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Abstract 

We present single imputation method for missing values which borrows the idea of data  

depth—a measure of centrality defined for an arbitrary point of a space with respect to a prob- 

ability distribution or data cloud. This consists in iterative maximization of the depth of each 

observation with missing values, and can be employed with any properly defined statistical depth 

function. For each single iteration, imputation reverts to optimization of quadratic, linear, or 

quasiconcave functions that are solved analytically by linear programming or the Nelder-Mead 

method. As it accounts for the underlying data topology, the procedure is distribution free, allows 

imputation close to the data geometry, can make prediction in situations where local imputation 

(k-nearest neighbors, random forest) cannot, and has attractive robustness and asymptotic prop- 

erties under elliptical symmetry. It is shown that a special case—when using the Mahalanobis 

depth—has direct connection to well-known methods for the multivariate normal model, such as 

iterated regression and regularized PCA. The methodology is extended to multiple imputation for 

data stemming from an elliptically symmetric distribution. Simulation and real data studies show 

good results compared with existing popular alternatives. The method has been implemented as 

an R-package. Supplementary materials for the article are available online. 
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1 Introduction 

Missing data is a ubiquitous problem in statistics. Non-responses to surveys, machines that break 

and stop reporting, and data that have not been recorded, impede analysis and threaten the validity 

of inference. A common strategy (Little and Rubin, 2002) for dealing with missing values is 

single imputation, replacing missing entries with plausible values to obtain a completed data set, 

which can then be analyzed. 

There are two main families of parametric imputation methods: “joint” and “conditional” 

modeling, see e.g., Josse and Reiter (2018) for a literature overview. Joint modeling specifies a 

joint distribution for the data, the most popular being the normal multivariate distribution. The 

parameters of the distribution, here the mean and the covariance matrix, are then estimated from 

the incomplete data using an algorithm such as expectation maximization (EM) (Dempster et al., 

1977). The missing entries are then imputed with the conditional mean, i.e., the conditional 

expectation of the missing values, given observed values and the estimated parameters. An al- 

ternative is to impute missing values using a principal component analysis (PCA) model which 

assumes data are generated as a low rank structure corrupted by Gaussian noise. This method is 

closely connected to the literature on matrix completion Josse and Husson (2012), Hastie et al. 

(2015), and has shown good imputation capacity due to the plausibility of the low rank assump- 

tion (Udell and Townsend, 2017). The conditional modeling approach (van Buuren, 2012) con- 

sists in specifying one model for each variable to be imputed, and considers the others variables 

as explanatory. This procedure is iterated until predictions stabilize. Nonparametric imputation 

methods have also been developed such as imputation by k-nearest neighbors (kNN) (see Troy- 

anskaya et al., 2001, and references therein) or random forest (Stekhoven and Bühlmann, 2012). 

Most imputation methods are defined under the missing (completely) at random (M(C)AR) 

assumption, which means that the probability of having missing values does not depend on miss- 

ing data (nor on observed data). Gaussian and PCA imputations are sensitive to outliers and 

deviations from distributional assumptions, whereas nonparametric methods such as kNN and 

random forest cannot extrapolate. 

Here we propose a family of nonparametric imputation methods based on the notion of a 

statistical depth function (Tukey, 1975). Data depth is a data-driven multivariate measure of 

centrality that describes data with respect to location, scale, and shape based on a multivariate or- 

dering. It has been applied in multivariate data analysis (Liu et al., 1999), classification (Jörnsten, 

2004, Lange et al., 2014), multivariate risk measurement (Cascos and Molchanov, 2007), and ro- 

bust linear programming (Bazovkin and Mosler, 2015), but has never been applied in the context 

of missing data. Depth based imputation provides excellent predictive properties and has the 

advantages of both global and local imputation methods. It imputes close to the data geometry, 

while still accounting for global features. In addition, it allows robust imputation in both outliers 

and heavy-tailed distributions. 

Figures 1 and 2 motivate our proposed depth-based imputation by contrasting it to classical 

methods.  First, 150 points are drawn from a bivariate normal distribution with mean µ1  = 

(1, 1)T and covariance Σ1 =  (1, 1)T, (1, 4)T  and 30% of the entries are removed completely 
at random in both variables; points with one missing entry are indicated by dotted lines while 

solid lines provide (oracle) imputation using distribution parameters. The imputation assuming a 

joint Gaussian distribution using EM estimates is shown by rhombi (Figure 1, left). Zonoid depth- 

based imputation, represented by filled circles, shows that the sample is not necessarily normal, 

and that this uncertainty increases as we move to the fringes of the data cloud, where imputed 

points deviate from the conditional mean towards the unconditional one.  Second, the missing 
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Figure 1: Bivariate normal distribution with 30% MCAR (left) and with MAR in the second 

coordinate for values > 3.5 (right); imputation using maximum zonoid depth (filled circles), con- 

ditional mean imputation using EM estimates (rhombi), and random forest imputation (triangles). 

 

 
values are generated as follows:  the first coordinate is removed when the second coordinate 

> 3.5 (Figure 1, right). Here, the depth-based imputation allows extrapolation when predicting 

missing values, while the random forest imputation (triangles) gives, as expected, rather poor 

results. 

In Figure 2 (left), we draw 500 points, 425 from the same normal distribution as above, with 

15% of MCAR values and 75 outliers from the Cauchy distribution with the same center and 

shape matrix and without missing values. In Figure 2 (right), we depict 1000 points drawn from 

Cauchy distribution with 15% MCAR. As expected, imputation with conditional mean based 

on EM estimates (rhombi) is rather random. Depth-based imputation with Tukey depth (filled 

circles) has robust imputed values that are close to the (distribution’s) regression lines reflecting 

data geometry. 

The paper is organized as follows. Section 2 describes the algorithm for imputing by data 

depth and derives its theoretical properties under ellipticity. Section 3 describes the special case of 

imputation with Mahalanobis depth, emphasizing its relationship to existing imputation methods 

by regression and PCA, and imputation with zonoid and Tukey depths. For each of them, we 

suggest an efficient optimization strategy. Next, to go beyond ellipticity, we propose imputation 

with local depth (Paindaveine and Bever, 2013) appropriate to data with non-convex support. 

Section 4 provides a comparative simulation and real data study. Section 5 extends the proposed 

approach to multiple imputation in order to perform statistical inference with missing values. 

Section 6 concludes the article, gathering together some useful remarks. Proofs are available in 

the supplementary materials. 
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Figure 2: Left: Mixture of normal (425 points, 15% MCAR) and Cauchy (75 points) samples. 

Right: 1000 Cauchy distributed points with 15% MCAR. Imputation with Tukey depth (filled 

circles) and conditional mean imputation using EM estimates (rhombi). 

 

2 Imputation by depth maximization 

2.1 Imputation by iterative regression 

Let X be a random vector in Rd and denote X = (x1, . . . , xn)T a sample. For a point xi X, 

we denote miss(i) and obs(i) the sets of its coordinates containing missing and observed values, 

|miss(i)| and |obs(i)| their corresponding cardinalities. 

Let the rows xi be i.i.d. draws from  (µX , ΣX). One of the simplest conditional methods 

for imputing missing values consists in the following iterative regression imputation: (1) initialize 

missing values arbitrary, using unconditional mean imputation; (2) impute missing values in one 

variable by the values predicted by the regression model of this variable with the remaining 

variables taken as explanatory ones, (3) iterate through variables containing missing values until 

convergence.  Here, at each step, each point xi with missing values at a coordinate j is imputed 
with the univariate conditional mean E[X |X{1,...,d}\{j} = xi,{1,...,d}\{j}, µX  = µX , ΣX = ΣX ] 

with the moment estimates µX  = 1 
Σn 

xi and ΣX = 1 
Σn (xi − µX )(xi − µX )T. 

 xi with missing values in miss(i) is imputed with the multivariate 
conditional mean 

 

E[X|Xobs(i) = xi,obs(i), µX = µX , ΣX = ΣX] (1) 

= µX miss(i) + ΣX miss(i),obs(i)Σ
−1

 

The last expression is the closed-form solution to 

.
xi,obs(i) − µX obs(i)

Σ
. 

 

 
zmiss(i) ∈R| 

min 
miss(i)| , zobs(i)

 

 
=xobs(i) 

dM (z, µX |ΣX) 

After convergence, each point 
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with d2 (z, µX |ΣX) = (z − µX )TΣ−1(z − µX ) being the squared Mahalanobis distance 

from z to µX . Minimizing the Mahalanobis distance can be seen as maximizing a centrality 

measure—the Mahalanobis depth: 
 

max 
zmiss(i)∈R|miss(i)| , zobs(i)=xobs(i) 

DM (z|X) 

 

where the Manahalobis depth of x ∈ Rd w.r.t. X is defined as follows. 

Definition 1. (Mahalanobis, 1936) DM (x X) = 1 + (x µX 

and ΣX are the location and shape parameters of X. 

)TΣ−1(x − µX )
Σ−1

, where µ 

In its empirical version DM ( X), the parameters are replaced by their estimates. 

The Manahalobis depth is the simplest instance of a statistical depth function. We now gen- 

eralize the iterative imputation algorithm to other depths. 

