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In this paper, we address the identifiability of
constitutive parameters of passive or active micro-
swimmers. We first present a general framework
for describing fibres or micro-swimmers using
a bead-model description. Using a kinematic
constraint formulation to describe fibres, flagellum
or cilia, we find explicit linear relationship between
elastic constitutive parameters and generalized
velocities from computing contact forces. This
linear formulation then permits one to address
explicitly identifiability conditions and solve for
parameter identification. We show that both active
forcing and passive parameters are both identifiable
independently but not simultaneously. We also
provide unbiased estimators for generalized elastic
parameters in the presence of Langevin-like forcing
with Gaussian noise using a Bayesian approach.
These theoretical results are illustrated in various
configurations showing the efficiency of the proposed
approach for direct parameter identification. The
convergence of the proposed estimators is successfully
tested numerically.

1. Introduction
Using kinematics to reveal internal properties of
deformable objects moving in fluids is a difficult and
long-standing topic in mechanics, e.g. [1]. One can,
for example, think about the motion of a deformable
cell in shear flow where various dynamical modes are
observed depending on elastic capillary number [2,3],
internal properties of red-blood cells [4] or capsules
[5,6] in a creeping flow. Inferring internal mechanical
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properties has indeed already being pursued for flexible capsules from their deformation within
a flow in a number of contributions [7–9] where the combination of experimental measurements
and direct simulations can lead to estimating some internal parameters of the membrane. In this
case, the constitutive laws of the membrane deformation are generally nonlinear but they are
supposed homogeneous. In this study, we restrict our interest to flexible filaments in flows at
low Reynolds number, where the hydrodynamics is linear [10]. Passive and active fibres [11–17],
flagellum or cilia [18–21] have also been analysed in order to infer the internal parameters of
their mechanical modelling. Gadêlha et al. [19] have used flagellum buckling experiments [20]
to infer passive properties, including the passive sliding resistance, of a flagellum. Riedel-Kruse
et al. [21] have fitted beating shapes with model prediction using a linearized one-dimensional
wave propagation model for the beating propagation along an active flagellum in order to
obtain either passive or active parameters. In the cited contributions, the shape is obtained from
numerically solving a coupled fluid–structure problem, with mechanical properties being given.
Internal parameter are then obtained from a systematic exploration of parameter space so as to
reach a satisfying shape compared with experiments.

Whether such empirical parameter identification might be sufficient to provide interesting and
insightful estimation of fibre or membrane mechanical properties could be a matter of debate. In
many cases, a very precise estimation might not be so crucial and the mechanical properties might
be approximately known from other experimental observations (e.g. osmotic swelling [5]).

Nevertheless, one key question which ought to be known is the uniqueness of the shape–
motion/parameter relation. More specifically, are the shape and motion of a flexible object unique
when varying internal parameters? This is obviously a crucial question as a non-unicity scenario
would possibly lead to wrong estimation for the internal parameters. To our knowledge, in the
case of nonlinear constitutive law for a flexible object (having large deformation) in a Stokes
flow, this is an open question. This question is known as the identifiability condition for internal
parameters. Even in the case of linear constitutive laws, but arbitrary deformation, identifiability
conditions for deformable membrane or fibres are not known. The goal of this contribution
is to clarify internal parameter identification in the simplest case of elastic flexible fibres in
Stokes flow. Our aim is (i) to provide clear conditions for which the internal elastic properties
of a passive flexible fibre or an active micro-swimmer can be identified from the observation
of their kinematics within the framework of a bead-model (BM) description, (ii) to propose
an operational formulation for reliable identification with and without additional noise, and
(iii) to validate this operational formulation in various configurations in order to illustrate its
interest. As the elasto-hydrodynamic fluid–structure interaction problem associated with (passive
or active) flexible objects is a priori nonlinear, there is not much use of Stokes linearity for
parameter identification. However, when a discrete description of deformable filaments by a
collection of rigid bodies is considered to describe complex flexible objects namely BMs in Stokes
flows [11,16,22] some simplifications arise. When considering a collection of non-overlapping
beads we show that the internal forces linearly depend on passive and active forcing, producing
a linear elasto-hydrodynamic problem. However, the obtained results are general for extensible
BMs with suitable linearizations, or with pre-averaging, for which these models can be recast as
Gauss–Markov processes and would provide equally valid likelihoods.

A detailed description of BMs is presented in §2a while focusing on kinematic constraints
associated with the fibre inextensibility. More precisely §2b(ii) describes how contact forces are
found from using Lagrangian multipliers, so that internal parameters and kinematic observations
are linearly related. This point opens many issues that we subsequently analyse and illustrate
for parameter identification in §2b. First, we provide clear and simple identifiability conditions
associated with active or passive internal parameters showing that identifying concomitantly
the active and passive internal properties of micro-swimmers is not possible. By contrast, the
identification of mechanical properties assuming the active part is known, or reciprocally, finding
the active part knowing the passive properties is possible, and can be addressed with the direct
inversion of a simple linear problem without the need for guess values for the parameters.
Section 3 analyses identifiability conditions and parameter estimation either in the deterministic
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case in §3a or the stochastic one in §3b. Identification in the stochastic case is possible using a
Bayesian approach (as in [23]) and provides unbiased estimators the convergence of which can
be estimated. Finally, §4 provides the numerical test and validation of the approach in various
configuration associated with passive in §4a,b, actuated in §4c or active fibres in §4d.

2. Models and parameters

(a) Object discretization with the bead model
(i) Bead models

To model the locomotion of a micro-swimmer from describing its structural, active and elastic
properties, we hereby use a BM. This class of models is interesting as they permit describing
a complex deformable object as a flexible assembly of simple rigid ones, such as Nb bonded
spheres. BMs have been used to provide a sensible description of an assembly of spheres
connected together to model complex objects such as polymers, active fibres [11–14,16,17] or
micro-swimmers. The connection between the spheres (beads or blobs) can be ensured in different
ways. To account for the resistance to stretching and compression, linear springs are very often
used [11,24,25]. Nevertheless, most flexible objects are very weakly extensible, the description of
which results in stiff bonds distressfully restrictive for time integration. Joint models have been
proposed to handle inextensible assembly of objects with kinematic constraints on the beads’
motion. In the most formulation, the beads are constrained such that the contact point ci for each
pair of beads remains the same [18,26]. To allow the object to bend, a gap between each pair of
beads is necessary. One problem arising in such a joint model is that in the case of strong bending,
some overlapping between the objects can occur, so that a repulsive force is used to prevent
it. Such repulsive forces are generally stiff and again very restrictive for time integration. An
alternative joint model has been introduced by Yamamoto & Matsuoka [27,28]. To avoid artificial
gaps (and thus repulsive forces), they iteratively solved a nonlinear system to satisfy a no-slip
condition between touching beads.

