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a b s t r a c t

The influence of radiation-induced crosslinking on the molecular mobility of a filled silicone elastomer near the

glass transition (α-relaxation) was analyzed using broadband dielectric spectroscopy. Samples of the isolated

polysiloxane matrix (neat) were also studied so as to assess the filler influence on the evolution of the α-

relaxation.

A slowing-down of the segmental dynamics was observed with increasing ionizing dose. It was ascribed to the

relaxing dipoles losing degrees of freedom as a result of network stiffening. An enhancement of intermolecular

coupling, associatedwith the cooperativity of theα-relaxation, was deduced from the dielectric analysis. Similar

observations were made in the past with chemically crosslinked polysiloxanes. This study evidenced that even

though the crosslinks formed upon chemical crosslinking (mainly Si\\CH2\\CH2\\Si) differ in nature from

those formed upon irradiation (mainly SiO3 and SiO4), they affect the dynamic glass transition in a very similar

way.

The filler influence on the dynamic glass transition was also studied upon irradiation. One of the main outcomes

of this study is the fading of the filler-related effect in themost irradiated samples: both the shape and dynamics

of the α-relaxation were identical in the most highly irradiated neat and filled samples.
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1. Introduction

This study is encompassed within the field of materials ageing in

space environment. It is focused on a silicone elastomer used as an ad-

hesive in solar panels bonded assemblies for communication satellites.

In a previous study [1], the structural evolution of a space-used filled

silicone elastomer exposed to high energy electronswas investigated. A

preferential crosslinking process of the polysiloxane matrix was ob-

served, involving the formation of SiO3 bonds in the network.Moreover,

the inorganic fillers (silica and iron oxide) were shown to cause further

radiation-induced crosslinking through the formation of SiO4 bonds at

the filler-matrix interfaces. This additional crosslinking process resulted

in an increase in mechanical modulus upon irradiation that was more

pronounced in the filled samples than in the isolated matrix (neat sam-

ples). On another hand, scanning calorimetrymeasurements showedno

significant filler influence on the evolution of the glass transition

temperature.

The α-relaxation of model linear PolyDiMethylSiloxane (PDMS)

[2–4] and PolyMethylPhenylSiloxane (PMPS) [5,6] has been studied

thoroughly, partly because neither secondary relaxations (they occur

at much lower temperatures) nor electrical conductivity (observed at

higher temperatures) interfere with it. Broadband Dielectric Spectros-

copy proved to be a particularly adequate tool for that purpose. Regard-

ing three-dimensional polymer networks, multiple studies involving a

variety of polymers [7–10] – including silicone networks [11,12] – led

to the general conclusion that an increasing degree of crosslinking re-

sults in a slowing-down of the α-relaxation dynamics, as well as a

more pronounced deviation fromArrhenius behavior: crosslinked poly-

mers tend to be more fragile than linear ones with the same backbone.

In such studies, the degree of crosslinking is generally controlled chem-

ically (i.e. by varying hardener proportion). Polyadditive crosslinking of

the two components-RTV silicone rubbers mainly proceeds through the

formation of silethylene links (Si\\CH2\\CH2\\Si) [13], while radiation-

induced crosslinking primarily involves the formation of SiO3 crosslinks

[1,14].

Silicone elastomers for space applications are filled with inorganic

particles. Silica fillers are undoubtedly the most used as they enhance

their mechanical properties [15]. Fillers incorporated in a polysiloxane

matrix affect the α-relaxation: it is generally accepted that a polymer

layer of reduced mobility (~a few nm) is formed at the surface of the

fillers [16]. The filler influence on the α-relaxation mainly depends on

their geometry, relative quantity, and on their interactions with the

matrix.
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The present study aims at assessing the influence of the crosslinks

nature (chemical or radiation-induced) on theα-relaxation of a silicone

elastomer. It will also bring insight in the filler influence on the dynamic

glass transition throughout chemical ageing, which has not been stud-

ied yet.

2. Materials and methods

2.1. Materials

The studied material is a commercial (Wacker) two components sil-

icone elastomerwhich crosslinks at room temperature (RTV, RoomTem-

perature Vulcanization). Part A mainly consists of a

poly(dimethylsiloxane-co-methylphenylsiloxane) resin (approx.

