avoided in the case
where γ is defined by γ(x) = J∇ log π(x), with J a skew symmetric matrix. Indeed, only the ratio
| Jacφξhx (y)|/| Jacφ−ξhy (x)| is required to compute the acceptance probability A(x, y), and this ratio is
equal to 1 if γ is of gradient type, as stated by the following lemma.
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Lemma 2.3. For all x, y ∈ Rd, and for all h > 0,

| Jacφξhx (y)| = | Jacφ−ξhy (x)|

Proof of lemma 2.3. This result uses the more general fact that for any skew-symmetric matrix A and
any symmetric matrix S, the matrices Id + AS and Id − AS have same determinant. This statement
is equivalent to say that χAS = χ−AS , where we denote by χM the characteristic polynomial of any
square matrix M . This last statement is true since for any square matrices A and S (of the same size)
χAS = χSA. Then using the transposition, χAS = χAtSt . Eventually using the fact that At = −A and
St = S, it comes χAS = χ−AS . The result follows from the fact that the matrix Jacφξhx (y) is of the form
Id+ ξAS. �

We denote by α1
h,ξ and α2

h,ξ respectively the acceptance probability for proposal kernels Qξ1 and Qξ2
(defined respectively by (2.7) and (2.10)). The following proposition provides an upper bound on the
moments of the rejection probability.

Proposition 2. Suppose that U is three times differentiable with bounded second and third derivatives.
Then for all l ≥ 1, there exists C(l) > 0 and h0 > 0 such that for all positive h < h0, and for all x ∈ Rd,

E
[
(1− α1

h,ξ(x, Y
1
h,ξ))

2l
]
≤ C(l)(1 + ||∇U(x)||4l)h2l

E
[
(1− α2

h,ξ(x, Y
2
h,ξ))

2l
]
≤ C(l)(1 + ||∇U(x)||4l)h3l

Proof of Proposition 2. To deal with both results at once, we define for all x ∈ Rd, for all ξ ∈ {−1, 1},
and for all θ ∈ {0, 1}, the random variable Yxξ,θ that satisfies the following implicit equation almost
surely,

Yxξ,θ = x− h∇U(x)− hξJ
(
θ∇U

(
x+ Yxξ,θ

2

)
+ (1− θ)∇U(x)

)
+
√

2hχ,

where χ is a standard normal deviate in Rd. Well-posedness of Yxξ,θ is given by Proposition 1. We set

Rξθ the associated proposal kernel. We get Rξ0 = Qξ1 and Rξ1 = Qξ2. We define the Metropolis-Hastings

ratio r(xξ, yξ) for proposing yξ from xξ with kernel Rξθ by,

r(xξ, yξ) =
π(y−ξ)Rθ(y−ξ, x−ξ)

π(xξ)Rθ(xξ, yξ)
,

where we set χ ∈ Rd such that,

y = x− h∇U(x)− hξJ
(
θ∇U

(
x+ y

2

)
+ (1− θ)∇U(x)

)
+
√

2hχ,
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Then, a straightforward computation gives,

log(r(xξ, yξ)) =U(x)− U(y) + 〈y − x,∇U(x)〉

+
1

2
〈y − x,∇U(y)−∇U(x)〉

− ξ

2
(1− θ)〈y − x, J(∇U(y)−∇U(x))〉

+
h

4

(
||∇U(x)||2 − ||∇U(y)||2

)
+
h

2
ξθ〈J∇U

(
x+ y

2

)
,∇U(x) +∇U(y)〉

+
h

2
ξ2θ(1− θ)〈J∇U

(
x+ y

2

)
, J(∇U(x)−∇U(y))〉

+
h

4
(1− θ)2ξ2

(
||J∇U(x)||2 − ||J∇U(y)||2

)
.

A Taylor expansion of these terms, making use of Proposition 1 and noticing that θ(1 − θ) = 0 for
θ ∈ {0, 1} leads to

log(r(xξ, yξ)) =− ξh(1− θ)〈χ, JD2U(x) · χ〉

+O(h3/2(||∇U(x)||2 + ||χ||2 + ||χ||3))

=O(h(1− θ) ||χ||2 + h3/2(||∇U(x)||2 + ||χ||2 + ||χ||3)).