(ii) The gear model

Recently, a linear formulation of kinematic constraints using Lagrange multiplier formalism has
been proposed for BMs: the ‘gear bead model’ (GBM) [29]. In this model, there is neither gap nor
repulsive force between the beads to allow bending and no need for numerical parameters to be
tuned. Kinematic conditions are associated with rolling contact connections at each contact point
between neighboured beads, providing constraints for the local velocity and angular momentum
of each bead. For example, at the contact point ci between two beads i and i + 1, the contact point
velocity Vci has to match exactly with each bead rigid body velocity so that

Vci = vi + ati × ωi = vi+1 − ati × ωi+1, (2.1)

where, a is the bead radius, ti is the unit vector connecting their centre of mass and vi, ωi are the
translation and rotational velocity of bead i. Also, quantitative agreement with previous models
has been obtained for both slender objects (passive fibre, actuated filaments) and non-slender
swimmers (Caenorhabditis elegans), allowing its use in a wide variety of contexts [29].

(b) Theoretical framework of parameter estimation
(i) Bead model formulation and context

We consider the following quantities to describe flexible objects of complex shape; ri and pi
denote the position and orientation of each bead i ∈ {1, Nb} as in [29]. The translation velocities
vi are collected into the vector V ≡ [v1, v2, . . . vNb ], and the angular velocities ωi into Ω ≡
[ω1, ω2, . . . ωNb ]. Similarly, F ≡ [f1, f2, . . . fNb ] collects the forces fi and T ≡ [t1, t2, . . . , tNb ] the
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torques ti, for which upper-indexes (‘b’ for bending or ‘a’ for active) are also added when needed
for the sake of clarity so as to distinguish those torques from tangent vectors. Generalized

velocities V ≡
[( v1

ω1

)
,
( v2

ω2

)
. . .
( vNb

ωNb

)]
and forces F ≡

[(
f1
t1

)
,
(

f2
t2

)
. . .
(

fNb
tNb

)]
are also used in

the following for the sake of compactness. We consider Nc linear non-holonomic kinematic
constraints associated with generalized velocities acting on the Nb beads of the form

JV + B = 0, (2.2)

where J is the matrix associated with the constraints. As these constraints are linear here, J also
represents the constraints’ Jacobian (justifying J symbol), and might stand for a generic relation
for linearized constraints. J is a Nc × 6Nb sparse matrix and B is a vector of Nc components. It is
worth mentioning that the rolling contact condition of the gear model [29] is a special case of (2.2)
for which B = 0 while J embeds all constraints (2.1). The equation (2.2) is linear because J and B

might either depend on time t, positions ri and orientations pi but not on V . Vector B is thus useful
to include the presence of additional effects located at some specific bead position of the fibre such
as forced actuation at one end, as exemplified in [29]. This is why in the following we name B an
actuation vector. To include constraints in the dynamics of articulated systems one should search
for additional forces which permit satisfying these constraints (2.2), i.e. the so-called contact forces.
These contact forces are given by

Fc = λTJ, (2.3)

where λ is the Lagrange multipliers vector. The entire framework presented in the paper is valid
for both two- and three-dimensional dynamic configurations.

(ii) Contact forces and linearity of the kinematic constraints of bead model

Hydrodynamic interactions are provided through the solution of the mobility problem which
relates forces and torques to the velocity and angular velocity of the beads. This formalism is
particularly suitable for low Reynolds number flows for which total forces and torques on each
bead are zero (as the flow is inertia-less). The total generalized force, i.e. the sum of generalized
hydrodynamic forces Fh and non-hydrodynamic contributions F, is zero:

Fh + F = 0. (2.4)

As a result, the generalized velocities V are linearly related to the generalized external forces F

through the mobility matrix M:
V = MF + V∞, (2.5)

where V∞ ≡
[(

v∞
1

ω∞
1

)
,
(

v∞
2

ω∞
2

)
. . .

(
v∞

Nb
ω∞

Nb

)]
corresponds to the generalized ambient external velocity

v∞ and vorticity ω∞ evaluated at the centre of mass of each bead. Note that if the particles
are immersed in a linear shear flow, the response to the ambient rate of strain can be added
without loss of generality [30]. This problem is nonlinear on the instantaneous positions of all
particles of the system. Although being an explicit and linear relation, (2.5) is non-trivial as the
exact mobility matrix results from the solution of a many-body problem. Approximated mobility
matrices have nevertheless been proposed to circumvent this difficulty. The simplest model
(free drain) assume a diagonal mobility matrix neglecting hydrodynamic interactions between
neighboured spheres. More elaborated models include far field interactions using explicit analytic
expressions known as Rotne–Prager–Yamakawa tensor [30]. Finally, other formulations compute
numerically, at each time step, the complete many-body problem either using Stokesian dynamics
(SD) [22,31] or the force coupling method (FCM) [32,33]. In the following, we do not focus on
how the mobility matrix should be computed nor discuss the numerical issues associated with
its calculation. We suppose this is a known quantity, and most of the theoretical results are
obtained independently from its precise evaluation. When needed in the following sections, we
will use the classic explicit formulation of Rotne–Prager–Yamakawa tensor to illustrate parameter
identifications methodology. Non-hydrodynamic forces F are the sum of elastic forces Fe, inner
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forces associated with active mechanisms Fa and contact forces Fc. Let us note F′ = Fe + Fa, so that
F = F′ + Fc. Relation (2.5) stands for the elasto-hydrodynamic coupling of coupled objects, and,
provides a linear relationship between active forces, elastic forces and velocities. Nevertheless, as
internal contact forces Fc are unknown and functions of all other quantities, the linearity is not
obvious at this stage. The inextensibility condition provides the supplementary condition to set
in order to get internal forces governing equations (e.g. [34]). In the framework of BM, instead
of the inextensibility condition, we propose prescribing kinematic constraints [29] which then
impose the inextensibility condition. The main point is then to find the internal forces needed
for kinematic constraints to hold at every time. Using (2.5) and (2.2), we are able to find the
Lagrangian multipliers for internal forces

MFc = V − MF′ − V∞, (2.6)

so that applying J to (2.6) provides the linear system for Lagrange multipliers estimation

JMJTλ = −B − J(MF′ + V∞), (2.7)

while we have used the prescribed constraints (2.2) on the first term of the right-hand side of
(2.7). As J is full column rank, and M is invertible, JMJT is also invertible (it is also simple
to show that JMJT is symmetric). In the case of non-actuated, inextensible fibres, the actuation
vector B vanishes, B = 0. Nevertheless, for actuated fibres driven from one end there is a non-zero
contribution associated with actuated beads which drive the motion of the others as exemplified
in [29] as well as in §4c.