35 wt%) mixed with crystalline silica (α-quartz particles of the glass

splinter type, the size of which is comprised in the range [0.2–20 μm])

and iron(III) oxide (spherical particle size in the range [0.1–1 μm])

fillers. Part B is a hardener containing a Pt catalyst responsible for poly-

merization. A filtering process performed on part A allowed separation

and removal of the fillers from the resin. Consecutive polymerization

with unmodified part B allowed the elaboration of neat samples (no

fillers), as opposed to filled unmodified samples (with fillers).

The two components are manually mixed (weight ratio 9:1, accord-

ing to data sheet) and poured into a mold consisting of a 50 × 50 mm2

aluminum substrate the borders ofwhich had been coveredwith alumi-

num tape. Even though thismaterial is able to crosslink at room temper-

ature, a curing process of 6 h at 100 °C was performed after mixing in

order to enhance sample reproducibility.

The glass transition temperature of both filled and neat materials

were measured at −117 ± 1 °C, suggesting a low phenyl side groups

content (the phenylmethylsiloxane mass fraction was estimated to be

approximately 10% [17]).

2.2. Electron irradiations

Electron irradiations were performed under secondary vacuum in

the SIRENE facility at ONERA [18]. The procedure and dose calculations

are detailed elsewhere [1] and summarized here. 150 μm-thick elasto-

mer filmswere irradiated using a 400 keV-Van de Graaff electron accel-

erator along with a scattering foil in order to uniformly expose the

sample surface. Ionizing doses up to 1.4 106 Gy were achieved in

b12 h thanks to high beamcurrents in the order of 10 nA.cm−2. Ionizing

dose D expressed in Grays (1 Gy = 1 J ⋅kg−1) is defined by Eq. (1).

D ¼ Φ
1

d

dE

dx

! "

ð1Þ

whereΦ is the particle fluence, d thematerial density and dE/dx the en-

ergy lost by an incident particle by unit length travelled in the material.

The samples irradiated in this way are uniformly aged and the indi-

cated doses are mean values in the middle of the films.

2.3. Broadband dielectric spectroscopy

Broadband Dielectric Spectroscopy (BDS) measurements were per-

formed isothermally in the frequency range [10−2
–106 Hz] on

150 μm-thick films placed between gold-plated stainless steel elec-

trodes (30 mm diameter), using a Novocontrol BDS 4000 impedance

analyzer.

Complex dielectric permittivities (Eq. (2)) were calculated from the

experimental values of impedance.

ε$ ωð Þ ¼ ε0 ωð Þ−iε00 ωð Þ ¼
1

iωC0Z
$ ωð Þ

ð2Þ

where ε′ is the real component of the complex dielectric permittiv-

ity, ε″ its imaginary component, C0 the capacitance in air and Z⁎ the

complex impedance.

The Havriliak-Negami parametric equation (see Eq. (3)) and the

Schönhals-Schlosser model (see Eqs. (7a) and (7b)) were used to per-

form the fits of the experimental data.

3. Results and discussion

First of all, in the ionizing dose range performed in this study, the

crosslink densities of thematerialswere previously shown to be linearly

increasing functions of absorbed ionizing dose [1], in agreement with

Delides and Shepherd [19] who observed a linear increase of crosslink

density up to 1.6 106 Gy of γ-rays in PDMS. In this section, the ‘ionizing

dose’ abscissae inmost of thefigures are therefore proportionally linked

to the ‘crosslink density’ of the samples.

3.1. Crosslinking-induced constraints on the α-relaxation

In Fig. 1 are represented the Broadband Dielectric Spectroscopy

(BDS) loss spectra obtained at −105 °C from pristine and irradiated

filled samples. The glass transitionmanifests as awell-defined dielectric

loss peak. This ismainly due to the absence of crystallization peak – hin-

dered by both the crosslinks of the network and the phenyl side groups

[20] – and local segmental β-relaxation in the vicinity of the α-

relaxation. With increasing ionizing dose, the maximum of the peak is

shifted to lower frequencies, its intensity decreases, and its breadth

increases.

The spectra in Fig. 1were individually normalized to the coordinates

of their respective maxima (fmax, ε″max). They are represented in the

inset of Fig. 1. The increase in the breadth of the peak is highlighted in

the normalized spectra: the half-height width of the most irradiated

sample is approximately 7 times larger than the pristine one. This

broadening will be discussed in the subsection entitled “shape of the

α-relaxation loss peak”.