 
2.2 Imputation by depth maximization 

2.2.1 Definition of data depth 

Definition 2.  (Zuo and Serfling, 2000a) A bounded non-negative mapping D(·|X) from Rd  to 

R is called a statistical depth function if it is (P1) affine invariant, i.e., D(x|X) = D(Ax + 

b|AX + b) for any invertible d × d matrix A and any b ∈ Rd; (P2) maximal at the symmetry 

center, i.e., D(c|X) = supx∈Rd D(x|X) for any X halfspace symmetric around c (A random 

vector X having distribution PX is said to be halfspace symmetric around (a center) c ∈ Rd if 
PX (H)  ≥  1  for every halfspace H containing c.); (P3) monotone w.r.t.  the deepest point, i.e., 

2 . Σ 
for any X having c as a deepest point, D(x|X) ≤ D αc + (1 − α x)|X) for any x ∈ Rd and 

α ∈ [0, 1]; (P4) vanishing at infinity, i.e., limǁxǁ→0 D(x|X) = 0. 

Additionally, we require (P5) quasiconcavity of D(·|X), upper-level sets (or depth-trimmed 

regions) Dα(X) =  x  Rd  :  D(x X)   α  to be convex, a useful property for optimization. 

We denote Dn( X) the corresponding empirical depth. See also Zuo and Serfling (2000b) for a 

reference on depth contours. 

 
2.2.2 Imputation by depth maximization 

We suggest a unified framework to impute missing values by depth maximization, which extends 

iterative regression imputation. More precisely, consider the following iterative scheme: (1) 

initialize missing values arbitrarily using unconditional mean imputation; (2) impute a point x 

containing missing coordinates with the point y maximizing data depth conditioned on observed 

values xobs: 

y = argmax 
zmiss∈R|miss| , zobs=xobs 

Dn(z|X) ; (2) 

(3) iterate until convergence. 

The solution of (2) can be non-unique (see Figure 1 in the supplementary materials for an 

illustration) and the depth value may become zero immediately beyond the convex hull of the 

X 
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13: yi ← ID yi, Dn(·|Z) 
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support of the distribution. To avoid these problems, we suggest imputation by depth (ID) of an 

x which has missing values with y = ID  x, Dn(·|X)  : 

ID  x, Dn(·|X) =    ave arg min 
u∈Rd , uobs=xobs 

{ǁu − vǁ | v ∈ Dn,α∗ (X)}
Σ
, (3) 

with α∗ = inf 
α∈(0;1) 

.
α | Dn,α(X) ∩ {z | z ∈ Rd , zobs = xobs} = ∅

Σ
, 

where ave is the averaging operator. The imputation by iterative maximization of depth is sum- 

marized in Algorithm 1. The complexity of Algorithm 1 is O NsnmissΩ(D)  .  It depends on  

the data geometry and on the missing values (through the number of outer-loop iterations Ns 

necessary to achieve s-convergence), the number of points containing missing values nmiss, and 

the depth-specific complexities for solving (3) Ω(D) are detailed in subsections of Section 3. 

 

Algorithm 1 Single imputation 
 

1: function IMPUTE.DEPTH.SINGLE(X) 

2: Y X 

3: µ µ̂(obs)(X) D Calculate mean, ignoring missing values 

4: for i = 1 : n do 

5: if miss(i) ƒ= ∅ then 

6: yi,miss(i)  ← µmiss(i) D Impute with unconditional mean 

7: I 0 
8: repeat D Iterate until convergence or maximal iteration 

9: I I + 1 
10: Z Y 

11: for i = 1 : n do 

12: if miss(i) ƒ=.∅ then Σ 
 

14: until maxi∈{1,...,n},j∈{1,...,d} yi,j zi,j < s or I = Imax 

15: return Y 
 

 

2.2.3 Theoretical properties for elliptical distributions 

An elliptical distribution is defined as follows (see Fang et al. (1990), and Liu and Singh (1993) 

in the data depth context). 

Definition 3. A random vector X in Rd is elliptical if and only if there exists a vector µX ∈ Rd 

and d × d symmetric and positive semi-definite invertible matrix ΣX = ΛΛT such that for 

a random vector U uniformly distributed on the unit sphere Sd−1 and a non-negative random 

variable R, it holds that X =
D  

µ + RΛU . We then say that X ∼ Ed(µ   , ΣX , FR), where FR 
X 

is the cumulative distribution function of the generating variate R. 

Theorem 1 shows that for an elliptical distribution, imputation of one point with a quasi- 

concave uniformly consistent depth converges to the center of the conditional distribution when 

conditioning on the observed values. Theorem 1 is illustrated in Figure 2 in the supplementary 

materials. 

D Impute with maximum depth 
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X obs,obs 

− −→ 

µX j − ΣX j,−j Σ − 

. Σ 

X −j,−j 

a.s. 

| 

. Σ 

X obs(i),obs(i) 

Dn,α(X) 
a.s. 

n→∞ 
Dα(X). Then for y = ID , 

Theorem 1 (One row consistency). Let X = (x1, . . . , xn)T be a data set in Rd drawn i.i.d. from 

X ∼ Ed(µX, ΣX , FR) with d ≥ 2, FR absolutely continuous with strictly decreasing density, 

and let x = (xobs, xmiss) ∈ Rd  with |obs(x. )| ≥ 1.  FurΣther, let D(·|X) satisfy (P1)–(P5) and 

  
 

 
.ymiss 

− µX miss − ΣX miss,obsΣ
−1

 (xobs − µ X obs ). −
n→

−
∞
→ 0 . 

Theorem 2 states that if missing values constitute a portion of the sample but are in a single 

variable, the imputed values converge to the center of the conditional distribution when condi- 

tioning on the observed values. 

Theorem 2 (One column consistency). Let X = (x1, . . . , xn)T be a data set in Rd drawn 

i.i.d. from X ∼ Ed(µX, ΣX , FR) with d ≥ 2, FR absolutely continuous with strictly decreasing 

density, and let miss(i) = {j} with probability p ∈ (0, 1) for a fixed j ∈ {1, . . . , d}. Let 

D(·|Z) satisfy (P1)–(P5) and Dn,α(Z) 
a.s. 

n→∞ Dα(Z) for Z  =  (1 − p)X + pZ J with Z J  = 

−1 
if miss(i) = {j} X −j, j (X−j − µX −j ). Further, let Y  exist such that yi = ID  xi, Dn(·|Y ) otherwise. Then, for all i with miss(i) = {j} and denoting −j 

and yi = xi 

for {1, ..., d} \ {j}, 

.yi,j − µX j − ΣX j,−j Σ
−1

 (xi,−j − µ X −j )
. −

n→
−
∞
→ 0 . 

 

3 Which depth to use? 

The generality of the proposed methodology lies in the possibility of using any notion of depth 

which defines imputation properties. We focus here on imputation with Manahalobis, zonoid, 

and Tukey depths. These are of particular interest because they are quasiconcave and require 

two, one, and zero first moments of the underlying probability measure, respectively. 

Corollary 1. Theorems 1 and 2 hold for the Tukey depth, for the zonoid depth if E[ǁXǁ] < ∞, 

and for the Mahalanobis depth if E[ǁXǁ2] < ∞. 

In addition, the function f (zmiss) = Dn(z X) subject to zobs = xobs in equation (2), 

iteratively optimized in Algorithm 1, is quadratic for the Mahalanobis depth, continuous inside 

conv(X) (the smallest convex set containing X) for the zonoid depth, and stepwise discrete for 

the Tukey depth, which in all cases leads to efficient implementations. For a trivariate Gaussian 

sample, f (zmiss) is depicted in Figure 1 in the supplementary materials. 

The use of a non-quasiconcave depth (e.g., simplicial, spatial (Nagy, 2017),  etc.)  results  

in non-convex optimization when maximizing depth, and this non-stability impedes numerical 

convergence of the algorithm. 

 

3.1 Mahalanobis depth 

Imputation with the Mahalanobis depth is related to existing methods. First, we show the link 

with the minimization of the covariance determinant. 

Proposition 1 (Covariance determinant is quadratic in a point’s missing entries). Let X(y) = 

x1, . . . , (xi,1, . . . , xi,|obs(i)|, yT)T, . . . , xn 
T 

be a n × d matrix with ΣX(y) invertible for all 
y ∈ R|miss(i)|. Then |ΣX(y)| is quadratic and globally minimized in y = µX miss(i)(y) + 

ΣX miss(i),obs(i)(y)Σ−1 (y)
.
(xi,1, . . . , xi,|obs(i)|) − µX obs(i)

Σ
. 

a.s. 

x, Dn(·|X) − −→ 
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n 

Y obs(i),obs(i) 

1 

∂Xmiss 

Σ
=

 
λ 

. Σ 

∈ 

α α 

n 

and for α =  0 as Dz(X)  =  cl 
.
∪α∈(0,1]Dz (X)

Σ
, where cl denotes the closure.  Its empirical 

λixi : λi = 1 , λi ≥ 0 , αλi ≤ ∀ i ∈ {1, . . . , n} 
i=1 i=1 

n 

From Proposition 1 it follows that the minimum of the covariance determinant is unique and 

the determinant itself decreases at each iteration. Thus, to impute points with missing coordinates 

one-by-one and iterate until convergence constitutes the block coordinate descent method, which 

can be proved to numerically converge due to Proposition 2.7.1 from Bertsekas (1999) (as long 

as ΣX is invertible). 

Further, Theorem 3 states that imputation using the maximum Mahalanobis depth, iterative 

(multiple-output) regression, and regularized PCA (Josse and Husson, 2012) with S = d 1 

dimensions, all converge to the same imputed sample. 