Moreover,

(1− 1 ∧ r(xξ, yξ))2l =O(log(r(xξ, yξ))
2l)

=O(h2l(1− θ)2l ||χ||4l + h3l(||∇U(x)||4l + ||χ||4l + ||χ||6l)),

and thus there exists C(l) > 0 such that,

E
[
(1− 1 ∧ r(xξ, Yxξ,θ))2l

]
≤ C(l)(1 + ||∇U(x)||4l)h3l + C(l)h2l(1− θ)2l

�

The previous method is quite efficient since no computation of the Hessian of log π is required. Never-
theless, global Lipschitzness of ∇U is required to justify the method. We propose a last kernel, denoted

by Qξ3, that does not require this hypothesis but still require γ to be of gradient type and the computation

of the Hessian of U . More precisely, Qξ3(x, dy) is the law of y, solution of(
Id+

hξ

2
J Hess(U)(x)

)
(y − x) = −h(Id+ ξJ)∇U(x) +

√
2hχ, (2.11)

where χ a standard normal deviate. Then, Qξ3 is given by

Qξ3(x, dy) =
1

(4πh)d/2
detMξ(x) exp

(
1

4h
||Mξ(x)(y − x) + h(Id+ ξJ)∇U(x)||2

)
dy, (2.12)

with Mξ(x) = Id+
hξ

2
J HessU(x). This transition kernel offers also a rejection rate a3

h,ξ of order h3/2.

Proposition 3. Suppose that U is three times differentiable with bounded second and third derivatives.
Then for all l ≥ 1, there exists C(l) > 0 and h0 > 0 such that for all positive h < h0, and for all x ∈ Rd,

E
[
(1− α3

h,ξ(x, Y
2
h,ξ))

2l
]
≤ C(l)(1 + ||∇U(x)||4l)h3l
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Proof of Proposition 3. The proof involves the same arguments as in Proposition 2 and is left to the
reader. �

Even though Kernel Qξ2 enables to circumvent the bad acceptance ratio of the explicit proposal given

by Qξ1, it raises some difficulties. First, it requires the potential U to be globally Lipschitz, which is quite
restrictive. To use the GMALA method in the non globally Lipschitz case, one can resort to importance
sampling (to get back to a globally Lipschitz setting), or use a globally Lipschitz truncation of the
potential to build the proposition kernel. The same idea is used in MALTA [22]. This last trick might
lead to high average rejection ratio in the truncated regions of the potential. Moreover, the computation
of the proposed move requires the resolution of a nonlinearly implicit equation, that can be solved by
a fixed point method, which is more costly than the Euler-Maruyama discretization used by MALA.
Specific methods of preconditioning should be considered to accelerate the convergence of the fixed point.

It would be interesting to propose a proposition kernel based on an explicit scheme, that would

achieve a better acceptance ratio than Qξ1, with a lower computational cost than Qξ2. The question of
decreasing the Metropolis-Hastings rejection rate has been recently studied in [9]. The authors propose
a proposition kernel constructed from an explicit scheme, which is a correction (at order h3/2) of the
standard Euler-Maruyama proposal. Nevertheless, in our case this approach would not enable us to
construct a proposition kernel based on an explicit scheme with a high average acceptance ratio. Work
has also been done in this direction with the Metropolis–Hastings algorithm with delayed rejection,
proposed in [23], and more recently [1]. Yet, it is unclear whether this approach could be use efficiently
in our case.

2.2. Convergence of GMALA. In this section, we only treat the case in which GMALA is used with

Qξ2. To obtain a central limit theorem for the Markov chain built with GMALA, it is convenient to prove
the geometric convergence in total variation norm toward the target measure π. Because we require ∇U
to be globally Lipschitz to ensure well-posedness of GMALA with transition kernel Qξ2, MALA would
be likely to benefit from geometric convergence in this case. Indeed, it is well-known that MALA can
be geometrically ergodic when the tails of π are heavier than Gaussian, under suitable hypotheses (see
Theorem 4.1 [22]). For strictly lighter tails, we cannot hope for geometric convergence (see Theorem 4.2
[22]). This part is devoted to showing that under some hypotheses, GMALA can benefit from geometric
convergence.