In order to analyze the α-relaxation segmental dynamics, the BDS

isothermal dielectric loss comprising the relaxation (such as those in

Fig. 1)were fitted using theHavriliak-Negami parametric equation [21]:

ε$ ¼ ε∞ þ
εs−ε∞

1þ iωτH−Nð ÞαH−N
# $βH−N

ð3Þ

where εs and ε∞ are respectively the low and high frequency limits of the

real relative permittivity, ω the angular frequency of the applied voltage,

τH − N themean relaxation time for the distribution of dipoles andαH − N

and βH − N adjustment parameters in the range [0–1] respectively con-

trolling the breadth and the symmetry of the relaxation function.

Thus obtained τH − N are represented in the Arrhenius plot in Fig. 2

for the pristine and irradiated filled samples. Themean relaxation times

Fig. 1. BDS loss spectra at −105 °C of filled samples exposed to various ionizing doses.

Inset: same spectra normalized to their respective maxima.



of the α-relaxation increase with increasing ionizing dose, which is

equivalent to the shifting of the α-peak towards lower frequencies as

observed in Fig. 1. As a result of network stiffening caused by increasing

crosslink density, the relaxing dipoles lose degrees of freedom. In other

words, the α-relaxation is progressively slowed down.

The relaxation times in Fig. 2 were very satisfactorily fitted with the

Vogel-Fulcher-Tammann (VFT) law [22]:

τ Tð Þ ¼ τVFT0 e
B

T−T∞ð Þ ¼ τVFT0 e
1

α f T−T∞ð Þ ð4Þ

where τ0
VFT is the pre-exponential factor, B a constant,αf the thermal ex-

pansion coefficient of free volume and T∞ the Vogel temperature (below

which there is no more free volume).

Various theoretical approaches (e.g. Adam-Gibbs model [23], free

volume theory [25], coupling model by Ngai [24]) accounting for the

VFT behavior of the α-relaxation exist. The free volume approach was

chosen because it allows the interpretation of the VFT fit parameter B,

as the reciprocal thermal expansion coefficient of free volume 1/αf

(see Eq. (4)). Before analyzing the evolution of the VFT fit parameters,

the validity of the free volume approach was checked for the studied

samples. Let aside the good mathematical match of the fit with the ex-

perimental points for all the samples, two physical arguments support

the use of the VFT law to fit the experimental data in Fig. 2. The first

one is the order of magnitude of the pre-exponential factor: 10−13
–

10−12 s (see Fig. 3). Kremer and Schönhals reported that 10−13 s is

the typical relaxation time of local orientational fluctuations in poly-

mers [26]while Angell et al. considered the quasilattice vibration period

(10−14 s) to be a physically acceptable value for the VFT pre-

exponential factor [27]. The second argument stems from the definition

of the thermal expansion coefficient of free volume αf as the difference

between thematerial's thermal expansion coefficients above and below

the glass transition temperature [25]. Thermomechanical measure-

ments were performed on a pristine neat sample and yielded the linear

thermal expansion below and above the glass transition temperature:

0.14 10−3 K−1 and 0.70 10−3 K−1 respectively. As the neat material is

homogeneous and isotropic, these valuesweremultiplied by 3 to obtain

the volumetric thermal expansion coefficients αv reported in Table 1.

The difference between αv above and below Tg is 1.68 10−3 K−1,

which is in the same order of magnitude as αf = 1.56 10−3 K−1 (see

Fig. 3), thus providing experimental validation of the definition of αf

and a satisfactory correlation between thermomechanical and dielectric

spectroscopy measurements. Such correlation could not be verified for

the filled material due to the important filler content causing

heterogeneity.

As seen in Fig. 3, the three VFT fit parameters increase linearly with

respect to ionizing dose, for both the neat andfilledmaterials. Schroeder

and Roland [11] observed similar tendencies in chemically crosslinked

PDMS networks. The evolutions of calorimetric Tg on one hand, τ0
VFT

and especially T∞ on the other hand, are coherent with increasing

crosslinking-induced constraints. The increase in αf, however, was not

expected as it qualitatively implies that while the network stiffens,

free volume thermally expands more easily. Some insight might be

given into this counterintuitive result by studying the cooperativity of

the α-relaxation.