Theorem 3. Suppose that we impute X = (Xmiss, Xobs) in Rd with Y so that yi = 

argmaxz  
obs(i) =yobs(i) DM (z|Y ) for each i with |miss(i)| > 0 and yi = xi otherwise. Then for 

each such yi, it also holds that: 

• xi is imputed with the conditional mean: 

yi,miss(i) = µY miss(i) + ΣY miss(i),obs(i)Σ
−1

 

which is equivalent to single- and multiple-output regression, 

 
 
(xobs(i) − µY obs(i)) 

• Y  is a stationary point of |ΣX(Xmiss)|:   ∂ |ΣX |  (Y miss) = 0, and 

• each missing coordinate j of xi is imputed with regularized PCA as in Josse & Husson 

(2012) with any 0 < σ2 ≤ λd and.with X − µX  = U Λ 2 V T the singular value decom- 

         

The first point of the theorem sheds light on the connection between imputation by Maha- 

lanobis depth and the iterative regression imputation of Section 2.1. When the Mahalanobis depth 

is used in Algorithm 1, each xi with missingness in miss(i) is imputed by the multivariate con- 

ditional mean as in equation (1), and thus lies in the  d −|miss(i)| -dimensional multiple-output 

regression subspace of X ·,miss(i) on X ·,obs(i). This subspace is obtained as the intersection of the 

single-output regression hyperplanes X ·,j on X ·,{1,...,d}\{j} for all j    miss(i) corresponding to 
missing coordinates. The third point strengthens the method as imputation with regularized PCA 

has proved to be highly efficient in practice due to its sticking to low-rank structure of importance 

and ignoring noise. 

The complexity of imputing a single point with the Mahalanobis depth is O(nd2 + d3). De- 

spite its good properties, it is not robust to outliers.  However,  robust estimates for µX   and 

ΣX can be used, e.g., the minimum covariance determinant ones (MCD, see Rousseeuw and 

Van Driessen, 1999). 

 
3.2 Zonoid depth 

Koshevoy and Mosler (1997) define a zonoid trimmed region, with α ∈ (0, 1], as 

 
Dz (X) = 

Rd 

 
xg(x)dPX (x) : g : Rd ›→ 

Σ

0,
 1 

Σ 

measurable and 

∫

 
 
g(x)dPX (x) = 1

,
 

 

0 α 

version can be defined as 

,Σn Σ 1 , 

. Y j + µ j,s 
λs−σ2 V 

s 
i,s U d 

s=1 i,j position (SVD): y 

D z 
n,α (X) = . 

,∫ 

Rd 
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Σ

. 

minu d−1 n i  : xi u x 

Donoho and Gasko (1992). 
u , i = 1, ..., n} . For more information on Tukey depth see 

z 

Definition 4. (Koshevoy and Mosler, 1997) The zonoid depth of x w.r.t. X is defined as 
 

D (x|X) = 
sup  α : x Dz (X) if x conv supp(X) , 

0 otherwise. 
 

For a comprehensive reference on the zonoid depth, the reader is referred to Mosler (2002). 

Imputation of a point xi in Algorithm 1 is then performed by a slight modification of the 

linear programming for computation of zonoid depth with variables γ and λ = (λ1, ..., λn)T: 

min γ s.t. XT 
· ,obs(i) 

λ = xi,obs(i) , λT1n = 1 , γ1n − λ ≥ 0n , λ ≥ 0n . 

Here X ·,obs(i) stands for the completed n     obs(i)  data matrix containing columns correspond- 

ing only to non-missing coordinates of xi, and 1n (respectively 0n) is a vector of ones (respec- 

tively zeros) of length n. In the implementation, we use the simplex method, which is known for 

being fast despite its exponential complexity. This implies that, for each point xi, imputation is 

performed by the weighted mean: 
 

yi,miss(i) = XT
,miss(i)λ , 

the average of the maximum number of equally weighted points. Additional insight on the posi- 

tion of imputed points with respect to the sample can be gained by inspecting the optimal weights 

λi. Zonoid imputation is related to local methods such as as kNN imputation, as only some of 

the weights are positive. 

 
3.3 Tukey depth 

Definition 5. (Tukey, 1975) The Tukey  depth of x w.r.t.  X is defined as DT (x|X)  =  

inf{PX (H) : H a closed halfspace, x ∈ H}. 

In the empirical version, the probability is substituted by the portion of X giving DT (x|X) = 
n 

1 . T T . 
 

With  nonparametric imputation by Tukey  depth,  one can expect that after convergence   

of  Algorithm  1,  for  each  point  initially  containing  missing  values,  it  holds  that  yi   = 

argmaxzobs=xobs  
minu      d−1     k  :   yT

k u       zTu, k       1, ..., n     .  Thus,  imputation is per- 
formed according to the maximin principle based on criteria involving indicator functions, which 

implies robustness of the solution. Note that as the Tukey depth is not continuous, the searched- 

for maximum (2) may be non-unique (see Figure 1 (top right) in the supplementary materials), 

and we impute with the barycenter of the maximizing arguments (3). Due to the combinato- 

rial nature of the Tukey depth, to speed up implementation, we run 2d times the Nelder-Mead 

downhill-simplex algorithm, and take the average over the solutions. The imputation is illus- 

trated in Figure 3 in the supplementary materials. 

The Tukey depth can be computed exactly (Dyckerhoff and Mozharovskyi, 2016) with com- 

plexity O(nd−1 log n), although to avoid computational burden we also implement its approxi- 

mation with random directions (Dyckerhoff, 2004) having complexity O(kn), with k denoting 

the number of random directions. All of the experiments are performed with exactly computed 
Tukey depth, unless stated otherwise. 
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1 PX  +  1 P2x− 

.X 

LD  (·, X)   :   R →  R :   x  ›→  LD  (x, X)  =  D(x|X ) X 

·| 

{ } 

3.4 Beyond ellipticity: local depth 

Imputation with the so-called “global depth” from Definition 2 may be appropriate in applications 

even if the data moderately deviate from ellipticity (see Section 4.2.6). However, it can fail when 

the distribution has non-convex support or several modes. A solution is to use the local depth in 

Algorithm 1. 

Definition 6. (Paindaveine and Bever, 2013) For a depth D( X), the β-local depth is defined 

as      β d + β β,x    with    β,x  the conditional 

distribution of X conditioned on 
T

α≥0, PY (Dα(Y ))≥β Dα(Y ), where Y has the distribution PY = 
2 2 

The locality level β should be chosen in a data-driven way, for instance by cross-validation. 

An important advantage of this approach is that any depth satisfying Definition 2 can be plugged 

in to the local depth. We suggest using the Nelder-Mead algorithm to enable imputation with 

maximum local depth regardless of the chosen depth notion. 

 
3.5 Dealing with outsiders 

A number of depths that exploit the geometry of the data are equal to zero beyond conv(X), 

including the zonoid and Tukey depths. Although (3) deals with this situation, for a finite sample 

it means that points with missing values having the maximal value in at least one of the observed 

coordinates will never move from the initial imputation because they will become vertices of the 

conv(X). For the same reason, other points to be imputed and lying exactly on the conv(X) will 

not move much during imputation iterations. As such points are not numerous and would need 

to move quite substantially to influence imputation quality, we impute them—during the initial 

iterations—using the spatial depth function (Vardi and Zhang, 2000), which is everywhere non- 

negative. This resembles the so-called “outsider treatment” introduced by Lange et al. (2014). 

Another possibility is to extend the depth beyond conv(X), see e.g., Einmahl et al. (2015) for the 

Tukey depth. 

 

4 Experimental study 

4.1 Choice  of competitors 

We assess the prediction abilities of Tukey, zonoid, and Mahalanobis depth imputation, and the 

robust Mahalanobis depth imputation using MCD mean and covariance estimates, with the ro- 

bustness parameter chosen in an optimal way due to knowledge of the simulation setting. We 

measure their performance against the competitors: conditional mean imputation based on EM 

estimates of the mean and covariance matrix; regularized PCA imputation with rank 1 and 2; 

two nonparametric imputation methods: random forest (using the default implementation in the 

R-package missForest), and kNN imputation choosing k from 1, . . . , 15 , minimizing the 

imputation error over 10 validation sets as in Stekhoven and Bühlmann (2012). Mean and oracle 

(if possible) imputations are used to benchmark the results. 
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4.2 Simulated data 

4.2.1 Elliptical setting with Student-t distribution 

We generate 100 points according to an elliptical distribution (Definition 3) with µ2 = (1, 1, 1)T 
and the shape Σ2 = (1, 1, 1)T, (1, 4, 4)T, (1, 4, 8)T , where F is the univariate Student-t dis- 

tribution ranging in number of degrees of freedom (d.f.)   from the Gaussian to the Cauchy:      

t =  , 10, 5, 3, 2, 1.  For each of the 1000 simulations, we remove 5%, 15% and 25% of val-  

ues completely at random (MCAR), and compute the median and the median absolute deviation 

from the median (MAD) of the root mean square error (RMSE) of each imputation method. Ta- 

ble 1 presents the results for 25% missing values. The conclusions with other percentages (see the 

supplementary materials) are the same, but as expected, performances decrease with increasing 

percentage of missing data. 