Classically for MALA, the convergence follows on from the aperiodicity and the irreducibility of the
chain, since by construction the chain is positive with invariant measure π. Under these conditions, the
geometric convergence can be proven by exhibiting a suitable Foster-Lyapunov function V such that,

lim
|x|→∞

PV (x)

V (x)
< 1. (2.13)

In our case, the situation is slightly different. The Markov chain built with GMALA is still aperiodic
and phi-irreducible. This is a simple consequence of the surjectivity of the application Φhξx in Lemma
2.2. To be able to prove a drift condition such as (2.13), it is usually required to be able to show that
the acceptance probability for a proposed move starting from xξ does not vanish in expectation for large
x, which is not always true in our setting. More precisely, we can only say that the maximum of the two
average acceptance probabilities for the proposed moves starting from xξ and x−ξ does not vanishes for
large x. Then one strategy could be to choose a Foster-Lyapunov function V that decreases in expectation
when ξ is changed to −ξ after a rejection. An other strategy, that we present in the following and that
seems to be more natural and more easily generalizable to potential U that does not satisfy the specific
hypotheses we use in this section. We show that the odd and the even subsequences of the Markov chain
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converge geometrically quickly to the target measure π by showing a drift condition on P 2: the transition
probability kernel of the two-steps Markov chain defined by

P 2(x, dy) =

∫
E

P (x, dz)P (z, dy), ∀x ∈ E,

under the following assumption.

Assumption 2. We suppose that U is three times differentiable, and that,

(1) eigenvalues of D2U(x) are uniformly upper bounded and lower bounded away from 0, for x outside
of a ball centered in 0,

(2) the product
∣∣∣∣D3U(x)

∣∣∣∣ ||∇U(x)|| is bounded for x outside of a ball centered in 0.

Proposition 4. Suppose assumption 2. There exists s > 0 and h0 > 0 such that for all h ≤ h0, for
ξ ∈ {−1, 1},

lim
||x||→+∞

P 2Vs(xξ)

Vs(xξ)
= 0, (2.14)

where the Foster-Lyapunov function V is defined by Vs(xξ) = exp(sU(x)).

Remark 2.1. In order to prove the drift condition (2.13), one can use the Foster-Lyapunov Ṽ defined
by,

Ṽs(xξ) = exp

(
sU(x) + s

ξh2〈∇U(x), D2U(x)J∇U(x)〉
|ξh2〈∇U(x), D2U(x)J∇U(x)〉|

)
,

for s small enough. Yet, this proof is left to the reader, but uses the arguments developed in the following.

Assumption 2 is not meant to be sharp. We are not striving for optimality here, but instead we aim
to propose a simple criterion which is likely to be satisfied in smooth cases.

The first step to prove equation (2.14), is to show that the proposed move decreases the Lyapunov
function Vs in expectation.

Lemma 2.4. Under assumption 1, there exists s0 > 0 such that for all s < s0, there exists C1, C2 > 0
such that for all h < h0 given by Proposition 1, and for all x ∈ Rd large enough (depending on h),

E [Vs(Yh,ξ)] ≤ Vs(x)e−s
3h(1−C1h)

4 ||∇U(x)||2+sC2 ,

where Yh,ξ is defined in Proposition 1. Thus, for h small enough,

E [Vs(Yh,ξ)] ≤ Vs(x)e−s
h
2 ||∇U(x)||2+sC2 ,

and for x large enough,

E [Vs(Yh,ξ)] ≤ Vs(x)e−s
h
4 ||∇U(x)||2 .

Proof of Lemma 2.4. For all y ∈ Rd, we set χ ∈ Rd such that,

y = x− h∇U(x)− hξJ
(
θ∇U

(
x+ y

2

)
+ (1− θ)∇U(x)

)
+
√

2hχ,

A Taylor expansion of y in h yields,

U(y) = U(x) +∇U(x) · (y − x) +O(||y − x||2)

= U(x)− h ||∇U(x)||2 +
√

2h∇U(x) · χ+ hξ∇U(x) · J∇U(
x+ y

2
) +O(||x− y||2).
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Noticing that

hξ∇U(x) · J∇U(
x+ y

2
) = hξ∇U(x) · J(∇U(

x+ y

2
)−∇U(x)),

the Cauchy-Schwarz and the triangular inequality yield,∣∣∣∣hξ∇U(x) · J∇U(
x+ y

2
)

∣∣∣∣ ≤ Ch ||∇U(x)|| ||x− y|| .