Hence, the contact forces can be found explicitly and depend linearly on other forces F′ and
ambient flow

Fc = (JMJT)−1{−B − J(MF′ + V∞)}J. (2.8)

Using the explicit contact force expression (2.8) in the mobility matrix expression (2.5) leads to the
following generalized velocities

V = MF′ + K, (2.9)

while using notations

M = M(I6Nb − JT(JMJT)−1JM) (2.10)

and

K = −MJT(JMJT)−1
B − (MJT(JMJT)−1J − I6Nb )V∞, (2.11)

where I6Nb is the 6Nb × 6Nb identity matrix. This expression provides an explicit linear
formulation of the generalized velocities with external, internal and elastic forces, for a flexible
object having a complex shape, as the internal contact forces have been explicitly expressed
as linear functions of kinematic and external forces themselves in (2.8). Note that, M(V (t)) is
configuration dependent, i.e. depends on bead position and orientation at each time step, through
the constraints Jacobian J and mobility matrix M dependence. Furthermore, K(V (t), V∞) is also
configuration dependent and external flow dependent. Using symbol M in (2.10) the definition
is intentional as a reminder that this matrix acts as an effective mobility matrix taking into account
the action of contact forces associated with kinematic constraints. Also, note that if those contact
forces (as would be the case for extensible fibres) are zero and kinematic constraints are also zero
M reduces to the standard mobility matrix. Hence the following results are also of general scope
for active extensible polymer chains, for one to include extensible forces, as well as the necessary
time-stepping constraints associated with stiff bonds.

In §4, we illustrate the formulation in the case of GBM associated with kinematic constraints
with sliding contacts for which in most cases (except in §4c) actuation vector B = 0 in (2.2), and
furthermore with no external ambient flow, so that V∞ = 0, and thus K = 0.

In the case (most often encountered) where the elastic forces have linear dependence with
constitutive parameters Θe, a vector composed of bending modulus for flexural deformation and

http://rspa.royalsocietypublishing.org/


shear modulus for torsion for each bead connection, we can write

Fe = Υ eΘe, (2.12)

where the internal constitutive matrix Υ e will be exemplified in §4 as well as explicitly given in
appendix A. To avoid unnecessary complications in the following, we restrict our discussion to
bending and will not cover the effect of torsion. We would nevertheless like to stress that there
is no particular limitation in adding torsion in the forthcoming discussions. This matrix provides
the structure of the (possibly complex) constitutive linear behaviour of the fibre so as to describe
its twist and bending properties. For the GBM, (2.9) proves that kinematics depends linearly on
these parameters.

V − K = M(Fa + Υ eΘe). (2.13)

Relation (2.13) is a major result of this paper as it gives an explicit, algebraic formulation
for the linearity between kinematics and internal parameters. As kinematics is supposed to be
experimentally known, this formulation allows for a direct determination of the identifiability
conditions since, in the linear case, this is a straightforward issue.

3. Identifiability conditions

(a) Deterministic case
Let us suppose that generalized velocity V (t) are the observable (e.g. which could be obtained
from some particle tracking/image segmentation post-processing of experimental images). From
(2.9), they depend nonlinearly on particle position and orientations V (t) through the effective
mobility matrix M(V (t)). They also depend linearly on static unknown parameter Θe, and
dynamic unknown active force Fa(t). Let us also suppose that Υe in (2.12) is also known at
each time step from linear constitutive properties of the deformable object. The inverse of
matrix M is an effective resistance matrix. In the following, two viewpoints are possible to
address identifiablility. One possible approach is to consider kinematic observable V and try to
match the model prediction in the kinematic variable. A supplementary approach is to consider
‘kinematically deduced observable forces’ from using (2.9)

y(t) = M−1(V − K) (3.1)

and compare predicted forces with the one deduced from the kinematics. Both viewpoints are
considered in the following. More precisely, we show how a simple quadratic error (the L2 norm
of the difference between observable and model prediction in continuous time) minimization
permits one to obtain an explicit direct linear system to either evaluate the internal properties in a
given flow in the absence of active component, or, unknown active forces, when elastic parameter
of the object are known (in the absence of any flow).

(i) Identification of passive elastic parameters

Let us start with the first case, suppose y(t) is known from the observation V (t) and solving (3.1).
Let us suppose there is no active force Fa(t) = 0, but an external flow so that K �= 0 in (2.9) and
(3.1). Then, at each time step, one is able to define the following functional

F(Θe) = (y(t) − Υe(t)Θe)2, (3.2)

the minimization of which is related to the explicit computation of its Jacobian, leading to the
following linear system

Υ e(t)TΥ e(t)Θe = Υ e(t)Ty(t). (3.3)

This least-squares problem has a unique solution if Υe(t) has full column rank, which is shown in
appendix A.
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Equivalently, if one considers the kinematic observable, the minimization of

F(Θe) = (V (t) − K − MΥ e(t)Θe)2, (3.4)

leads to
((MΥ e)T(MΥ e))(t)Θe = (MΥ e)T(t)(V − K), (3.5)

which has a unique solution if MΥe(t) has full column rank. Both the force formulation (3.3)
and the kinematic formulation (3.5) are interesting to consider for the evaluation of the elastic
properties of passives fibres.

In both cases, a direct 6Nb × 6Nb linear system has to be solved, which we never found poorly
conditioned (but if the number of bead does not exceed 100, a direct inversion might be pursued).
However, force formulation, from (3.1), requires the action of the effective ‘resistance’ matrix M−1

onto the generalized velocity vector, which might be more costly (especially if one uses more
precise mobility matrix than far-field approximation [35]).

(ii) Identification of active forces

Identifying active forces knowing passive ones is trivial in force formulation, for which the
functional minimization

F(Fa(t)) = (y(t) − Υ e(t)Θe − Fa(t))2 (3.6)

leads to the direct result
Fa(t) = y(t) − Υ e(t)Θe. (3.7)

Similarly, in kinematic formulation, the functional reads

F(Fa(t)) = (V (t) − K − M(Υ e(t)Θe + Fa(t)))2, (3.8)

leading to
Fa(t) = (MTM)−1(MT(V (t) − K)) − Υ e(t)Θe, (3.9)

which necessitates the inversion of MTM at each time step to find the active force Fa(t).