 
Distr. DT uk Dzon DMah DMah 

MCD.75 EM regPCA1 regPCA2 kNN RF mean oracle 

t ∞ 1.675 

(0.205) 

1.871 

(0.2445) 

2.143 

(0.3313) 

2.636 

(0.5775) 

3.563 

(1.09) 

16.58 
(13.71) 

1.609 

(0.1893) 

1.81 

(0.2395) 

2.089 

(0.3331) 

2.603 

(0.5774) 

3.73 

(1.236) 

19.48 
(16.03) 

1.613 

(0.1851) 

1.801 

(0.2439) 

2.079 

(0.3306) 

2.62 

(0.5745) 

3.738 

(1.183) 

19.64 
(16.2) 

1.991 

(0.291) 

2.214 

(0.3467) 

2.462 

(0.4323) 

2.946 

(0.6575) 

3.989 

(1.287) 

16.03 

(12.4) 

1.575 

(0.1766) 

1.755 

(0.2379) 

2.026 

(0.3144) 

2.516 

(0.5537) 

3.567 

(1.146) 

18.5 
(15.46) 

1.65 

(0.1846) 

1.836 

(0.2512) 

2.108 

(0.3431) 

2.593 

(0.561) 

3.692 

(1.186) 

18.22 
(15.02) 

1.613 

(0.1856) 

1.801 

(0.2433) 

2.08 

(0.3307) 

2.619 

(0.5741) 

3.738 

(1.19) 

19.61 
(16.1) 

1.732 

(0.2066) 

1.923 

(0.2647) 

2.235 

(0.3812) 

2.757 

(0.5874) 

3.798 

(1.133) 

17.59 
(14.59) 

1.763 

(0.2101) 

1.96 

(0.2759) 

2.259 

(0.3656) 

2.79 

(0.5856) 

3.849 

(1.19) 

17.48 
(14.33) 

2.053 

(0.2345) 

2.292 

(0.2936) 

2.612 

(0.3896) 

3.165 

(0.6042) 

4.341 

(1.252) 

20.32 
(16.36) 

1.536 

(0.1772) 

1.703 

(0.2206) 

1.949 

(0.3044) 

2.384 

(0.5214) 

3.175 

(0.9555) 

13.55 
(10.71) 

t 10 

t 5 

t 3 

t 2 

t 1 

Table 1: Median and MAD of the RMSEs of the imputation for a sample of 100 points drawn 

from elliptically symmetric Student-t distributions with µ2 and Σ2 with 25% of MCAR values, 

over 1000 repetitions. Bold values indicate the best results, italics the second best. 

 
 

As expected, the behavior of the different imputation methods changes with the number of 

d.f., as does the overall leadership trend. For the Cauchy distribution, robust methods perform 

best: Mahalanobis depth-based imputation using MCD estimates, followed closely by the one 

using Tukey depth. For 2 d.f., when the first moment exists but not the second, EM- and Tukey- 

depth-based imputations perform similarly, with a slight advantage to the Tukey depth in terms of 

MAD. For larger numbers of d.f., when two first moments exist, EM takes the lead. It is followed 

by the group of regularized PCA methods, and Mahalanobis- and zonoid-depth-based imputa- 

tion. Note that the Mahalanobis depth and regularized PCA with rank two perform similarly 

(the small difference can be explained by numerical precision considerations), see Theorem 3. 

Both nonparametric methods perform poorly, being “unaware” of the ellipticity of the underlying 

distribution, but give reasonable results for the Cauchy distribution because of insensitivity to 

correlation. By default, we present the results obtained with spatial depth for the outsiders. For 

the Tukey depth, implementation is also available using the extension by Einmahl et al. (2015). 

 
4.2.2 Contaminated elliptical setting 

We then modify the above setting by adding 15% of outliers (which do not contain missing 

values) that stem from the Cauchy distribution with the same parameters µ2 and Σ2. As expected, 

Table 2 shows that the best RMSEs are obtained by the robust imputation methods: Tukey depth 
and Mahalanobis depth with MCD estimates. Being restricted to a neighborhood, nonparametric 
methods often impute based on non-outlying points, and thus perform less well as the preceding 
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Distr. DT uk Dzon DMah DMah 
MCD.75 EM regPCA1 regPCA2 kNN RF mean oracle 

t ∞ 1.751 

(0.2317) 

1.942 

(0.2976) 

2.178 

(0.3556) 

2.635 

(0.6029) 

3.763 

(1.17) 

17.17 

(13.27) 

1.86 

(0.3181) 

2.087 

(0.4295) 

2.333 

(0.4924) 

2.864 

(0.7819) 

4.082 

(1.535) 

20.43 

(15.99) 

1.945 

(0.4299) 

2.165 

(0.5473) 

2.421 

(0.6026) 

2.935 

(0.8393) 

4.136 

(1.501) 

20.27 

(15.91) 

1.81 

(0.239) 

2.022 

(0.3128) 

2.231 

(0.381) 

2.664 

(0.5877) 

3.783 

(1.224) 

16.46 

(12.94) 

1.896 

(0.3987) 

2.112 

(0.5226) 

2.376 

(0.5715) 

2.828 

(0.7773) 

4.036 

(1.518) 

19.01 

(15.21) 

1.958 

(0.4495) 

2.196 

(0.5729) 

2.398 

(0.6035) 

2.916 

(0.8221) 

4.09 

(1.585) 

19.81 

(16.15) 

1.945 

(0.4328) 

2.165 

(0.5479) 

2.421 

(0.5985) 

2.93 

(0.8384) 

4.14 

(1.503) 

20.53 

(16.28) 

1.859 

(0.2602) 

2.051 

(0.3143) 

2.315 

(0.3809) 

2.797 

(0.6045) 

3.955 

(1.265) 

18.96 

(14.73) 

1.86 

(0.2332) 

2.047 

(0.3043) 

2.325 

(0.3946) 

2.838 

(0.6228) 

4.026 

(1.354) 

19.04 

(14.62) 

2.23 

(0.3304) 

2.48 

(0.4163) 

2.766 

(0.528) 

3.34 

(0.7721) 

4.623 

(1.561) 

21.04 

(15.56) 

1.563 

(0.1849) 

1.733 

(0.2266) 

1.939 

(0.2979) 

2.356 

(0.4946) 

3.323 

(1.04) 

14.44 

(11.33) 

t 10 

t 5 

t 3 

t 2 

t 1 

 

Table 2: Median and MAD of the RMSEs of the imputation for 100 points drawn from elliptically 

symmetric Student-t distributions, with µ2 and Σ2 contaminated with 15% of outliers, and 25% 

of MCAR values on non-contaminated data, repeated 1000 times. 

 

 
group. The rest of the included imputation methods cannot deal with the contaminated data and 

perform rather poorly. 

 
4.2.3 The MAR setting 

We next generate highly correlated Gaussian data by setting µ3 = (1, 1, 1) and the covariance 

matrix to Σ3 = (1, 1.75, 2)T, (1.75, 4, 4)T, (2, 4, 8)T .  We  insert missing values according to 

the MAR mechanism: the first and third variables are missing depending on the value of the sec- 

ond variable. Figure 3 (left) shows the boxplots of the RMSEs. As we expected, semiparametric 
 

 

 

 

 

 

 

 

 

 

 
 

d.Tuk       d.zon      d.Mah     d.MahR       EM        rPCA1   rPCA2      kNN RF        mean        orcl d.Tuk       d.zon      d.Mah     d.MahR       EM        rPCA1   rPCA2      kNN RF mean orcl 

 

Figure 3: Left: RMSEs for different imputation methods for 100 points drawn from a correlated 

3-dimensional Gaussian distribution with µ3 and Σ3 with MAR values (see implementation for 

details), over 1000 repetitions. Right: 1000 points drawn from a 6-dimensional Gaussian dis- 

tribution with µ4 and Σ4 contaminated with 15% of outliers, and 15% of MCAR values on non-

contaminated data, over 500 repetitions. 

 
 

methods (EM, regularized PCA and Mahalanobis depth) perform close to the oracle imputation. 

The good performance of the rank 1 regularized PCA can be explained by the high correla-  

tion between variables. The zonoid depth imputes well despite having no parametric knowledge. 

Nonparametric methods are unable to capture the correlation, while robust methods “throw away” 

points possibly containing valuable information. 
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4.2.4 The low-rank model 

We consider as a stress-test an extremely contaminated low-rank model by adding to a 2- 

dimensional low-rank structure a Cauchy-distributed noise. Generally, while capturing any struc- 

ture is rather meaningless in this setting (confirmed by the high MADs in Table 3), the perfor- 

mance of the methods is “proportional to the way they ignore” dependency information. For this 

reason, mean imputation as well as nonparametric methods perform best. The Tukey and zonoid 

depths perform second best by accounting only for fundamental features of the data. This can 

be also said about the regularized PCA when keeping the first principal component only. The 

remaining methods try to reflect the data structure, but are distracted either by the low rank or the 

heavy-tailed noise. 
 

 DTuk Dzon DMah DMah 
MCD.75 EM regPCA1 regPCA2 kNN RF mean 

Median RMSE 

Mad of RMSE 

0.4511 

0.3313 

0.4536 

0.3411 

0.4795 

0.3628 

0.5621 

0.4355 

0.4709 

0.3595 

0.4533 

0.3461 

0.4664 

0.3554 

0.4409 

0.3302 

0.4444 

0.3389 

0.4430 

0.3307 

Table 3: Medians and MADs of the RMSE for a rank-two model in R4 of 50 points with Cauchy 

noise and 20% of missing values according to MCAR, over 1000 repetitions. 