Thus, by Young inequality and Proposition 1, for h ≤ 1,

U(y) ≤ U(x)− 3h(1− Ch)

4
||∇U(x)||2 +O(||χ||2),

The conclusion holds for small enough s such that esO(||G||2) is integrable, where G is a standard normal
deviate in Rd. �

Classically ([22]), proofs of geometric convergence of MALA require to show that the average accep-
tance ratio of the proposed move from x, does not vanishes when x is large. Namely that there exists
ε > 0 such that

I(x) = {y : α(x, y) ≤ 0}

asymptotically has q-measure 0, where α is the acceptance probability. Our case is sightly different
since it is possible that the average acceptance ratio of the proposed move from xξ ∈ E vanishes when
||x|| → +∞, which leads to a rejection and to the switching ξ ← −ξ with probability close to one. Yet
the average acceptance probability of the next proposed move from x−ξ is close to one. This behavior is
described by the following Lemma.

Lemma 2.5. Under Assumption 2, there exists h0 > 0 such that for all h < h0 and for all ε > 0, there
exists C(h, ε) > 0 such that for all xξ ∈ E such that ||x|| ≥ C(h, ε),

ξ〈∇U(x), D2U(x) · J∇U(x)〉 ≥ 0 =⇒ P
(
α2
h,ξ(xξ, yξ) = 1

)
≥ 1− ε,

where y is defined by Equation (2.8).

Proof of Lemma 2.5. We recall that α2
h,ξ is defined for all xξ, yξ ∈ E by α2

h,ξ(xξ, yξ) = 1∧ er(xξ,yξ), with,

r(xξ, yξ) = U(x)− U(y) + 〈
√

2hχ,∇U(x)〉+
1

2
〈
√

2hχ,∇U(y)−∇U(x)〉

− h ||∇U(x)||2 − h〈∇U(y)−∇U(x),∇U(x)〉 − h

4
||∇U(x)−∇U(y)||2 .

The proof is done by computing a Taylor expansion in h of this quantity to evaluate its sign in the

asymptotic case ||x|| → +∞. We denote by · the matrix vector product, and by : and
... respectively the
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double and triple dot products.

U(x)− U(y) + 〈
√

2hχ,∇U(x)〉 − h ||∇U(x)||2

= hξ∇U(x) · J
(
∇U

(
x+ y

2

)
−∇U(x)

)
− 1

2
D2U(x) : (y − x)2 +O(||D3U(x)

...(y − x)3||)

=
h

2
ξ∇U(x) · J

(
D2U(x) · (y − x) +O(D3U(x) : (y − x)2)

)
− 1

2
D2U(x) : (y − x)2 +O(||D3U(x)

...(y − x)3||)

1

2
〈
√

2hχ,∇U(y)−∇U(x)〉 =
1

2
〈
√

2hχ,D2U(x) · (y − x) +O(D3U(x) : (y − x)2)〉,

− h〈∇U(y)−∇U(x),∇U(x)〉 = −h〈D2U(x) · (y − x) +O(D3U(x) : (y − x)2),∇U(x)〉

− h

4
||∇U(x)−∇U(y)||2 = hO(||x− y||2).

Collecting these terms, and using Proposition 1 and Assumption 2, it comes for h ≤ 1

r(xξ, yξ) = −h
2
〈∇U(x), D2U(x) · (y − x)〉+O(h3 ||∇U(x)||2) +O(||χ||2 + ||χ||3),

where the big O are independent of h. and eventually,

r(xξ, yξ) =
h2

2

(
〈∇U(x), D2U(x) · ∇U(x)〉+ ξ〈∇U(x), D2U(x) · J∇U(x)〉

)
+O(h3 ||∇U(x)||2) +O(||χ||2 + ||χ||3),

Then, using the definite positivity of D2U(x) and the fact that ||∇U(x)|| is coercive, for all h small
enough and for all ε > 0, there exists C(h, ε) > 0 such that for all x ∈ Rd such that ||x|| ≥ C(h, ε),

ξ〈∇U(x), D2U(x) · J∇U(x)〉 ≥ 0 =⇒ P (r(xξ, yξ) ≥ 0) ≥ 1− ε.