(iii) Identifiability of both active force and passive elastic parameters

Let us consider a first ‘naive’ approach for concomitantly identifying both active and passive
forces over a single period of time. In this case, we can formulate parameter identification as the
solution of the following minimization problem for the force formulation

F(Fa(t), Θe) =
∑

t

(y(t) − Fa(t) − Υ e(t)Θe)2, (3.10)

where we have implicitly discretized the time t (a continuous formulation is also possible but
adds unnecessary complexity), and where it is meaningful to suppose some periodicity in the
active component, so that t ∈ [0, T]. In the following, we denote each field evaluated at discrete
time step ti = iT/N with i ∈ [1, N] with index i, e.g. Fa(ti) ≡ Fa(i). The unknown parameters are
thus the collection vector Fa(1), Fa(2), . . . Fa(N) and Θe. As the functional (3.10) is quadratic, its
Jacobian JF ≡ ∇Fa(t),Θe F provides the linear system to solve for, in order to find the unknown
parameters, formally

JF

[
Θe

Fa

]
=
[
ΣiΥ e(i)Ty(i)

y(t)

]
. (3.11)

A formal identifiability condition follows from (3.11): detJF �= 0. Computing the determinant of JF,
we explicitly find that

det JF = −
∑

i

Υ T
e (i)Υ e(i) +

∑
i

Υ T
e (i)Υ e(i) = 0. (3.12)

Thus, we find that kinematic observations are not sufficient to provide enough information
to distinguish both time-dependent active force and static elastic parameters. They are not
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identifiable simultaneously. This is true even if one is able to process an arbitrary number of
measurements, with the hope that increasing the number of observations could compensate for
parameter ignorance. Such compensation just does not hold here. Let us pause a little to examine
this issue in the simplest case. Suppose we have only one observation at one time step, and
suppose that we only want to identify both active force Fa and elastic one Fe. As the functional
(3.10) depends only on the sum of those, there is already an infinite combination of Fa and Fe
giving the same Fa + Fe for living the functional invariant. More precisely, in two dimensions
there is an infinite continuous, one-parameter family of the possible sum of two vectors leading
to a given vector: the ones built from any cord in the circle having the sum as its diameter. In
higher dimensions d a continuous d − 1 parameter family of possible sum can be found. In other
words, this system is always undetermined. Similarly for the kinematic formulation

F(Fa(t), Θe) =
∑

t

(V (t) − K − M(Υ e(t)Θe + Fa(t)))2, (3.13)

we find that the determinant of the Jacobian JF is also zero. It is easy to understand that whichever,
kinematic or forces formulation, both active and passive forces cannot be simultaneously
identified because, both functional (3.10) and (3.13) depend on the sum of active and passive
contributions, none of which can be identified from the action of both on the kinematics. This
simple statement is of general scope, and results from the linear underlying relation between
kinematics and both active and elastic forces described in (2.13).

(iv) Identifiability of periodic active forcing

However, if the active component is strictly periodic, instead of trying to identify at various
discrete time step (phase) ti within one period, one could try to evaluate at one given phase,
e.g. ti, over several periods, e.g. ti + T, ti + 2T, etc. For simplicity, let us hereby simply consider
two distinct periods with two distinct evaluations, one at ti, and the other one at ti + T. As,
Fa(ti) = Fa(ti + T), it is easy to realize that

M−1(ti + T)(V (ti + T) − K) = Υ e(ti + T)Θe + Fa(ti)

and M−1(ti)(V (ti) − K) = Υ e(ti)Θe + Fa(ti).

⎫⎬
⎭ (3.14)

Let us suppose that (V (ti + T) − K) �= (V (ti) − K), because K(ti + T) �= K(ti) as, for example, the
external flow velocity also varies with time and is not T-periodic. One can then take the difference
between the first and the second line of (3.14) to eliminate the active force so as to identify passive
properties using the ‘force formulation’ (3.3). To be explicit, denoting

�y = M(ti + T)−1(V (ti + T) − K) − M(ti)
−1(V (ti) − K) (3.15)

and �Υ e = Υ e(ti + T) − Υ e(ti), the elastic parameters can be found from solving

Θe = (�Υ T
e �Υ e)−1�Υ T

e �y. (3.16)

Once the passive properties are known, one could also use (3.9) to evaluate the active force.
It is interesting to mention that this estimation of passive properties necessitates the precise
knowledge of the active forcing period T. Hence, even if this section has shown that both active
and passive components are not identifiable at the same time, one can nevertheless find strategies
to circumvent the indeterminacy in the special case of a periodic active force within a variable
flow, not having the same period.

(b) Stochastic case
In the stochastic framework, we keep with the kinematic formulation as the noise is added onto
the kinematics. Hence, let us consider the Langevin-like equations for the bead motion

V (t) = M(t)F′(t) + K(t) + W (t), (3.17)
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where W (t) is a Wiener process vector for which each component is an identically independently
distributed (i.i.d.) Wiener process. For each discrete time step, using same notation as in the
previous section, we denote W (tn) ≡ W (n) and then each i.i.d. component k of vector W (n)
follows W k(n) ∼ N (0, σ 2). The noise can either be attributed to some experimental uncertainty
in the measurements, or some intrinsic random contributions of the background.

In a stochastic framework, V are the observables, bead positions and orientations are the
variables and Fa(t) and/or Θe are the parameters to be estimated. In this framework, (3.17)
describes a normal linear regression model (e.g. [36]). In the next section, we use a classical
Bayesian approach to estimate parameters from observations having i.i.d. Gaussian residuals. It
is worth mentioning the presented approach could also handle more complex and general forcing
where, for example, the components of W k(n) are not independent anymore (e.g. follow a joint
Gaussian distribution) as can result from a Brownian forcing of the flow field, which produces
correlated bead motion. We do not provide such analysis here, but this is a possible extension of
the proposed approach.

In the following, as we found in the deterministic case that Fa(t) and Θe are not simultaneously
identifiable, we will mainly focus in the identification and estimation convergence of either one
or the other.