 

 

4.2.5 Contamination in higher dimensions 

To check the resistance to outliers in higher dimensions, we consider a simulation setting 

similar to that of Section 4.2.2, in dimension 6, with a normal multivariate distribution with 

µ4  = (0, . . . , 0)T and a Toeplitz covariance matrix Σ4 (having σi,j  = 2−|i−j | as entries).  The 

data are contaminated with 15% of outliers and have 15% of MCAR values on non-contaminated 

data. The Tukey depth is approximated using 1000 random directions. Figure 3 (right) shows that 

the Tukey depth imputation has high predictive quality, comparable to that of the random forest 

imputation even with only 1000 random directions. 

 
4.2.6 Skewed distributions and distributions with non-convex support 

First, let us consider only a slight deviation from ellipticity. We simulate 150 points from a 

skewed normal distribution (Azzalini and Capitanio, 1999), insert 15% MCAR values, and im- 

pute them with global (Tukey, zonoid and Mahalanobis) depths and their local versions (see 

Section 3.4). This is shown in Figure 4. In this setting, both global and local imputation perform 

similarly. 

Further, let us consider an extreme departure from elliplicity with the moon-shaped example 
from Paindaveine and Bever (2013). We generate 150 bivariate observations from (X1, X2)T 

with X1 ∼ U (−1, 1) and X2|X1 = x1 ∼ U 1.5(1 − x2), 2(1 − x2) , and introduce 15% of 

MCAR values on X2, see Figure 5 (left). Figure 5 (right) shows boxplots of the RMSE for 

single imputation using local Tukey,  zonoid and Mahalanobis depths.  If the depth and value   

of β are properly chosen (this can be achieved by cross-validation), the local-depth imputation 

considerably outperforms the classical methods as well as the global depth. 

 
4.3 Real data 

We validate the proposed methodology on three real data sets taken from the UCI Machine Learn- 

ing Repository (Dua and Karra Taniskidou, 2017) and on the Cows data set. We thus consider 
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d.Tuk       d.zon       d.Mah     d.MahR       EM      rPCA1      kNN RF mean ld.Tuk ld.zon ld.Mah 

 

Figure 4: Left:  An example of Tukey  depth imputation (pluses).  Right:  boxplots of RMSEs  

of the prediction for 150 points drawn from a skewed distribution with 15% MCAR, over 100 

repetitions; ld.* stands for the local depth with β = 0.8. 
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d.Tuk       d.zon       d.Mah     d.MahR       EM      rPCA1      kNN RF mean ld.Tuk ld.zon ld.Mah 

 

Figure 5: Left: Comparison of global (crosses) and local (pluses) Tukey depth imputation. Right: 

boxplots of RMSEs of predictions for 150 points drawn from the moon-shaped distribution with 

15% MCAR values in the second coordinate, over 100 repetitions; ld.* stands for the local depth 

with β = 0.2. 

 

 
Banknotes (n = 100, d = 3), Glass (n = 76, d = 3), Blood Transfusion (n = 502, d = 3, Yeh  

et al., 2009), and Cows (n = 3454, d = 6). For details on the experimental design, see the imple- 

mentation. Figure 6 shows boxplots of the RMSEs for the ten imputation methods considered. 

The zonoid depth is stable across data sets and provides the best results. 

Observations in Banknotes are clustered in two groups, which explains the poor performance 

of the mean and one-dimensional regularized PCA imputation. The zonoid depth searches for  

a compromise between local and global features and performs the best. The Tukey depth cap- 

tures the data geometry, but under-exploits information on points’ location. Methods imputing 

by conditional mean (Mahalanobis depth, EM-based, and regularized PCA imputation) perform 

similarly and reasonably well while imputing in two-dimensional affine subspaces. The Glass 

data is challenging as it highly deviates from ellipticity, and part of the data lie sparsely in part 
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Figure 6: RMSEs for the Banknotes (top, left), Glass (top, right), Cows (bottom, left), and Blood 

Transfusion (bottom, right) data sets with 15% (5% for Cows) of MCAR values over 500 repeti- 

tions. 

 

 
of the space, but do not seem to be outlying. Thus, the mean, and robust Mahalanobis and Tukey 

depth imputation perform poorly. Accounting for local geometry, random forest and zonoid depth 

perform slightly better. For the Cows data, which is larger-dimensional, the best results are ob- 

tained with random forest, but followed closely by zonoid depth imputation which reflects the 

data structure. The Tukey depth with 1000 directions struggles, while the satisfactory results of 

EM suggest that the data are close to elliptical. The Blood Transfusion data visually resemble  

a tetrahedron dispersed from one of its vertices. Thus, mean imputation can be substantially 

improved. Nonparametric methods and rank one regularized PCA perform poorly because they 

disregard dependency between dimensions. Better imputation is delivered by those capturing 

correlation: the depth- and EM-based methods. 

Table 4 shows the time taken by different imputation methods. Zonoid imputation is very 

fast, and the approximation scheme by Dyckerhoff (2004) allows for a scalable application of the 

Tukey depth. 

 

5 Multiple imputation for the elliptical family 

When the objective is to predict missing entries as well as possible, single imputation is well 

suited. When analyzing complete data, it is important to go further, so as to better reflect the 

uncertainty in predicting missing values. This can be done with multiple imputation (MI) (Little 
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N 

| ≤ | 

Σ 

√ 

y dM (z) − dM D(µ |X) 

Then, we draw a quantile Q uniformly on [0, FD(Y |X) D(µ∗|X) ] that gives the value of 

Data set DTuk Dzon DMah DMah 
MCD 

Higher dimension (Section 4.2.5) (n = 1000, d = 6) 3230∗
 1210 0.102 1.160 

Banknotes (n = 100, d = 3) 81.2 0.376 0.010 0.126 

Glass (n = 76, d = 3) 12.6 0.143 0.008 0.085 

Cows (n = 3454, d = 6) 4490∗
 14300 0.212 2.37 

Blood transfusion (n = 502, d = 3) 26400 51.3 0.46 0.775 

 

Table 4: Median (in seconds, over 35 runs) execution time for depth-based imputation. ∗ indicates 

approximate Tukey depth with 1000 random directions. 

 
and Rubin, 2002) where several plausible values are generated for each missing entry, leading 

to several imputed data sets. MI then applies a statistical method to each imputed data set, and 

aggregates the results for inference. Under the Gaussian assumption, the generation of several 

imputed data sets is achieved by drawing missing values from the Gaussian conditional distri- 

bution of the missing entries, e.g., imputing xmiss by draws from (µ, Σ) conditional on xobs, 

with the mean and covariance matrix estimated by EM. This method is called stochastic EM. The 

objective is to impute close to the underlying distribution. However, this is not enough to perform 

proper (Little and Rubin, 2002) multiple imputation, since uncertainty in the imputation model’s 

parameters must also be reflected. This is usually obtained either using a bootstrap or Bayesian 

approach, see e.g., Schafer (1997), Efron (1994), van Buuren (2012) for more details. 

The generic framework of depth-based single imputation developed above allows for multi- 

ple imputation to be extended to the more general elliptical framework. We first show how to 

reflect the uncertainty due to the distribution (Section 5.1), then apply bootstrap to reflect model 

uncertainty, and state the complete algorithm (Section 5.2). 

 
5.1 Stochastic single depth-based imputation 

The extension of stochastic EM to the elliptically symmetric distribution consists in drawing from 

a conditional distribution that is also elliptical. For this we design a Monte Carlo Markov chain 

(MCMC), see Figure 7 for an illustration of a single iteration. First, starting with a point with 

missing values and observed values xobs, we impute it with µ∗ by maximizing its depth (3), see 

Figure 7 (right).  Then, for each y with yobs  =  xobs it holds that D(y X)      D(µ∗ X).  The 

cumulative distribution function (with the normalization constant omitted as it is used, exception- 

ally, for drawing random variables) of the depth of the random vector Y corresponding to y can 

be written as 

∫ 
.. 

2
 

 

 

2 
. 

∗ 

 
 

ΣΣ|miss(x)|−1 

FD(Y |X)(y) = fD(X X)(z) 
0 

dM (z) 

dd−1(z) 
×

 (4) 

× . 
2 2  

. dz, 

 

where fD(X|X) denotes the density of the depth for a random vector X w.r.t.  itself, and dM (z)  

is the Mahalanobis distance to the center as a function of depth (see the supplementary materials 

for the derivation of this). For the specific case of the Mah.alanobis deΣpth, dM (x) = 1/x − 1. 

M 
| 

dM (z) − dM D(µ∗|X) 
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obs(x),obs(x) 

M 

| 

the depth of y as α = F −1 
D(Y |X) (Q), see Figure 7 (left). α defines a depth contour, which 

is depicted as an ellipsoid in Figure 7 (right). Finally, we draw y uniformly in the inter-  
section of this contour with the hyperplane of missing coordinates:  y  ∈  ∂Dα(X) ∩ {z  ∈   

Rd | zobs(x) = xobs}. This is done by drawing u uniformly on S|miss(x)|−1 and transform- ing  it  

using  a  conditional  scatter  matrix,  obtaining  u∗  ∈  Rd,  where  u∗
miss(x)   =  Λu  (with 

Λ(Λ)T = Σmiss(x),miss(x) − Σmiss(x),obs(x)Σ
−1

 Σobs(x),miss(x))  and  u∗
obs(x) = 0. 

Such  a  u∗ is  uniformly  distributed  on  the  conditional  depth  contour.   Then  x  is  imputed  as 

y  = µ∗ + βu∗, where β is a scalar obtained as the positive solution of µ∗ + βu∗ ∈ ∂Dα(X) 

(e.g., the quadratic equation (µ∗ + βu∗ − µ)TΣ−1(µ∗ + βu∗ − µ) = d2  (α) in the case of the 

Mahalanobis depth), see Figure 7 (right). 
 