�

Proposition 4 can now be obtained as a consequence of Lemmas 2.5 and 2.4.

Proof of proposition 4. Because of the acceptance-rejection step, we get for all xξ ∈ E,

P 2V (x) =

∫
Rd
q(xξ, yξ)α

2
h,ξ(xξ, yξ)

∫
Rd
q(yξ, zξ)α

2
h,ξ(yξ, zξ)V (zξ)dzdy

+

∫
Rd
q(xξ, yξ)α

2
h,ξ(xξ, yξ)V (y−ξ)

(
1−

∫
Rd
q(yξ, zξ)α

2
h,ξ(yξ, zξ)dz

)
dy

+

(
1−

∫
Rd
q(xξ, yξ)α

2
h,ξ(xξ, yξ)dy

)(∫
Rd
q(x−ξ, y−ξ)α

2
h,ξ(x−ξ, y−ξ)V (y−ξ)dy

)
+ V (x−ξ)

(
1−

∫
Rd
q(xξ, yξ)α

2
h,ξ(xξ, yξ)dy

)(
1−

∫
Rd
q(x−ξ, y−ξ)α

2
h,ξ(x−ξ, y−ξ)dy

)
.
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Simply using α2
h,ξ ≤ 1 leads to,

P 2V (x) ≤
∫
Rd
q(xξ, yξ)

∫
Rd
q(yξ, zξ)V (zξ)dzdy

+

∫
Rd
q(xξ, yξ)V (y−ξ)

(
1−

∫
Rd
q(yξ, zξ)α

2
h,ξ(yξ, zξ)dz

)
dy

+

(
1−

∫
Rd
q(xξ, yξ)α

2
h,ξ(xξ, yξ)dy

)(∫
Rd
q(x−ξ, y−ξ)V (y−ξ)dy

)
+ V (x−ξ)

(
1−

∫
Rd
q(xξ, yξ)α

2
h,ξ(xξ, yξ)dy

)(
1−

∫
Rd
q(x−ξ, y−ξ)α

2
h,ξ(x−ξ, y−ξ)dy

)
.

And eventually Lemmas 2.5 and 2.4 gives,

P 2V (x)

V (x)
≤ e−s

h
2 ||∇U(x)||2+2sC2 + e−s

h
2 ||∇U(x)||2+sC2

+ (1− E
[
α2
h,ξ(xξ, Yh,ξ)

]
)e−s

h
2 ||∇U(x)||2+sC2

+ (1− E
[
α2
h,ξ(xξ, Yh,ξ)

]
)(1− E

[
α2
h,ξ(x−ξ, Yh,−ξ)

]
).

And thus,

lim
||x||→+∞

P 2V (x)

V (x)
= 0

�

3. Generalized hybrid MALA

We propose in this part a second algorithm. It is based on a splitting method by solving by turns the
reversible and the non reversible parts of equation (2.1) with measure preserving schemes. The idea is
then to integrate the pure reversible equation

dx = −∇U(x)dt+ dWt. (3.1)

by using MALA, and to integrate the pure Hamiltonian equation

dx = −ξJ∇U(x)dt. (3.2)

by an hybrid Monte-Carlo method based on a suitable Hamiltonian integrator. This method presents
some theoretical advantages on Generalized MALA. Before presenting them, we begin with explaining
the algorithm.

We denote by Ψξ
t the flow of the Hamiltonian equation (3.2) on the time interval [0, t], and by Φξh a

numerical integrator for (3.2) on a time step h. We precise later necessary conditions on this integrator
that ensure unbiasedness of the algorithm.

Algorithm 3.1 (Generalized Hybrid MALA). Let x0 be an initial point. Set ξ = ±1. Let h > 0.
Iterate on n ≥ 0,

(1) Integration of the reversible part (3.1):
MALA is used to sample xn+1/2 from xn, with time-step h.

(2) Integration of the non reversible part (3.2):

(a) Compute x̃n+1 = Φξh(xn+1/2).
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(b) Set xn+1 = x̃n+1 with probability

βh,ξ(xn+1/2) = min
(
1, exp(U(xn+1/2)− U(x̃n+1))

)
min

(
1, exp(U(xn+1/2)− U(Φξh(xn+1/2)))

)
.