(i) Identification of passive elastic parameters

In this subsection, we consider (3.17) with F′ = Υ eΘe and we use the classical Bayesian approach
for which the conditional probability P(Θe|V ) for parameters Θe given observations V reads

P(Θe | V ) =
(

P(V | Θe)P(Θe)
P(V )

)
∝L(Θe | V )P(Θe), (3.18)

depending on prior distribution of parameters P(Θe). The likelihood L(Θe | V ) can be found from
(3.17) using the fact that each component of W (n) is i.i.d. and Gaussian, from a 6Nb components
vector (as V ), the likelihood of N independent observations are

L(Θe | V ) =
N∏
1

1
(2π )3Nbσ 6Nb

e−((V − K − MΥ eΘe)T(V − K − MΥ eΘe))/2σ 2. (3.19)

In the following, we will estimate the maximum of (3.18) in the special case of uniform (constant)
P(Θe) as no prior knowledge on parameter values is supposed. If needed, it is possible to
include supplementary terms associated with proper prior distribution of parameters P(Θe), as
an extension of the proposed approach. Hence, equivalently, the maximum of (3.18) is also the
maximum of the logarithm of L(Θe | V ), the so-called log-likelihood

lnL(Θe | V ) = −3NNb ln 2π − 3NNb ln σ 2 −
N∑
1

1
2σ 2 (V − K − MΥ eΘe)T(V − K − MΥ eΘe).

(3.20)

It is worth noting that, up to constants, the log-likelihood displays a quadratic functional form
similar to (3.4) or (3.13). Again, if needed the prior distribution of parameters P(Θe) would add a
supplementary term to (3.20), e.g. also a quadratic one, for a Gaussian prior. The computation of
the maximum of this log-likelihood essentially follows the same footsteps. The gradient of lnL in
parameters directions being zero leads to the following linear system, the noise amplitude now
being part of the unknown estimate

⎡
⎢⎢⎣

∂ lnL
∂Θe

∂ lnL
∂σ 2

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1
σ 2

N∑
1

(MΥ e)T(n)(V − K − MΥ eΘe)(n)

−3NNb

σ 2 +
∑N

1 (V − K − MΥ eΘe)T(V − K − MΥ eΘe)
2σ 4

⎤
⎥⎥⎥⎥⎦=

[
0
0

]
. (3.21)
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It leads to the following linear system inversion for the estimation of the parameter Θ̂e

N∑
1

(MΥ e)T(MΥ e)(n)Θ̂e =
N∑
1

(MΥ e)T(n)(V − K)(n), (3.22)

so that

Θ̂e = 〈(MΥ e)TMΥ e〉−1〈(MΥ e)T(V − K)〉, (3.23)

with 〈•〉 ≡∑N
1 •/N is the time average of each matrix and vector. (3.23) is thus very similar to

(3.5) derived in the case K = 0, except for the sum over different time associated with some noise-
averaging convergence of the stochastic framework. The classical result for the variance also holds
from the second line of (3.21)

σ̂ 2 = 1
6Nb

〈(V − K − MΥ eΘ̂e)T(V − K − MΥ Θ̂e)〉. (3.24)

In this case, the convergence towards the estimated parameters Θ̂e and σ̂ is provided by the
Cramér–Rao lower bound associated with the eigenvalue of the expectation of the inverse of the
likelihood Hessian. In the case of Gaussian noise, the result is explicit, as the Hessian expectation
reads

E

⎡
⎢⎢⎢⎣

∂2 lnL
∂Θ2

e

∂2 lnL
∂Θe∂σ 2

∂2 lnL
[∂σ 2]2

∂2 lnL
∂Θe∂σ 2

⎤
⎥⎥⎥⎦=

⎡
⎢⎣−

∑N
1 (MΥ )TMΥ

σ 2 0

0
3NbN

σ 4

⎤
⎥⎦ (3.25)

and thus the inverse of the Hessian expectation provides the covariance matrix associated with
the convergence toward the estimators, i.e.

Θ̂e − Θe ∼ N
(

0,
σ 2

N
〈MΥ (MΥ )T〉−1〈MΥ 〉〈(MΥ )TMΥ 〉−1〈(MΥ )T〉

)
, (3.26)

which shows that the covariance of the fluctuation to the estimator vector Θ̂e is governed
by a covariance matrix directly related to the matrix needed for computing Θ̂e (3.23). More
importantly, a central-limit theorem holds for the convergence toward the estimator Θ̂e as the
number of considered evaluation N increases.

(ii) Identification of active forces

In this subsection, we suppose that passive elastic properties are known and estimated. We
consider (3.17) with F′ = Fa(t) + Υ e(t)Θ̂e. In the following, we suppose that Fa(t) is a periodic
function of t with period T. As we are now searching for a time-periodic parameter vector, it
is not wise anymore to consider any discrete set of time tn to sample the problem. Thus, here
we specifically consider that each time t is sampled N times along period T, at time tn = t + nT
with n ∈ [1, N]. We consider the system to follow a closed periodic orbit without noise, so that
V (t) and Fa(t) are two T-periodic functions. In practice, T can be found from analysing the time
variations of V (t), for example, using the frequency associated with its Fourier transform highest
peak. If passive properties are known, a very precise knowledge of the period T is not critical as
it will only affect the evaluation of Fa(t) nearby value t = T. However, if one wishes to estimate
beforehand these passive properties in the presence of active forces using (3.16), a precise estimate
of T would be mandatory, which might depend on the number of period sampling of V (t).

In the following, we thus keep with a continuous time representation of Fa(t) for notation
purposes, but, obviously for numerical implementation, this continuous time can also be
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discretized later on. Defining K
′ = K + Υ eΘ̂e, we now find the likelihood L(Fa | V ) as

L(Fa | V ) =
N∏
1

1
(2π )3Nbσ 6Nb

e−((V−K
′−MFa)T(V−K

′−MFa))/2σ 2
. (3.27)

The footsteps of the previous section are almost identical leading to the linear system for the
estimation of vector parameter F̂a

N∑
1

MTM(n)F̂a =
N∑
1

MT(n)(V − K
′)(n), (3.28)

so that
F̂a(t) = 〈MTM〉(t)−1〈MT(V − K

′)〉(t), (3.29)

where to be precise here, 〈•〉(t) = (1/N)
∑N

n=1 •(t + nT). Furthermore, following the same footsteps
as in the previous section, it is easy to find the deviation distribution to F̂a

F̂a − Fa ∼ N
(

0,
σ 2

N
〈MMT〉−1〈M〉〈MTM〉−1〈MT〉

)
. (3.30)