 

 

 

 

 

 

 

 

 
 

Q 
 
 

 

0.0 
F 

-1 (Q) D(µ*|X) 1.0 
D(Y|X) 

 

Figure 7: Illustration of an application of (4) to impute by drawing from the conditional distribu- 
tion of an elliptical distribution. Drawing the depth D = F −1 (Q) via the depth cumulative 

distribution function F 
D(Y X) 

D(Y |X) (left) and locating the corresponding imputed point y (right). 

 

 

5.2 Depth-based multiple imputation 

We use a bootstrap approach to reflect uncertainty due to the estimation of the underlying semi- 

parametric model. The depth-based procedure for multiple imputation (called DMI), detailed  

in Algorithm 2 consists of the following steps: first, a sequence of indices b = (b1, . . . , bn) is 

drawn from bi ∼ U (1, . . . , n) for i = 1, . . . , n, and this sequence is used to obtain new incom- 

plete data set Xb,· =  (xb1 , . . . , xbn ).  Then, on each incomplete data set, the stochastic single 

depth imputation method described in Section 5.1 is applied. 

   

FD(Y|X)(D(µ*|X)) 

FD(Y|X) 

u* 

Region of 
depth α 

β 

µ* 

y 

µ 

xobs 

0
.0

 
1

.0
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. Σ
←

 

← 

← 

← i 

D(Y |X) 

← 

← 

← ∈ α 

15: Q ← U 
.
[0, FD(Y |X)

.
D(µ∗|Y (m))

Σ
]
Σ 

D Draw depth 

(0.5, 0.5, 1, 1)T, (0.5, 1, 1, 1)T, (1, 1, 4, 4)T, (1, 1, 4, 10)T , adding 30% of MCAR val- 

 
 

Algorithm 2 Depth-based multiple imputation 
1: function IMPUTE.DEPTH.MULTIPLE(X, num.burnin, num.sets) 

2: for m = 1 : num.sets do 

3:  Y (m) IMPUTE.DEPTH.SINGLE(X) D Start MCMC with a single 

imputation 

4:  b (b1, . . . , bn) =  U (1, . . . , n), . . . , U (1, . . . , n) D Draw bootstrap 

sequence 

5: for k = 1 : (num.burnin + 1) do 
6: Σ Σ̂ (Y (m)) 

b,· 

7: Estimate fD(X|X) using Y (m). 
8: for i = 1 : n do 

9: if miss(i) ƒ= ∅ then 
10: µ∗ IMPUTE.DEPTH.SINGLE(x , Y (m)) D Single-impute point 

b,· 

11: u ← U (S|miss(i)|−1) 

12: u∗
miss(i)  ← uΛ D Calculate random direction 

13: u∗
obs(i)  0 

14: Calculate F 
 

16: α F −1 (Q) 
D(Y |X) 

b,· 

17: β positive solution of µ∗ + βu∗ ∂D (Y (m)). 
b,· 

(m) 
i,miss(i) 

← µ∗
miss(i) + βu∗

miss(i) D Impute one point 

19: return 
.
Y (1), . . . , Y (num.sets)

Σ
 

5.3 Experiments 

5.3.1 Stochastic single depth-based imputation preserves quantiles 

We generate 500 points from an elliptical Student-t distribution with 

. degrees of freedom, with µ4 = (−1Σ, −1, −1, −1)T and Σ4 = 
 

ues, and compare the imputation with stochastic EM, stochastic PCA (Josse and Husson, 2012), 

and stochastic depth imputation (Section 5.1). On the completed data, we calculate quantiles for 

each variable and compare them with those obtained for the initial complete data. Table 5 shows 

the medians of the results over 2000 simulations for the first variable; the results are the same 

for the other variables. The stochastic EM and PCA methods, which generate noise from the 

normal model, do not lead to accurate quantile estimates. The proposed method gives excellent 

results with only slight deviations in the tail of the distribution due to difficulties in reflecting the 

density’s shape. Although such an outcome is expected, it considerably broadens the scope of 

practice in comparison to the deep-rooted Gaussian imputation. 

18: y 

3 
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. . ΣΣ 

Quantile: 0.5 0.75 0.85 0.9 0.95 0.975 0.99 0.995 

complete -1.0013 -0.4632 -0.1231 0.1446 0.6398 1.2017 2.0661 2.8253 

stoch. EM -1.0008 -0.4225 -0.0649 0.2114 0.6902 1.2022 1.9782 2.6593 

stoch. PCA -0.9999 -0.4248 -0.0650 0.2121 0.7048 1.2398 2.0417 2.7481 

depth -0.9996 -0.4643 -0.1232 0.1491 0.6509 1.2142 2.0827 2.8965 
 

Table 5: Median (over 2000 repetitions) quantiles of the imputed variable X1 obtained from an 

elliptical sample of 500 points drawn from the Student-t distribution with 3 d.f. with 30% of 

MCAR values. 

 

 
5.3.2 Inference with missing values 

We explore the performance of DMI for inference with missing values by estimating coefficients 

of a regression model. Data are generated according to the following model: Y = βT(1, XT)T+ 

s, with β = (0.5, 1, 3)T and X ∼ N (1, 1)T, (1, 1)T, (1, 4)T , then 30% of MCAR values 

are introduced. We employ DMI and perform multiple imputation using the R-packages Amelia 

and mice under their default settings, generating 20 imputed data sets. For each, we run the 

regression model to estimate the parameters and their variance, and combine the results according 

to Rubin’s rules (Little and Rubin, 2002). Here competitors are in a favourable setting as they are 

based on Gaussian distribution assumptions. We indicate the medians, the coverage of the 95% 

confidence interval, and the width of this interval, for the estimates of β in Table 6 with a sample 

size of 500, over 2000 simulations. In addition to the missing data, one difficulty comes from the 

high correlation (≈0.988) between two of the variables. 

 

 β0 β1 β2 
 med cov width med cov width med cov width 

 20 multiply-imputed data sets 

Amelia 0.487 0.931 0.489 1.01 0.941 0.399 2.998 0.929 0.206 

mice 0.519 0.984 1.6 1.081 0.98 1.807 2.881 0.982 1.502 

regPCA 0.495 0.971 0.853 1.04 0.964 0.751 2.957 0.936 0.334 

DMI 0.504 0.971 0.613 0.989 0.979 0.519 3.003 0.97 0.26 

Table 6: Medians (med), 95% coverage (cov), and width of the confidence intervals (width) for 

the regression parameters based on 20 imputed data sets over 2000 repetitions, for a sample of 

500 observations from a regression model with 30% MCAR values. 

 
 

Amelia has minor under-coverage problems, and mice provides biased coefficients and has 

large over-coverage issues as it is based on regression imputations that are unstable in the presence 

of high correlation. DMI, on the other hand, suffers from a slight amount of over-coverage, but 

in general provides valid inference. 
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6 Conclusions 

The depth imputation framework we propose here fills the gap between global imputation of 

regression- and PCA-based methods, and the local imputation of methods such as random forest 

and kNN. It reflects uncertainty in the distribution assumption by imputing data close to the data 

geometry, is robust in the sense of the distribution and outliers, and still functions with MAR 

data. When used with the Mahalanobis depth, using data depth as a concept, the link between 

iterative regression, regularized PCA, and imputation with values that minimize the determinant 

of the covariance matrix, was established. Our empirical study shows the effectiveness of the 

suggested methodology for various elliptic distributions and real data. In addition, the method 

has been naturally extended to multiple imputation for the elliptical family, broadening the scope 

of existing tools for multiple imputation. 

The methodology is general, i.e., any reasonable notion of data depth can be used, which then 

determines the imputation properties. In the empirical study, the zonoid depth behaves well in 

general, and for real data in particular. However if robustness is an issue, the Tukey depth may be 

preferable. The projection depth (Zuo and Serfling, 2000a) is an appropriate choice if only a few 

points contain missing values in a data set that is substantially outlier-contaminated. This specific 

case is not included in the article, but imputation based on projection depth is implemented in the 

associated R package. To reflect multimodality of the data, the suggested framework has been 

used with localized depths, see e.g. Paindaveine and Bever (2013). 

A serious issue with data depths is their computation.   Using approximate versions of   

data depths (which can also be found in the implementation)  is  a  first  step  to  handling 

larger data sets. Our methodology has been implemented as the R-package imputeDepth. 

Source code of the package and of the experiment-reproducing files can be downloaded from 

https://github.com/julierennes/imputeDepth. 
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1 Additional figures 

 

 

 

 

Figure 8: A Gaussian sample consisting of 250 points and a hyperplane of two missing coordi- 

nates (top, left), and the function f (zmiss) to be optimized on each single iteration of Algorithm 1, 

for the smaller rectangle, for Tukey (top, right), zonoid (bottom, left), and Mahalanobis (bottom, 

right) depth. For the Tukey depth the maximum is not unique, and forms a polygon. 
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Figure 9: Samples of size 100 (top, left), 200 (top, right), 500 (bottom, left), and 1000 (bottom, 

right) are drawn from the bivariate Cauchy distribution with the location and scatter parameters 

µ1 and Σ1 from the introduction.  Single point with one missing coordinate is imputed with 

the Tukey depth. Its kernel density estimate (solid) and the best approximating Gaussian curve 

(dashed) over 10, 000 repetitions are plotted. The population’s conditional center given the ob- 

served value equals 3. 
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Figure 10: Illustration of imputation with the Tukey depth. When imputing the point with a 

missing second coordinate (left), the maximum of the constrained Tukey depth is non-unique 

(the red line segment), and an average over the optimal arguments (the red point) is used in 

equation (3) (right). 