Otherwise set xn+1 = xn+1/2 and ξ ← −ξ.

Similarly to the Hybrid Monte-Carlo algorithm, the first step enables to explore the state space across
the iso-potential lines, whereas the second step enables to explore it along the iso-potential lines.

To ensure unbiasedness of the second step, the integrator Φξh must satisfy the following properties,

Φξh = (Φ−ξh )−1, (3.3)

det Jac Φξh = 1. (3.4)

These properties are classical for hybrid Monte-Carlo methods (see Chapter 2. [17]).

Lemma 3.1. Under conditions (3.3) and (3.4), the second step leaves the measure π invariant.

Proof of Lemma 3.1. The proof can be found in [17]. It consists in seeing this step as a generalized
Metropolis-Hastings step, with proposal Q(xξ, yη) = δΦξh(x)δξ(η), and symmetric operator S(xξ) = x−ξ.

Then, it is enough to show that the Metropolis-Hastings ratio r defined by the following Radon-Nikodym
derivative

r(xξ, yη) =
Q(S(yη), S(dxξ))π(dyη)

Q(xξ, dyη)π(dxξ)
,

is equal to exp (log π(y)− log π(x)). �

For example, for all xξ ∈ E the centered point integrator Φξh(x) defined by the solution y of the
following equation

y = x− hξJ∇ log π

(
x+ y

2

)
, (3.5)

satisfies these properties, under some assumptions that ensure well-posedness.

Lemma 3.2. Under Assumption 1, there exists h0 > 0 such that for all positive h < h0, there exists a

unique solution to equation 3.5, and the integrator Φξh is well-defined and satisfies equations (3.3) and
(3.4).

Proof of Lemma 3.2. The proof follows on from Lemma 2.2. �

The main benefit of this algorithm with respect to GMALA, is the better average acceptance ratio
of the Hybrid step with the centered point integrator, which is of order O(h3) instead of O(h3/2) for
GMALA, which may enable to reduce the rate of switching directions.

Lemma 3.3. Suppose Assumption 2. Then, for all l ≥ 1, there exists h0 > 0 such that for all positive
h < h0, and for all x ∈ Rd,

(1− βh,ξ(x))2l ≤ C ||∇U(x)||2l h6l.

Proof of Lemma 3.3. For x ∈ Rd, we set y = Φξh(x). A Taylor expansion of U(y) yields,

|U(y)− U(x)| = O(h3
∣∣∣∣D3U(x)

∣∣∣∣ ||∇U(x)||3).

�
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The centered point integrator is an example of integrator for the Hamiltonian dynamics, that can
be used as soon as the potential U is globally Lipschitz. Actually, similarly to GMALA in the non

globally Lispchitz case, one can construct an approximate integrator Φξh by using a truncation of ∇U to
ensure its global Lipschitzness. Yet, this trick may lead to high rejection rates in the areas where ∇U
is truncated. Again, other strategies can be used like importance sampling or even a change of variable
in the integrand (1.1). The GHMALA algorithm is especially interesting when we are able to integrate
efficiently the Hamiltonian dynamics. We show later on the numerical experimentations two examples
of specific integrators that enable to improve significantly the performance of GHMALA with respect to

GMALA with proposal kernel Qξ2. We can recall for example, the case of separated Hamiltonian dynamics
that can be integrated with explicit volume preserving schemes which are time-reversible and symmetric
([19]).

The authors propose in [8] a similar splitted scheme where the hybrid step is replaced by fourth-order
Runge-Kutta method. Even though this choice leads to a biased estimator, it enabled to get rid of the
centered point integrator, that may be more costly than the Runge-Kutta method in terms of computation
time.

4. Numerical experimentations

4.1. Anisotropic distribution. In this section, we test our nonreversible MALA algorithm by comput-
ing an observable f with respect to a two dimensional anisotropic distribution. More precisely we want
to estimate E [f(X)] with f((x1, x2)) = x2

11x1>15, and X ∼ π(x) with π(x) ∝ e−V (x), where

V ((x1, x2)) =
x2

1√
1 + 50x2

1

+ x2
2.