3.2. Influence of network crosslinking on the intermolecular coupling and

the local motions of the α-relaxation

Two main contributions may account for the broadening of the α-

relaxation loss peak (Fig. 1). One of them is the segmental

heterogenization introduced by the new crosslinks: the segments closer

to the crosslinks are expected to have lower mobilities than those far-

ther, resulting in a larger distribution of relaxation times. The other

one is intermolecular cooperativity, a characteristic feature of the glass

transition in polymers: the individual segmentalmotions are influenced

by the motions of neighboring segments.

3.2.1. Fragility evolution with respect to ionizing dose/crosslink density

Tg-scaled plots were used by Angell [28] as a mean of classifying

glass formers depending on the deviation of the α-relaxation from Ar-

rhenius behavior: strong liquids display Arrhenius dependence while

fragile ones exhibit pronounced VFT behavior. The fragility indexm, de-

fined as the derivative of log(τα) in order of Tg/T calculated at T = Tg
(Eq. (5)),

m ¼
d log ταð Þ

d Tg=T
# $

 !

T¼Tg

ð5Þ

where τα(T)= τH − N(T) is the mean dipole relaxation time, and Tg the

calorimetric glass transition temperature, allows to quantify the devia-

tion from Arrhenius behavior.

Fig. 2. Arrhenius plot of the Havriliak-Negami relaxation times associated with the α-

relaxation of the filled material irradiated at various ionizing dose levels. Vogel-Fulcher-

Tammann fits are represented in dashed lines.

Fig. 3. Evolution of the VFT fit parameters with respect to ionizing dose for the neat and

filled materials.

Table 1

Volumetric thermal expansion coefficients in the vicinity of the glass transition tempera-

ture (thermomechanical measurements) and thermal expansion coefficient of free vol-

ume (VFT fit of BDS data) of the pristine neat material.

αv [10
−3K−1] Δαv [10

−3 K−1] αf (free volume) [10−3 K−1]

0.42 for T b Tg 1.68 1.56

2.10 for T N Tg



Roland and Ngai [29] actually discussed the applicability of the term

“fragility” to polymers, which do not experience a modification of their

chemical structurewhen passing the glass transition, and suggested the

fragility plots could be called “cooperativity plots” instead. The physical

meaning of fragility in polymers has indeed been thoroughly discussed

since the 1980s. Experimental and theoretical correlations with other

parameters of the glass transition have been investigated, themost con-

clusive of which was probably revealed by Böhmer et al. [30]. For a va-

riety of amorphous polymeric materials, they evidenced a narrow

correlation between fragility and nonexponentiality (that is the non-

Debye nature of the relaxation). In 1979, Ngai developed the coupling

model [24] which links the stretch exponent of the Kohlrausch–

Williams–Watts associated with the α-relaxation to the strength of

the intermolecular constraint. In this model, the shape of the relaxation

function therefore varies according to the degree of cooperativity of the

relaxation [31–35]. Under the light of the coupling model, the conclu-

sion formulated by Böhmer et al. (fragility being correlated to

nonexponentiality) suggests that fragility is to a great extent correlated

to the cooperativity of the α-relaxation.

A cooperativity plot of the pristine and irradiated filled samples is

represented in Fig. 4. The temperature axis has been normalized to the

calorimetric Tg of each sample. Given the estimated ±1 °C error on Tg,

the cooperativity plots of the irradiated samples were manually trans-

lated so that they all intersected at Tg/T = 1. None of these adjustments

exceeded the uncertainty range of Tg. The VFT fits extrapolated towards

lower temperatureswere represented in Fig. 4 instead of the data due to

the experimental τH − N being smaller than 1 s (see Fig. 2).

The Tg-scaled plot in Fig. 4 visually emphasizes the influence of irra-

diation on the temperature dependence of the relaxation times. Corre-

sponding fragilities m were obtained by extracting the slope at Tg/

T = 1 from the cooperativity plots in Fig. 4.

Fig. 5 reports the evolution of fragility with respect to ionizing dose,

for the neat and filled materials. The fragility of both the pristine sam-

ples is approximately 111, which is in good agreementwith existing lit-

erature: m is generally about 100 in linear PDMS [4,11] as well as in

linear PMPS [6,36] and values up to 110were reported for PDMS elasto-

mers [16]. These are high fragility values given the flexibility of the

polysiloxane backbone that should lead to low fragilities. Kunal et al.