 

 

2 Simulation results with other percentages of missing 

values 

When varying the percentage of missing values, the general trend remains unchanged. The small 

differences seen can be summarized as follows: with a decreasing percentage of missing values, 

the difference between EM and Mahalanobis depth imputation (and thus also the rank two PCA 

one) shrinks, and indeed the latter performs comparably to EM for 5% missingness. For the 

same percentage and the Cauchy distribution, nonparametric methods (kNN and random forest) 

perform comparably to the Tukey depth due to a sufficient quantity of available observations and 

an absence of correlation structure (outliers are generated from Cauchy distribution as well). 

 
Distr. DT uk Dzon DMah DMah 

MCD.75 EM regPCA1 regPCA2 kNN RF mean oracle 

t ∞ 1.577 

(0.2345) 

1.748 

(0.287) 

1.993 

(0.378) 

2.417 

(0.5996) 

3.31 

(1.191) 

13.19 

(10.83) 

1.547 

(0.2128) 

1.718 

(0.2838) 

1.971 

(0.3602) 

2.434 

(0.6032) 

3.373 

(1.273) 

15.13 
(12.06) 

1.532 

(0.216) 

1.693 

(0.2737) 

1.956 

(0.3799) 

2.39 

(0.5792) 

3.431 

(1.314) 

15.17 
(11.74) 

1.537 

(0.2199) 

1.709 

(0.2827) 

1.956 

(0.361) 

2.333 

(0.5571) 

3.192 

(1.148) 

13.39 
(10.32) 

1.518 

(0.2129) 

1.69 

(0.2826) 

1.933 

(0.361) 

2.362 

(0.5808) 

3.366 

(1.249) 

14.86 
(11.57) 

1.596 

(0.2327) 

1.769 

(0.3039) 

2.017 

(0.3759) 

2.431 

(0.5734) 

3.437 

(1.343) 

14.82 
(11.64) 

1.532 

(0.2159) 

1.692 

(0.2741) 

1.956 

(0.3796) 

2.39 

(0.5793) 

3.422 

(1.289) 

15.22 
(11.94) 

1.684 

(0.2422) 

1.853 

(0.3168) 

2.125 

(0.4126) 

2.55 

(0.6154) 

3.538 

(1.33) 

14.09 
(11.28) 

1.681 

(0.2445) 

1.871 

(0.3085) 

2.134 

(0.3976) 

2.592 

(0.612) 

3.555 

(1.321) 

13.91 
(11.06) 

2.058 

(0.2774) 

2.275 

(0.3757) 

2.565 

(0.4732) 

3.045 

(0.6943) 

4.155 

(1.466) 

16.77 
(13.22) 

1.487 

(0.2004) 

1.642 

(0.2771) 

1.874 

(0.3492) 

2.235 

(0.5319) 

2.986 

(1.063) 

11.17 
(8.901) 

t 10 

t 5 

t 3 

t 2 

t 1 

Table 7: Median and MAD of the RMSEs of the imputation for a sample of 100 points drawn 

from elliptically symmetric Student-t distributions with µ2 and Σ2 having 15% of MCAR values, 

over 1000 repetitions. 
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Distr. DT uk Dzon DMah DMah 
MCD.75 EM regPCA1 regPCA2 kNN RF mean oracle 

t ∞ 1.656 

(0.2523) 

1.859 

(0.3062) 

2.09 

(0.4275) 

2.507 

(0.6389) 

3.462 

(1.35) 

11.81 

(9.738) 

1.754 

(0.3142) 

1.973 

(0.4031) 

2.23 

(0.5122) 

2.697 

(0.7977) 

3.68 

(1.577) 

14.12 

(12.09) 

1.853 

(0.4062) 

2.048 

(0.511) 

2.31 

(0.6217) 

2.772 

(0.8516) 

3.733 

(1.6) 

14.22 

(12.05) 

1.671 

(0.2906) 

1.865 

(0.3917) 

2.109 

(0.4841) 

2.541 

(0.7133) 

3.517 

(1.39) 

12.34 

(9.631) 

1.817 

(0.3937) 

2.027 

(0.4933) 

2.267 

(0.6006) 

2.737 

(0.8243) 

3.669 

(1.589) 

13.78 

(11.48) 

1.855 

(0.4158) 

2.05 

(0.5069) 

2.348 

(0.6504) 

2.791 

(0.9306) 

3.807 

(1.648) 

13.73 

(11.01) 

1.853 

(0.4071) 

2.044 

(0.5119) 

2.31 

(0.6219) 

2.779 

(0.8495) 

3.736 

(1.601) 

14.31 

(12.12) 

1.793 

(0.2974) 

1.995 

(0.3861) 

2.255 

(0.4543) 

2.707 

(0.6946) 

3.709 

(1.413) 

12.58 

(10.36) 

1.762 

(0.282) 

1.968 

(0.3402) 

2.233 

(0.4476) 

2.699 

(0.7254) 

3.762 

(1.444) 

13.64 

(11.44) 

2.182 

(0.3821) 

2.45 

(0.4778) 

2.749 

(0.6089) 

3.32 

(0.964) 

4.476 

(1.794) 

15.73 

(12.65) 

1.514 

(0.2121) 

1.677 

(0.279) 

1.91 

(0.3742) 

2.239 

(0.5497) 

3.061 

(1.136) 

10.37 

(8.249) 

t 10 

t 5 

t 3 

t 2 

t 1 

 

Table 8: Median and MAD of the RMSEs of the imputation for 100 points drawn from elliptically 

symmetric Student-t distributions with µ2 and Σ2 contaminated with 15% outliers, and 15% of 

MCAR values on non-contaminated data, over 1000 repetitions. 
 

 
Distr. DT uk Dzon DMah DMah 

MCD.75 EM regPCA1 regPCA2 kNN RF mean oracle 

t ∞ 1.464 

(0.3694) 

1.649 

(0.4316) 

1.816 

(0.5134) 

2.213 

(0.7882) 

2.837 

(1.249) 

7.806 

(6.351) 

1.454 

(0.3713) 

1.597 

(0.4285) 

1.799 

(0.5129) 

2.184 

(0.8159) 

2.919 

(1.342) 

8.718 
(7.135) 

1.447 

(0.3595) 

1.57 

(0.4163) 

1.757 

(0.49) 

2.147 

(0.8016) 

2.813 

(1.309) 

8.911 
(7.127) 

1.453 

(0.3663) 

1.572 

(0.4203) 

1.758 

(0.4991) 

2.101 

(0.7618) 

2.68 

(1.196) 

8.286 
(6.602) 

1.449 

(0.3593) 

1.57 

(0.4206) 

1.757 

(0.4899) 

2.139 

(0.8) 

2.8 

(1.287) 

8.9 
(7.124) 

1.529 

(0.401) 

1.665 

(0.4502) 

1.876 

(0.5499) 

2.242 

(0.7782) 

2.911 

(1.311) 

9.118 
(7.334) 

1.447 

(0.3594) 

1.57 

(0.4163) 

1.757 

(0.4901) 

2.147 

(0.801) 

2.813 

(1.31) 

8.935 
(7.137) 

1.571 

(0.3892) 

1.755 

(0.4565) 

1.955 

(0.555) 

2.37 

(0.8563) 

3.03 

(1.325) 

8.135 
(6.605) 

1.581 

(0.3946) 

1.754 

(0.46) 

1.972 

(0.5345) 

2.343 

(0.8357) 

2.99 

(1.331) 

8.138 
(6.563) 

2.009 

(0.486) 

2.2 

(0.5737) 

2.402 

(0.7318) 

2.844 

(1.011) 

3.578 

(1.554) 

10.99 
(8.952) 

1.404 

(0.3399) 

1.529 

(0.4278) 

1.712 

(0.4869) 

2.054 

(0.7649) 

2.529 

(1.133) 

6.367 
(5.12) 

t 10 

t 5 

t 3 

t 2 

t 1 

 

Table 9: Median and MAD of the RMSEs of the imputation for a sample of 100 points drawn 

from elliptically symmetric Student-t distributions, with µ2 and Σ2 having 5% of MCAR values, 

over 1000 repetitions. 
 