Such a distribution is more stretched out in the x1 direction rather than the x2. We expect our lifted
algorithm to be more favorable than MALA when the anisotropy is strong. Indeed, MALA tends to
perform a slower exploration of the state space in the x1 direction with respect to x2 the direction. The
lifted algorithm is supposed to correct this problem since the Hamiltonian dynamics should lead to a
fast exploration of the iso-potential lines, which are stretched in the direction x1. We choose as the
skew-symmetric matrix J defined by,

J = α

(
0 1
−1 0

)
, (4.1)

with α a real parameter.
To compare MALA with GMALA and GHMALA, different optimal time steps parameters should

be used. There is a tradeoff between achieving high average acceptance ratios (obtained with small
time steps) and small correlation between the successive samples (obtained with large time-steps). More
precisely MALA usually gives its best results with a large h that ensures a significant average rejection
ratio. On the contrary, GMALA and GHMALA require much smaller time steps to avoid the regress
that happens with the direction switching at each rejection. Thus, MALA should be used with a higher

time step than the two others. Moreover, as GMALA with proposal kernel Qξ1 leads to a worse average

acceptance ratio than Qξ2, the former requires a smaller time-step than the latter. Figure 1 shows the

average acceptance ratio with respect to the time step h for GMALA with proposal kernels Qξ1 and Qξ2.

We can verify that the average rejection ratio of GMALA with Qξ1 is indeed much worse than MALA
and is of order h. In practice, this limitation leads to very correlated successive samples, and thus bad
asymptotic variances for the estimators based on such Markov chain. In the following, we always consider

GMALA with proposal kernel Qξ2 instead of Qξ1.
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Figure 1. Comparison of average rejection ratio for GMALA with proposal

kernels Qξ
1 and Qξ

2.

Figure 2. Comparison of average rejection ratio for MALA, GMALA (with

proposal kernel Qξ
2) and GHMALA.

Figure 2 shows the acceptance ratio with respect to the time step h for those three algorithms. GH-
MALA is composed by two steps: the first one consists of MALA and the second one consists of a Hybrid
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iteration. Both steps are composed by an acceptanceection step. The average acceptance rate of the first
step does not depend on α, and is denoted by GHMALA MALA in the legend. Moreover, it is the same as
a plain MALA. The average acceptance rate of the second step is denoted by GHMALA Hybrid. We also

observe that the rejection ratio for GMALA with Qξ2 is close to MALA’s and scales as h3/2 This is due to
the fact that the non reversibility contributes at order h2 in the expression of the average rejection ratio.
We can also verify the upper bound on the rejection probability of the hybrid step, given by Lemma 3.3.

Figure 3. Variance comparison of MALA, GMALA (Qξ
2) and GHMALA on the

anisotropic distribution

We compare now the asymptotic variance of the estimators build with MALA, GMALA and GHMALA.
To do so, we compute 1000 independent estimators composed by the time average of 105 samples. We
plot in Figure 3 the empirical relative variance of these estimators, We observe that GMALA performs
much better than MALA by a factor 20. We should precise that a reduction in the variance does not
necessarily mean a reduction in computing time since one iteration of GMALA is more costly than MALA
since it requires a fixed point iteration.

The question of choosing α is quite natural. In the case of the time-continuous process, it is known
that the decrease in asymptotic variance is monotonic with the intensity α, which suggests to use the

algorithms with large α [20, 8, 14]. Yet, well-posedness of the proposal kernel Qξ2 requires the product
αh to be small enough to ensure convergence of the fixed point. From a computational point of view, the
cost of the method is proportional to the number of Picard iterations, which scales like − log ρ, where ρ
denotes the contraction ratio (that scales as αh). Then, the choice of parameters α and h should take
into account these two effects.

4.2. Warped Gaussian distribution. This example deals with a non quadratic potential. Both
GMALA and GHMALA can be adapted to this case. The simple idea is to build a proposal kernel
with a truncation of ∇U , to make it globally Lipschitz. This is the same idea as the one used for MALTA
([22]). Moreover, it is also possible to choose a more efficient integrator than the centered point integrator
defined by Equation (3.5).

To illustrate these two methods, we test now our algorithms in the case of a two-dimensional warped
Gaussian distribution. This toy case has been introduced in [10] and used as a benchmark for variance
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reduction methods based on nonreversible Langevin samplers in [8]. More precisely, we aim to estimate
E [f(X)] with the observable f and X distributed with π, defined by,

f(x) = x2
1 + x2

2, π(x) ∝ e−V (x), with V (x) =
x2

1

100
+

(
x2 +

x2
1

20
− 5

)2

.