[37] explained these high fragilities in terms of side group stiffness rel-

atively to the backbone, which is high in polysiloxanes regardless of the

side groups being methyls or phenyls. Thus, the fragilities of PDMS and

PMPS are approximately the same while PMPS has a higher Tg than

PDMSdue to the phenyl side groups being bulkier than themethyl ones.

The fragility of bothmaterials increases linearly with increasing ion-

izing dose. This moderate fragility increase (~+16% for the highest dose

level) suggests an increase in intermolecular coupling, leading to higher

cooperativity of the α-relaxation as the polysiloxane network

crosslinks. If these materials display high fragilities in their pristine

state due to relative side groups/backbone stiffness (intramolecular

origin), the origin of their increasing fragility with crosslink density is

intermolecular.

Schroeder and Roland [11] came to similar conclusions with chemi-

cally crosslinked PDMS networks, which brings more insight into this

study. In one hand, chemical crosslinking (polyaddition) of these two

components-RTV silicone rubbers mainly proceeds through the forma-

tion of silethylene links (Si\\CH2\\CH2\\Si) [13]. On the other hand,

ionizing radiation-induced crosslinking of these materials primarily

proceeds through the formation of SiO3 bonds [1]. Therefore, the nature

of the crosslinks involved in the silicone network stiffening does not

seem to have a significant impact on the evolution of the molecular

mobilities.

3.2.2. The increase in the thermal expansion coefficient of free volume αf

Böhmer et al. [30] derived an expression of m in terms of the VFT fit

parameters (Eq. (6)).

m ¼
DT∞=Tg

ln 10ð Þ 1− T∞
Tg

' (2
ð6Þ

where T∞ is the Vogel temperature, Tg the calorimetric glass transition

temperature and D the strength parameter related to the VFT parame-

ters by DT∞ = (αf)
−1.

Eq. (6) shows that m is proportional to D and therefore inversely

proportional to αf. The observed increase in αf (see Fig. 3) seems inco-

herent with the increase in fragility observed in Fig. 5. This apparent in-

consistent behavior of αf stresses the complicated effect of T∞ on

fragility. Two physical arguments accounting for the increase in αf are

proposed.

The general characteristic length scale (or equivalently size of coop-

eratively rearranging regions) of the glass transition was estimated

around 1–2 nm by Donth [38], i.e. much smaller than the distance be-

tween crosslinks, even in the most crosslinked of samples. Therefore,

stating that certain mobilities may be enhanced by crosslinking is not

incompatible with the global network stiffening indicated by the in-

creases in mechanical modulus (which is directly dependent on the

density of crosslinks) on the rubber plateau and calorimetric Tg: for in-

stance, the appearance of rigid crosslinks may involve the disruption of

prior physical bonding in between newly formed crosslinks.

Another possible physical origin of the apparent inconsistent behav-

ior of αf resides in the evolution of side groups upon irradiation and

their role in free volume. As evidenced by Charlesby [39], silicone degra-

dation upon irradiation mainly involves side groups scissions, resulting

in H2, CH4 and C2H6 outgassing. At localized scale, the silicone backbone

mobility may be enhanced in the vicinity of a methyl side group that

was either removed or degraded to a smaller form such as Si\\H. Addi-

tionally, the phenyl side groups are particularly resistant to ionization

(the ejection of an electron is compensated by the ring structure [40]).

Thus expected increasing phenyl/methyl side groups ratio uponFig. 4. Cooperativity plot corresponding to the VFT fits in Fig. 2.

Fig. 5. Evolution of fragility with respect to ionizing dose for the neat and filled materials.



irradiation is also coherent with the localized molecular mobility en-

hancement due to the decrease in methyl side groups.

3.2.3. Shape of the α-relaxation loss peak

Schönhals and Schlosser [35] formulated a simple phenomenologi-

cal model (Eqs. (7a) and (7b)) that consists in fitting with power laws

of frequency the two sides of the dielectric loss peak associated with

the dielectric manifestation of the glass transition. In this theoretical

framework, the low-frequency exponent mS − S is related to the large-

scale intermolecular correlations, while the high-frequency exponent

nS − S is associated with the small-scale, local motions of the network

segments.