 
Distr. DT uk Dzon DMah DMah 

MCD.75 EM regPCA1 regPCA2 kNN RF mean oracle 

t ∞ 1.552 

(0.3693) 

1.706 

(0.4415) 

1.868 

(0.5565) 

2.243 

(0.8064) 

2.902 

(1.375) 

7.464 

(5.916) 

1.613 

(0.4107) 

1.778 

(0.5106) 

1.951 

(0.5843) 

2.348 

(0.8694) 

3.032 

(1.498) 

8.487 
(6.869) 

1.709 

(0.4867) 

1.874 

(0.6104) 

2.038 

(0.6859) 

2.421 

(0.9166) 

3.183 

(1.566) 

8.531 
(7.081) 

1.553 

(0.4379) 

1.73 

(0.4912) 

1.877 

(0.5679) 

2.226 

(0.8258) 

2.933 

(1.421) 

8.334 
(6.867) 

1.701 

(0.4788) 

1.861 

(0.6032) 

2.027 

(0.6806) 

2.42 

(0.9345) 

3.163 

(1.558) 

8.5 
(6.988) 

1.769 

(0.5248) 

1.906 

(0.6053) 

2.172 

(0.7747) 

2.525 

(1.019) 

3.196 

(1.565) 

8.675 
(7.261) 

1.709 

(0.4877) 

1.875 

(0.6111) 

2.039 

(0.6819) 

2.421 

(0.9237) 

3.188 

(1.582) 

8.541 
(7.117) 

1.695 

(0.407) 

1.884 

(0.5182) 

2.077 

(0.6256) 

2.429 

(0.8484) 

3.142 

(1.472) 

7.958 
(6.509) 

1.603 

(0.3924) 

1.823 

(0.4797) 

1.995 

(0.6102) 

2.392 

(0.8521) 

3.071 

(1.43) 

8.1 
(6.922) 

2.167 

(0.5981) 

2.398 

(0.7059) 

2.57 

(0.8625) 

3.05 

(1.171) 

4.073 

(2.007) 

10.82 
(8.802) 

1.406 

(0.3171) 

1.564 

(0.3938) 

1.698 

(0.491) 

2.016 

(0.7047) 

2.55 

(1.129) 

6.245 
(4.874) 

t 10 

t 5 

t 3 

t 2 

t 1 

 

Table 10: Median and MAD of the RMSEs of the imputation for 100 points drawn from ellipti- 

cally symmetric Student-t distributions with µ2 and Σ2 contaminated with 15% of outliers, with 

5% MCAR values on non-contaminated data, over 1000 repetitions. 
 

 

3 Proofs 

Proof of Theorem 1: 

Due to the fact that Dn,α(X) 
a.s.

 
n→∞ 

 

 
Dα(X), in what follows we focus on the population version 

− 

only. For X ∼ Ed(µX, ΣX , FR) allow the transform X ›→ Z = RΣ 1/2(X − µ), with R 

being a rotation operator such that w.l.o.g. x ›→ z, such that missing values still constitute a 

|miss(x)|-dimensional affine space parallel to missing coordinates’ axes. Since contours Dα(Z) 

are concentric spheres centered at the origin, Dα
∗ (Z) in (3) is of the form {v | v = z J + βr , β ≥ 

0} with zJ
obs(z)  =  zobs and zJ

miss(z)  =  0|miss(x)|, and r  ∈ S |miss(x)|−1, a unit sphere in the 
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. Σ 

›→ 

. Σ 

∼ − − 
∼ E 

∼ E ›→ − 

− −→ 

∩ { ∈ | ≤ } × − 

− −→ 

. Σ 

n→∞ 
− −→ 

Z obs(1),obs(1) 

n 

− 

λ ∈ R let u  =  .(λ, u2, . . . , uΣd)T be. this one-dimensional affine subspace of missingness for a 

0} ∩ u ∪ Dα(U ) ∩ {v ∈ Rd | v1 = 0} ∩ u = Dα(U ) ∩ {v ∈ Rd | v1 = 0} ∩ u = (0, u2, . . . , ud) 

 

linear span of miss(z).  Because of the fact that P  {x  ∈ Rd | D(x|X)  =  α}   =  0, β  = 0 

almost surely and thus z is imputed with zJ = RΣ−1/2(y − µ). Q 

Proof of Theorem 2: 

(The challenge here is that the resulting distribution is not elliptical.) 

For X      d(µX, ΣX , FR) allow the transform X      Z = RΣ−1/2(X     µ), with R being 

a rotation operator such that w.l.o.g. x z, such that miss(z) = 1. (Z has spherical density 

contours and missing values are in the first coordinate only.) 

Let Z J =   0, (Z JJ)T  
T 

with Z JJ      d−1(0, I, FR), where I is the diagonal matrix. Consider  a 

random vector U     (1    p)Z + pZ J which is a mixture of d- and (d    1)-dimensional spherical 

distributions.  Z J corresponds to the imputed missing values—let us now show that this is true. 
Due to the fact that Dn,α(U ) 

a.s.
 

n→∞ 
Dα(U ), in what follows we focus on the population version 

only. Missing values constitute one-dimensional affine subspaces parallel to the first coordinate. 

Thus, due to the affine invariance property (P1 in Definition 2), Dα(U ) ∩ {u  ∈ Rd | u1  ≥ 0} 

= Dα(U ) u Rd  u1 0 (  1, 0, . . . , 0)T.  To see this, it suffices to note that the 

symmetric reflection of U w.r.t.  the linear space normal to (1, 0, . . . , 0)T equals U .  Now, for 
 

point. In (3), ave Dα(U )∩u = ave Dα(ΣU )∩{v ∈ Rd | v1 > 0}∩u∪Dα(U )∩{v ∈ Rd | v1 < 
 

= RΣ−1/2(y − µ) (with the obvious correspondence between u and y). Q 

Proof of Corollary 1: 

(P1)–(P5) are obviously satisfied for the Tukey, zonoid and Mahalanobis depths. In Theorem 1, 

Dn,α(X) 
a.s. 

n→∞ 
Dα(X) is clearly satisfied for the Mahalanobis depth, following Corollary 3.11 

by Mosler (2002) for the zonoid depth, and by Theorem 4.2 in Zuo and Serfling (2000b) for the 

Tukey depth. In Theorem 2, the same logic holds for the Mahalanobis and zonoid depths, but 

not for the Tukey depth as Z is not elliptical.  Using techniques similar those in the proof of 

Theorem 3.4 in Zuo and Serfling (2000b), one can show that P {x ∈ Rd | D(x|Z) = α} = 

0, from which, together with the vanishing at infinity property (P4) and supx∈Rd |Dn(x|Z) − 

D(x|Z)| −
a.
−
s
→
.
 0 (see Donoho and Gasko, 1992), it follows that Dn,α(Z) 

a.s.
 

n→∞ 
Dα(Z). Q 

Proof of Proposition 1:  w.l.o.g.   we restrict ourselves to the case i =  1.   Let Z be X 

transformed  in  such  a  way  that  it  is  an  n × d matrix  with  µZ    =  0 and  z1,miss(1) = 

ΣZ miss(1),obs(1)Σ
−1

 z1,obs(1). Denote the argument a = (0, . . . , 0, yT)T ∈ Rd. Re- 

placing z1 with z1 + a and subtracting the column-wise average a from each row gives the 

covariance matrix estimate: 
 

nΣZ (y) = ZTZ − z1 zT
1  + (z1 

 

+ a)(z1 + a)T 
1 

aaT 
n 

= ZTZ + 2z1 aT + 
n − 1 

aaT . 
n 
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Since zT
1 (ZTZ)−1a = 0 due to Mahalanobis orthogonality, by simple algebra for the determi- 

nant, one obtains: 

nd|Σ (y)| = .ZTZ + 
√

2z 
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Σ 
. 

Thus |ΣZ(y)| is a quadratic function of y, which is clearly minimized in y = (0, . . . , 0)T. Q 

Proof of Theorem 3: The first point can be checked by elementary algebra. The second point 

follows from the coordinate-wise application of Proposition 1. For the third point, it suffices to 

prove the single-output regression case. The regularized PCA algorithm will converge if 

d    d   2 
Σ √ Σ √  σ  

 

   

for any σ2 ≤ λd. W.l.o.g. we prove that 

yd  = Σd (1,...,d−1)Σ
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denoting Σ(Y ) simply Σ for the centered Y , and an arbitrary point y. Using matrix algebra, 
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After reordering the terms, one obtains 
 

d d d 
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vdj 
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λj 
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i=1 j=1 k=1 

Due to the orthogonality of V , d2 d terms from the two outer sum signs are zero. Gathering 

non-zero terms, i.e., those with i = j only, we have that 
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Figure 11: Illustration of the derivation of (4). 

 
Q 

Derivation of (4): The integrated quantity is the conditional depth density that can be obtained 

from the joint one by the volume transformation (denoting dM z, µ the Mahalanobis distance 

between a point of depth z and µ): 

fD((X|Xobs=xobs)|X)(z) = fD(X|X)(z) · C · Tdown

.
dM (z, µ)

Σ 
· Tup

.
dM (z, µ∗)

Σ
× 

Any constant C is ignored as it is unimportant when drawing. The three terms below corre- 

spond to descaling the density to dimension one (downscaling), re-scaling it to the dimension 

of the missing values (upscaling), and the linear transformation from dimension d to dimension 

|miss| =number of missing coordinates of a point (angle transformation): 

T 
.
d   (z, µ)

Σ 
= d1−d(z, µ) =  

  1  
. 

Tup

.
dM (z, µ∗)

Σ 
= d

|miss(x)|−1
(z, µ∗) 

 

= 
..

d2  (z, µ) − d2
 

 
 

.
D(µ∗|X), µ

ΣΣ|miss(x)|−1 
.
 

Tangle .
dM

 (z, µ), dM (z, µ∗)   = 
1
 

sin θ 
  1  

=  
dM (z,µ∗) 
dM (z,µ) 

dM (z, µ) 
2 2 

. Σ 
 

Tdown and Tup are illustrated in Figure 11 (left); for Tangle see Figure 11 (right). Setting 

dM (z, µ) = dM (z) to shorten notation gives (4). 

Dz (X) 

dMah.(z,µ) 
dMah.(z,µ*) 

DD(µ*|X)(X) 

µ µ* 
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dM (z, µ) − dM D(µ∗|X), µ 

= 