We define the skew symmetric matrix J by (4.1). It appeared in [8] that the nonreversible Langevin
dynamics enables to reduce the asymptotic variance by several orders of magnitude.

We propose to implement GMALA using a truncated drift to make it globally Lipschitz to ensure the
well-posedness of the method, and to implement GHMALA using a specific integrator of the Hamiltonian
dynamics. We show that GHMALA performs better than GMALA and MALA in this casee. More
precisely, the integrator is defined as the centered point integrator, after the symplectic change of variable
ψ defined for all (x1, x2) ∈ R2 by

ψ(x1, x2) = (x1, x2 +
x2

1

20
− 5).

Typically, this integrator enables to solve this dynamics for larger time steps than GMALA with proposal

kernel Qξ2, and thus reduces the asymptotic variance. Figure 4 displays the asymptotic variance for the
estimators build with these algorithms. It is computed as the empirical variance of 2000 independent
estimators constructed as the time average of 105 iterations of the algorithms. We can observe that

Figure 4. Variance comparison of MALA, GMALA and GHMALA on the
warped Gaussian distribution

GMALA and GHMALA performs similarly for small time steps h. Yet, for larger time-steps, it is not
possible to define the proposal kernel for GMALA, whereas it is still the case for GHMALA. Eventually,
we achieve a variance reduction of about a factor 500 with GHMALA and 60 with GMALA, compared
with classical MALA.

4.3. Quartic Gaussian distribution. This toy case aims to present a particular case where GHMALA
can be used without implicit integrator, and in a non globally Lipschitz case, which may enable to reduce
the computational cost by avoiding the fixed point iteration. Again, we aim to estimate E [f(X)] where
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X is distributed with π, and where,

f(x) = x2
1 + x2

2, π(x) ∝ e−V (x), with V (x) =
x2

1

100
+ x4

2.

We define the skew-symmetric matrix J by (4.1). In this case, the Hamiltonian dynamics defines then
a separable system and volume-preserving explicit methods can be used (see [19]). More precisely, we

define Φξh for all x = (x1, x2) ∈ R2 by Φξh(x) = (y1, y2), where,

y
1/2
1 = x1 −

h

2
αξ

∂V

∂x1
(x)
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Thus, the non Lipschitz nonlinearity of ∇V is not an obstacle to the well-posedness of this integrator.

Figure 5. Variance comparison of MALA and GHMALA on the quartic Gauss-
ian distribution

We plot in figure 5 the asymptotic variance for the time average estimator build with GHMALA in the
same way as for the warped Gaussian distribution. We can observe that the decrease in variance between
MALA and GHMALA for small h is around 280. Nevertheless, for larger h, the explicit integration is not
accurate enough, which leads to an increase in the asymptotic variance for larger time steps. Eventually,
the smallest asymptotic variance of the time average estimator of GHMALA is around 50 times lower
than the smallest asymptotic variance for MALA.

Conclusion

We presented a class of unbiased algorithm that enables to benefit from the variance reduction of the
nonreversible Langevin equations (1.3) with respect to the reversible dynamics (1.2). More precisely, we
presented two variations of these algorithms. The first one (GMALA) can be viewed as a lifting method,
and more specifically as a generalized Metropolis Hastings methods on a lifted state space. The second
one (GHMALA), similar to the first one, can be viewed as a Generalized Hybrid Monte-Carlo method.
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Numerical experimentations show that variance reductions (compared with classical MALA) of several
orders of magnitude can be achieved for potentials concentrated on a lower dimensional submanifold. We
also expect these algorithms to perform better in the case of entropic barriers. The main difficulty is, in the
case of GMALA, to use a proposal that enables to achieve a sufficiently high average acceptance ratio (to
compete with MALA). For example this can be done by using a mid-point discretization. Even though this
scheme is implicit, the computation of the Metropolis-Hastings acceptance probability does not require
the computation of the Hessian of log π. In the case of GHMALA, numerical experimentations show that
the choice of a suitable Hamiltonian integrator may lead to large improvements and computational cost
reduction compared with the mid-point method.
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