ε00 ωð Þ ' ωmS−S with 0bmS−S ≤1 for ω≪ω0 ð7aÞ

ε00 ωð Þ ' ω−nS−S with 0bnS−S ≤0:5 for ω≫ω0 ð7bÞ

where ω0 is the angular frequency at which ε″ is maximum.

The analysis of the loss peak shape may equivalently be performed

by means of the Havriliak-Negami adjustment parameters αH − N and

βH − N, as mS − S = αH − N and nS − S = αH − N.βH − N [7]. However,

in this study, power laws on both sides of the peak better fitted experi-

mental data than the Havriliak-Negami equation, in particular for the

points farther from the peak maximum.

As illustrated in Fig. 6 for the pristine neat and filled samples, the ex-

ponents mS − S and nS − S were determined from the α-relaxation di-

electric loss peaks (not normalized) of the irradiated samples. The

evolution of these shape parameters with respect to ionizing dose is

represented in Fig. 7.

As the crosslink density of the network increases, mS − S decreases

for both materials, but in a more pronounced manner in the neat case

(−60% at the highest dose). Under the light of the Schönhals-Schlosser

model, this decrease is associated with the promotion of large-scale in-

termolecular coupling, or cooperativity. Bearing in mind the strong cor-

relation between fragility and nonexponentiality evidenced in polymers

by Böhmer et al. [30], the decrease in mS − S is consistent with the in-

crease in fragility observed in Fig. 5. Various authors came to similar

conclusions by varying the crosslink density of polymer networks and

analyzing the shape of the loss peak [8–10,41,42].

The high-frequency shape parameter nS − S also decreases with in-

creasing ionizing dose, indicating that the segmental dynamics (intra-

molecular diffusion processes) are slightly hindered by the crosslink

densification. This evolution is in good agreement with studies of a po-

lymerizing epoxy network [42] and heterocyclic polymer networks [8]

in both of which a less pronounced increase in nS − S than in mS − S

was observed with increasing crosslink density. On another hand,

there seem to be a contradiction with a study by Glatz-Reichenbach

et al. [9] who observed a constant nS − S regardless of the crosslink den-

sity of a styrene-butyl acrylate copolymer. This difference could be

material-related but is more likely to originate from different crosslink

density ranges: the high ionizing dose levels performed in this study

may have allowed reaching higher crosslink densities than those in

ref. [9].

3.3. Filler influence on the evolution of segmental motions under ionizing

radiations

One of the most striking features of Fig. 7 is the discrepancy in the

evolutions ofmS − S in the twomaterials, when nS − S is much less influ-

enced by the presence of fillers.

In the pristine state, mS − S is lower in the filled sample than in the

neat one. This gap decreases as the crosslink density of the network in-

creases, and the two materials display almost identical values of mS − S

at the highest ionizing dose level. On the contrary, neither the calori-

metric Tg [1] nor the temperature dependence of the relaxation times

(VFT parameters, Fig. 3) nor the fragility (Fig. 5) are significantly im-

pacted by the presence of fillers in the polysiloxane matrix. It therefore

seems that, from the data at our disposal, only the loss peak shape pa-

rameters bring to light the filler influence on the α-relaxation of this

material.

Three main interpretation schemes may account for this inhomoge-

neous broadening of the α-relaxation towards the low frequencies as a

consequence of fillers incorporation and the evolution under ionizing

radiations.

Hydrogen bonding evidenced at the interface between the silica

fillers and the polysiloxane network [1] could result in cooperativity en-

hancement of the large-scale motions. Upon irradiation, the H-bonds

are progressively replaced with chemical crosslinks (SiO4) which also

promote cooperativity of theα-relaxation, therefore resulting in further

decrease of the exponent mS − S. In the neat material, the absence of

filler-related H-bonds in the pristine state results in amore pronounced

decrease in mS − S upon irradiation.

Secondly, a parallel may be drawn with the asymmetrical broaden-

ing of the α-relaxation loss peak of semicrystalline polymers as com-

pared to the amorphous state. For instance, Hensel et al. [43] observed

a significant broadening of the low-frequency side (equivalent to de-

creasing mS − S) of the dielectric loss peak while the high-frequency

side of the peak remained unaltered (equivalent to unchanged nS − S).