4. Validation tests
In this section, we illustrate through various examples the identification results obtained in
the previous section. For conciseness, we focus our numerical tests to kinematic formulation.
Nevertheless, in most cases we numerically evaluate both formulations without notable
difference. Here, we consider a quiescent fluid (K = 0). We provide for each case the numerical
parameters used for readers to be able to reproduce our test cases. As our motivation is mainly a
computational proof of the method, we did not used dimensional quantities, so that bead radius,
viscosity are set to unity. We also give the relevant dimensionless numbers (sperm number, elasto-
gravitational number) for the chosen test cases. Let us first consider the continuous description
of an inextensible object which experiences bending torques and elastic forces. The Serret–Frenet
frame triad (t, n, b) needs the definition of tangent t(s)

t(s) = ∂r(s)
∂s

1
‖∂r/∂s‖ , (4.1)

where r(s) is the continuous vector position varying along the centreline arclength s of the fibre,
the normal vector n(s)

n(s) = ∂t
∂s

1
‖∂t/∂s‖ , (4.2)

so that the binormal vector is given by b(s) = t(s) × n(s). The local curvature κ(s) of the fibre is also
given by

κ(s) = ∂t
∂s

(s) · n(s) =
∥∥∥∥ ∂t
∂s

∥∥∥∥ (s). (4.3)

The bending moment is given by the constitutive law of elasticity [37,38]

m(s) = θe(s)t(s) × ∂t
∂s

(s) = θe(s)κ(s)b(s), (4.4)

where θe(s) is the bending rigidity, which can vary along the fibre centreline, and, again, κ(s) the
local curvature. Let us now describe the discrete implementation of the bending moment (4.4)
(which is a bending moment with no intrinsic curvature or zero equilibrium curvature)

m(si) = θe(si)κ(si)bi. (4.5)

θe(si) is the ith component of a bending rigidity elastic vector θe associated with the bending
rigidity of the link between bead i and bead i + 1 already defined in (2.12). The associated bending
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Figure 1. Various snapshots of the elastic relaxation of fibre of N = 20 beads towards equilibrium along time (grey levels).
(xc, yc) corresponds to the centre of mass of the fibre and a the radius of the beads. In this case, without noise, measuring the
generalized velocityV permits the exact evaluation of elastic properties along the fibreΘ e using (3.5).

Table 1. Parameters of elastic relaxation of passive fibre simulation. Number of beads N= 20.

parameter value parameter value

time step 10−1 filament length L= 40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial curvature radius Ruini = L/2 intrinsic curvature Rueq = 108 L
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

max bending stiffness Θ em = 4.71 × 103 sperm number 2μa4/Θ em = 2/Θ em
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

torque for each bead i is given by

tb
i = m(si+1) − m(si−1). (4.6)

Furthermore, using first and last bending moments along the fibre as

tb
1 = m(s2), tb

2 = m(s3), tb
Nb−1 = −m(sNb−2) and tb

Nb
= −m(sNb−1)

permits explicitly building the linear response matrix Υ e defined in (2.12). Appendix A provides
an explicit formulation of how this matrix is built.

Finally, it is important to mention that for these numerical illustrations, we use a Rotne–Prager
mobility matrix (cf. [29] for more details) and a third-order Adam–Bashforth scheme for time
integration.

(a) Elastic relaxation of passive fibres without noise
In this example, we consider elastic relaxation towards equilibrium of a single filament discretized
into Nb − 1 rigid rods of length 2a without external force. The fibre is initialized with a given
radius of curvature and restores its equilibrium straight shape along a transient controlled by
elastic stresses and hydrodynamic interactions (figure 1). Table 1 provides the parameters used
for this numerical computation where we have used a variable bending stiffness along the fibre.
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Table 2. Parameters for the settling passive fibre identification. We use N= 20 beads for the evaluation.

parameter value parameter value

time step 10−4 filament length L= 40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

intrinsic curvature Rueq = 107L initial curvature Ruini = Rueq
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

equilibrium bending angle θbeq = 0 gravity force F⊥ = 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

elasto-gravitational number B= F⊥L3/Θ e = 3 × 103 bending stiffness ‖Θ e‖ = 213.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our aim is to estimate the bending rigidity θe(si) on each bead i, i.e. the vector Θe, by using the
identification formula (3.5). We choose θe to vary along the line s to show that our method works
in the general case of bodies with heterogeneous properties. We found in §3(i) that the vector Θe

was identifiable as long as the matrix MΥ has full column rank. This approach provides an exact
(up to computer accuracy) estimation of Θe. We use positions and velocities given by a simulation
of the model choosing an initial configuration and relaxing the fibre to its equilibrium position.
Computing the L2 relative error between the estimated parameter Θe and the exact one ΘE

e at each
time t, ‖ΘE

e − Θe‖L2/‖ΘE
e ‖L2 , we found a deviation of about 10−14, close to computer accuracy. It

is interesting to mention that, in this passive case, choosing non-uniform elastic properties along
the fibre, as, for example, done in [21] for bull sperm flagellum, does not reduce the precision of
the estimation. This was not the case in [21] when both active and passive parameter estimation
were concomitantly determined. This might be due to the fact that, as shown in §3, simultaneous
active and passive identification is not unique.

(b) Settling passive fibres without noise
Here we estimate the bending stiffness of a flexible filament settling under gravity force F⊥ =
F⊥e⊥ acting perpendicularly to its major axis. The fibre is initialized with a straight shape
orthogonal to gravity. The filament reaches a steady shape and settles at a constant speed
resulting both from the balance of elastic stresses, gravitational acceleration and hydrodynamic
interactions [29,39]. Adding the following generalized external force F⊥ = (F⊥ 0 . . . F⊥ 0)T, to the
right-hand side of (2.13), so that, without active force, the relation between generalized velocity
and forces simply reads

V = M(F⊥ + Υ Θe), (4.7)

so that one can use relation (3.5) from replacing V by the known quantity V − MF⊥ (as M is
known when the bead positions are given), and thus estimate Θe. Table 2 provides the parameters
used for this numerical computation where we consider a homogeneous bending stiffness over
the entire fibre (figure 2). The obtained estimation of Θe is correct, up to computer accuracy, when
the fibre gets its equilibrium position at the final time. The L2 relative error between the estimated
parameter Θe and the exact one ΘE

e at the final time is 10−9. Finally, note that one needs to know
the passive settling force F⊥ beforehand when performing this identification.

(c) Actuated passive filaments without noise
In order to test if the proposed formulation also permits identification for actuated filaments,
we propagate a bending from one end along the passive elastic filament, similarly to [40–43].
To simulate the experiment described in [42,43] (attached filament actuated by its base), we use
actuated prescribed three-dimensional motion of the first two beads, so-called tethered base
elements [29]. This actuation requires the addition of three vectorial kinematic constraints to
the no-slip conditions, adding Jact and M

act to J and B in the constraints equation, as detailed
in [29]. Table 3 provides the parameters used for this numerical computation where we consider
a homogeneous bending stiffness over the entire fibre (figure 3).
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Figure 2. Various snapshot of the bending relaxation of fibre composed of N = 20 beads settling under gravity in an infinite
fluid domain along time (grey levels). The model used in this example has been validated in [29]. (xc, yc) corresponds to the
centre of mass of the fibre and a the radius of the beads. In this case without noise, the estimation of the general velocityV
permits the evaluation of elastic properties using (3.5).
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Table 3. Parameters of the actuated passive filament identification. Number of beads N= 10.

parameter value parameter value

time step 10−3 filament length L= 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

intrinsic curvature radius Rueq = 108L initial curvature Ruini = Rueq
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bending stiffness ‖Θ e‖ = 104 number of periods 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

frequency f = π sperm number, Sp 6π f L4/Θ e = 94.74
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 4. Parameters of the active filament identification. Number of beads N = 20.

parameter value parameter value

number of spheres 20 filament length L= 40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

initial radius of curvature Ruini = L/2 intrinsic curvature Rueq = 108 L
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number of periods 2 frequency f = 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wavenumber k = 3π/2L amplitude θ a
0 = 8.25/L

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sperm number Sp = L(fμ/Θ e)1/4 = 3 time step 10−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here, we just write the matrix formulation of the model and the parameter estimation. We note
J = [Jact J] a vertical concatenation and B = B

act in (2.10) reads

Mact = M(I6Nb − JT(JMJT)−1JM), (4.8)

while (2.11) becomes
K = −MJT(JMJT)−1

B
act (4.9)

so that (2.9) writes
V = MactΥ Θe + K (4.10)

and the estimation linear system is

Θe = ((MactΥ )T(MactΥ ))−1(MactΥ )T(Vexp − K). (4.11)

Again our direct estimate provides the correct estimate for the elastic bending properties up to
computer accuracy. The L2 relative error between the estimated parameter Θe and the exact one
ΘE

e is about 10−11. Again, note here that one needs to know the actuation B
act to evaluate K in

(4.9) beforehand when performing this identification.

(d) Active filaments without noise
Locomotion of the nematode C. elegans is used here as in [44]. Here we are just interested in
modelling the motion of the nematode using the framework of the BM. To do so, we use an
oscillating driving torque ta(s, t) to mimic the internal muscular contractions and a curvature
model given by [44]. The active torque applied on bead i results from the difference in active
bending moments across neighbouring links

ta
i,t = ma(si+1, t) − ma(si−1, t), (4.12)

with
ma(si, t) = θa

0(si) sin(ksi − 2π ft)b(si) = θa(si)b(si), (4.13)

using notation θa = θa
0 sin(ksi − 2π ft). The total bending results from the contributions of the active

moment and the passive one. Firstly, we can write the relation between velocities and forces
without external forces to identify these parameters according to consistent equations. Writing
again the general velocity as

V = M(Fe + Fa) = MΥ e(t)Θe + MΥ a(t)Θa(t),

where we have introduced a known matrix Υ a(t) which describes a ‘wave curvature’ model
previously proposed in [44] (details are given in appendix A) and unknown active amplitudes
Θa associated with the wave propagation along the fibre. Supposing that the elastic internal
parameters Θe are known, let us now discuss the results found for Θa estimation. Table 4 provides
the parameters used for this numerical computation.

Table 5 provides the results for the active amplitude wave at a given time step. The results
are obtained from the direct inversion of relation (3.9), while solving Fa = MΥaΘa, at a given
time-step (at all time-step). Again, computer accuracy is achieved if one knows exactly the elastic
properties.
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Figure 4. Error (4.14) to prediction (3.23) for the elastic relaxation versus the number of observations. The dotted line represents
the prediction given by the theoretical estimate (3.26), whereas black bullets are the results obtainedwith numerical stochastic
average in the presence of O(1) noise amplitudeσ = 1. (Online version in colour.)

Table 5. Estimation ofΘ a(t) at a given time t in the swimming nematode case with 10 beads.

link number i exact valueΘ ae × 102 Θ a × 102 (Θ e known) relative error (×10−14)

1 −1.318155924588519 −1.318155924588518 0.043123440710212
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 −0.445553256609255 −0.445553256609253 0.350843360582397
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.524174207564081 0.524174207564081 0.027110938520310
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1.379638534110982 1.379638534110980 0.144205863415543
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 1.740923696038537 1.740923696038537 0.032651298267784
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 1.447190937009256 1.447190937009254 0.098196128456760
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.874900978326801 0.874900978326801 0.064971259912771
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 0.315226288359876 0.315226288359876 0.078892518390509
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Elastic relaxation with noise
In this section, we test the estimator prediction in the stochastic case. We explore the elastic
relaxation already investigated in §4a in the presence of noise. The main purpose of this section
is to test the theoretical predictions (3.23) and test the convergence toward this prediction
given by the deviation law (3.26). The deviation (3.26) provides a normal convergence with a
rather complex covariance matrix which non-trivially depends on the number of independent
observations N. Thus we compute the statistical quadratic error, when for any noisy configuration
we estimate Θe(i) for i = 1, N

〈e〉N = 〈‖ΘE
e − Θe‖L2 〉N

‖ΘE
e ‖L2

, (4.14)

for various numbers of independent observations N. The relative error over N independent
observations collected during the fibre relaxation have been averaged over 10 different statistical
samples in order to compare results to the expected theoretical error (3.26). Both are in very good
agreement, as shown in figure 4. In the presented case of large noise amplitude σ = 1, one can
see that almost a thousand estimations are necessary to reach a 1% accuracy in the prediction.
Obviously, the error is proportional to the noise amplitude, and thus can be reduced for lower
noise amplitude.
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This computation illustrates and provides consistent results with the prediction obtained in
previous section for noisy measurements.

5. Conclusion and perspectives
We have achieved internal parameter identification of active or passive inextensible fibres
experiencing elasto-hydrodynamic coupling with Stokes flows. The fibre dynamics is described
by an assembly of beads. Using Stokes flow linearity and explicit computation of contact forces
associated with kinematic constraints, we derived a linear relationship between kinematics
and internal parameters. The relation involves an explicit combination of kinematic constraints
(through the Jacobian matrix and/or the actuation vector), hydrodynamic coupling (through
Mobility matrix), elastic behaviour (through internal constitutive matrix) and external flow. This
linear relation has enabled us to provide identifiability conditions. We find that either active or
passive parameter identification is possible but not both simultaneously. Nevertheless, in the case
of a periodic active forcing, we propose two possible approaches to circumvent indeterminacy
and provide successively both passive and active properties.