They ascribed this asymmetry to geometrical confinement caused by

the crystallites. On one hand, this confinement is effective on large-

scale motions as their characteristic length is similar to the distance

Fig. 6. Dielectric loss peak at−105 °C for pristine neat and filled samples, and illustration

of the Schönhals-Schlosser model with indication of themS − S exponents on the left, and

of the nS − S exponents on the right.

Fig. 7. Evolution of the Schönhals-Schlosser shape parameters mS − S and nS − S with

respect to ionizing dose, for the neat and filled materials.



between crystallites. On the other hand, the lengths associated with

high-frequency local motions are negligible compared to the distance

between crystallites. In the filled silicone elastomer, the inorganic fillers

could induce geometrical confinement in a similar way.

A third interpretation could account for the inhomogeneous broad-

ening of the α-relaxation due to the incorporation of fillers in the ma-

trix. Fragiadakis et al. [44] evidenced a second α’-relaxation in a PDMS

elastomer reinforced with nanometric silica fillers. This second peak at

higher temperatures/lower frequencies was associated with a polymer

layer (2–3 nm-thick) of reduced mobility located at the interface with

the fillers. In the present study, the fillers are not nanometric and very

distributed in size, which would not allow the observation of a distinct

second peak but could account for the broadening of the main α-

relaxation peak towards the low frequencies.

Regardless of the interpretation scheme adopted, the highly irradiat-

ed samples are similar when it comes to the asymmetrical broadening

of the α-relaxation. This means that the crosslinking-induced mechan-

ical constraints applied to the polysiloxane matrix dominate the relaxa-

tion behavior of these samples. In otherwords, the presence of fillers no

more has impact on the large-scale cooperativemotions of the network.

4. Conclusion

This study aimed at analyzing the influence of radiation-induced

chemical ageing on themolecular mobility of a filled silicone elastomer.

Complementary representations and fits of the experimental dielectric

lossmeasured in broadband dielectric spectroscopy led to the following

conclusions.

The radiation-induced crosslinking of the polysiloxane matrix re-

sulted in a slowing-down of the α-relaxation dynamics, as evidenced

by the shifting of the dielectric loss peak towards lower frequencies

(equivalent to an increase in the mean dipole relaxation times) and by

the increase in the Vogel-Fulcher-Tammann fit parameters with in-

creasing ionizing dose. This slowing-down was accompanied with an

inhomogeneous broadening of the dielectric loss peak. The two sides

of the loss peak were successfully fitted with power laws of frequency,

the exponents of which indicated a greater increase of the low-

frequency side as compared to the high-frequency side. In the frame-

work of the Schönhals-Schlosser model, this asymmetrical broadening

was attributed to cooperative intermolecular motions enhancement

(low frequencies) as well as a slight hindrance of intramolecular local

motions (high frequencies). The increase in cooperativity was also evi-

denced by an increase in fragility upon irradiation. An apparent incon-

sistent increase in the thermal expansion coefficient of free volume

was also observed, which could be due to the promotion of certain

mobilites in between the newly formed crosslinks (possibly involving

the disruption of prior physical bonding) and/or a consequence of an in-

creasing phenyl/methyl side groups ratio.

This study evidenced that while chemically produced (mainly

Si\\CH2\\CH2\\Si) and radiation-induced crosslinks (mainly SiO3)

have different nature, they influence the dynamic glass transition of sil-

icone in a very similar way.

Another main outcome of this study is related the filler influence on

the radiation-induced evolution of the α-relaxation. Neither the mean

relaxation times nor the Vogel-Fulcher-Tammann fit parameters nor

the fragility were affected by the presence of fillers in the matrix. How-

ever, a significant discrepancy was observed on the low-frequency ex-

ponent of the dielectric loss peak. In the pristine filled sample, the loss

peak was broader and more asymmetrical towards low frequencies

than in the pristine neat sample. With increasing crosslinking density,

this discrepancy progressively reduced to the extent that the most irra-

diated samples showed negligible differences in the shape of the loss

peak. Three interpretation schemes were discussed to explain this re-

markable behavior: cooperativity enhancement due to hydrogen bond-

ing, filler-related geometrical confinement and immobilized polymer

layer at the filler-matrix interfaces. Regardless of the interpretation

scheme, it seems that the crosslinking-related mechanical constraints

generated in the polysiloxane matrix dominate the relaxation behavior

of the filled material at high doses, that is in the highly crosslinked

samples.
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