We also found that in each case (passive or active), the presence of noise does not lead to
a ill-posed inversion, but a well-conditioned direct inversion problem. We derive theoretical
convergent estimators of the parameters. We tested this convergence numerically for various
configurations and found consistent results with theoretical predictions. In each case of passive,
actuated or active fibre we provide a direct estimate for the internal parameters without need
of an initial guess, at the very moderate cost of a small linear system inversion. For noisy data,
we provide error estimations of the internal parameter versus evaluation number which are fully
consistent with numerical test-cases.

These results have been derived in the case of linear dependence of constitutive laws with
parameters, but in the general case of arbitrary deformations (not necessarily small) and possibly
nonlinear dependence of constitutive laws with shape (e.g. elastic bending depends on local
curvature which is a nonlinear function of shape). The hypothesis of constitutive laws linearity
with parameters might be seen as a limitation of the proposed results. As a perspective, let us
briefly touch on how part of the proposed approach might be useful to tackle nonlinear parameter
estimation. Obviously, in the general case of nonlinear dependence of constitutive laws with
parameters, most of the analytic explicit estimators will not apply anymore. Nevertheless, the
BM approach might still be useful, if one is able to derive a discretization of these continuous
constitutive laws. The main point is that part of the nonlinearity associated with the fluid–
structure interaction issues can still be tackled by the contact force model. Indeed, the linear
relation between general velocities and forces (2.9) is still valid for forces having nonlinear
parameter dependence. From then, the inversion problems that we derived might be useful in
various iterative schemes associated with nonlinear inversion problems (e.g. Newton methods).
Hence, our derivation might also been seen as a first useful step to more complex parameter
estimations.

To provide more comments on the physical and biological relevance of our result it is important
to stress that we found that two independent evaluations of active and passive property might
provide a complete inversion of the internal parameters of flagellum or cilia. Such independent
evaluations are interesting because they can both be used under experimental conditions,
provided a precise quantitative observation of the fibre kinematics. First, non-invasive, ‘on the
fly’ observations of passive fibre deformations should permit to evaluate internal mechanical
properties.

This approach should also appear fruitful to provide internal parameter estimation of active
micro-swimmers in the future, if, by any mean, one is able to temporarily switch-off the active
swimming forces (e.g. using ion-pumps inhibitors). Passive properties could first be evaluated
while later on the active swimming force components could be estimated from switching-on
active effects.
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Appendix A

(a) The internal constitutive matrixΥe in bending elastic relaxation
In the case of elastic relaxation, the bending moment reads

m(si) = θe(si)κ(si) bi

where si denotes the curvilinear position of bead i, again, bi is the local bi-normal of the local
Serret–Frenet base at the centre of bead i, and κ(si) is the local curvature of the bead. θe(si) is the
ith component of bending rigidity elastic vector θe. In most cases studied in this paper the rigidity
θe(si) ≡ θe is chosen constant for all beads, but we keep a general formulation for which it could
spatially differ. κ(si) is given by (4.3), consistently with [45], so that the intermediate vector ξ (si)
is useful to consider

ξ (si) = κ(si)bi = 1
2a

ti−1 × ti, (A 2)

for each bead, i with i = 2, . . . , Nb − 1. The bending torque derived from the moment of each bead
reads

tb
i = m(si+1) − m(si−1) (A 3)

and

tb
i = κ(si+1)bi+1θe(si+1) − κ(si−1)bi−1θe(si−1). (A 4)

Then, using notation (A 2)

tb
i = ξ (si+1)θe(si+1) − ξ (si−1)θe(si−1). (A 5)

To be explicit, the general bending torque γ b for six beads reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tb
1

tb
2

tb
3

tb
4

tb
5

tb
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξ (s2) 0 0 0
0 ξ (s3) 0 0

−ξ (s2) 0 ξ (s4) 0
0 −ξ (s3) 0 ξ (s5)
0 0 −ξ (s4) 0
0 0 0 −ξ (s5)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

θe(s2)
θe(s3)
θe(s4)
θe(s5)

⎞
⎟⎟⎟⎠ , (A 6)

where obviously in (A 6) all tb
i and ξ (si) are three-component vectors and 0 =

( 0
0
0

)
.

Although the generalized elastic force, when the collection of the force fi was zero for all beads,
is expressed as F = (f1, . . . , fNb ) with fi = (0, ti) we have to rearrange the previous matrix Υe to
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obtain the Υe matrix elastic parameter. Finally, we get

Fe =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
tb

1
0
tb

2
0
tb

3
0
tb

4
0
tb

5
0
tb

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
ξ (s2) 0 0 0

0 0 0 0
0 ξ (s3) 0 0
0 0 0 0

−ξ (s2) 0 ξ (s4) 0
0 0 0 0
0 −ξ (s3) 0 ξ (s5)
0 0 0 0
0 0 −ξ (s4) 0
0 0 0 0
0 0 0 −ξ (s5)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Υe

⎛
⎜⎜⎜⎝

θe(s2)
θe(s3)
θe(s4)
θe(s5)

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Θe

(b) The internal constitutive matrixΥa in swimming nematode
Now, in the case of swimming nematodes, the active bending moment components are written so
an active, time-periodic curvature wave is prescribed on each bead

ma(si, t) = θa(si) sin(ksi − 2π ft)b(si). (A 8)

Now, using notation Θa(si) = θa(si) sin(ksi − 2π ft), we simplify (A 8)

ma(si, t) = Θa(si, t)b(si). (A 9)

The active bending torque is given by

ta
i = ma(si+1) − ma(si−1)

= Θa(si+1, t)b(si+1) − Θa(si−1, t)ba(si−1).

For six beads the total force associated with the active torque t = ta is

Fa =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
ta

1
0
ta

2
0
ta

3
0
ta

4
0
ta

5
0
tb

6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
b(s2) 0 0 0

0 0 0 0
0 b(s3) 0 0
0 0 0 0

−b(s2) 0 b(s4) 0
0 0 0 0
0 −b(s3) 0 b(s5)
0 0 0 0
0 0 −b(s4) 0
0 0 0 0
0 0 0 −b(s5)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
Υa

⎛
⎜⎜⎜⎝

Θa(s2, t)
Θa(s3, t)
Θa(s4, t)
Θa(s5, t)

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
Θa

, (A 10)

where again 0 is a column vector with three zeros.
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