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Abstract

A cognitive modeling approach coming from ergonomics is
presented. It is based on an activity analysis that starts from a
“trace of activity” made up of data recorded with sensors.
Knowledge engineering software was developed to transform
this trace and map it with explicative concepts. These
concepts are defined by cognitive ergonomists to explain the
activity by the mental states and processes of the operator.
These concepts are produced on a pragmatic and evolutionist
basis with the interactive help of the software, and are
confronted with the operator’s own assessment of his
subjectivity. The approach is illustrated by its application for
car driver cognitive modeling.

Introduction

The increase of professional activities having a “mental
dimension” has encouraged the development of a cognitive
ergonomics for several decades. Wilson and Corlett (2005)
defined ergonomics as the theoretical and fundamental
understanding of human behavior and performance in
purposeful interacting systems, and its application to design
interactions in the context of real settings. More specifically,
cognitive ergonomics rests overall on the statement that this
kind of activity cannot be understood without any reference
to the operator’s “subjectivity”, including perceptions,
intentions, feelings, expectations, knowledge, mental
representation, etc. The main investigating method for
completing this type of understanding is “activity analysis”.
It starts from an observation of the activity in a situation as
natural as possible, then it consists of an analysis for
creating models of activity, and eventually cognitive
models.

Our work focuses on the first half of Wilson’s definition:
understanding for creating models that could explain and
predict the operator’s behavior. However, we take the term
understanding in a pragmatic sense, which considers any
meaning as grounded by a final purpose. We present here a
methodology and a software tool to help ergonomists build
cognitive models of an operator involved in an activity. We

illustrate it by the creation of models of the car driver,
within the global purpose of assessing or designing
intelligent driving assistance systems.

Cognitive Modeling of the Car Driver

Most of the cognitive user models come from Human
Computer Interaction studies. As Salvucci and Lee (2003)
introduced it, they have typically addressed behavior on one
of two levels of abstraction. The higher level modeling
frameworks, e.g. GOMS, represents behavior as basic user
actions, such as moving a mouse or pressing a key. They
mostly represent the user’s knowledge and representations
under complex data structures such as “scripts” or “frames”
(Minsky, 1975). The lower level frameworks, e.g. ACT-R
or EPIC, describe “atomic components” of behavior with
rules triggering over cognitive steps of roughly 50
milliseconds. Here the user’s knowledge is represented
under declarative “chunks” and procedural “production
rules”.

There have been many cognitive models of the car driver
at both of these levels. At the higher level, Bellet and
Tattegrain-Veste (1999) implemented Cosmodrive, a
specific modeling framework of the car driver. At the lower
level, ACT-R was used by Salvucci, Boer, and Liu (2001) to
predict behavior during lane changes on a motorway, or by
Ritter, Van Rooy, St. Amant, and Simpson (2006) to model
the driver of a driving simulator.

The modeling task is facilitated by these modeling
frameworks that increasingly embed general scientific
knowledge about human cognition. The existence of these
frameworks thus raises the question of how to feed them
with a realistic coding of the specific cognitive activity
which is modeled. The specification of these “frames”,
“scripts”, “chunks” and “production rules”, for creating a
specific model is indeed more than a simple programming
task. It is a task of modeling the activity from a cognitive
point of view. It involves an expertise about the activity
itself, and also about how the operator builds and processes
the information needed to complete it. This expertise is



acquired by ergonomists through their professional practice.
What interests us is to support the development of this
expertise, formalize it and capitalize it in a knowledge
engineering tool for activity analysis and modeling.

Explaining Behavior by Mental Activity

A car passenger who sees something dangerous and that the
driver does not react to could obviously infer that the driver
is not aware of the danger and warn him. Inferring others’
mental state is something we are always doing in our
everyday life. This fact of granting other people with having
a subjectivity can be taken in our approach either as an ethic
injunction, or as a pragmatic viewpoint: the intentional
stance (Dennett, 1987). Our purpose is to make this
assessment of the subjectivity more rational, from the
observation of behavior and situation as it can be recorded
by sensors.

We rely on concepts of cognitive psychology such as
“mental representation”, or “Situation Awareness” (Endsley,
1995). The latter simultaneously covers the perception, the
comprehension and the anticipation for describing how the
elements of the situation are “mentally” taken into account
by the operators. However, if these concepts seem clear for
explaining behavior which results from a symbolic
reasoning, it becomes less clear when considering an
activity in which the subject is physically involved. Here,
their subjective experience “accompanies” their actions and
can be seen as much as a cause than as a consequence of
their activity. In this case, behavior can be explained by
“operational schemas”, “implicit knowledge” or automatic
processing (Schneider & Shiffrin, 1977). Finally the relation
between different levels of control can be studied: skills,
rules, and knowledge: (Rasmussen, 1983), or implicit versus
explicit control.

The Objectivity of Mental Activity

There could be a vicious circle in explaining the operators’
behavior by their mental activity that is itself inferred from
their behavior. This raises the question of how to take
other’s subjectivity as an objective reality, which can be
scientifically studied. Psychologists have been discussing
this issue since the beginning of psychology. In this study
we retain three elements of response:

(a) A pragmatic epistemology should be adopted, where
the concepts created for explaining activity make sense in
virtue of their usage (Wittgenstein, 1953). The approach
should support a short testing of the usability of the
concepts and an interactive negotiation of their meaning.

(b) The approach should also conform to an evolutionist
epistemology (Popper, 1972). An explanation cannot be
proved to be true in an absolute sense, but can be retained as
long as it has not been falsified. The approach should
facilitate the production of explanations and their possible
falsification in a short loop.

(¢) The explanations should be confronted with the
subjective assessment made by the subjects themselves.

These assessments should be reasonably trusted and
analyzed as formal input data (Ericsson & Simon, 1993).

To address these requirements, we need some facilities to
easily define and manipulate explicative concepts. The data
collected from a recording of the activity should be easily
linked to these concepts.

Methodology and Tool

This issue of making sense of collected data addresses the
research area of “knowledge discovery” as defined by
Fayyad (1996): the overall process of discovering
potentially useful and previously unknown information or
knowledge from a database. In our case, the data is the
recording of the activity collected by sensors, and the
expected knowledge consists of models explaining the
activity in terms of the cognition of the subject. To Fayyad,
this problem is one of mapping low-level data into other
forms that might be more compact, more abstract, or more
useful. A knowledge discovery system should enable a user
to drive a cyclical process of abstracting and understanding
data. The knowledge is finally built “in the analyst’s mind”
with the interactive use of the system. Progressively, with
this interaction, the knowledge is however capitalized in the
software under the form of a step by step improvement of
the abstraction and of the visualization facilities.

To Miles and Huberman (1994), analysis involves a
classification of datum that could be theory-driven, data-
driven (evolving a “grounded theory”), or a compromise
between both, which he calls “ontological coding”. The
latter is what we are proposing here, to define people-
centered categories such as context, intention, state, or
patterns of relationship between elements.

A Trace-Based System

The specificity of our data is that it is sequential, i.e. every
item of data is associated to a time-stamp and related to a
particular moment of the activity. Sanderson and Fisher
(1994) have set the bases of what they called Exploratory
Sequential Data Analysis (ESDA) in this founding paper.
They define it as an exploratory process that aims at
“Looking at data to see what it seems to say”. Hilbert and
Redmiles (2000) propose a survey of such tools dedicated to
the analysis of human computer interaction. Namely,
MacShapa (Sanderson, McNeese & Zaff, 1994) can be
highlighted for its covering facilities of visualization,
searching, filtering, abstracting and computing statistics.
Hawk (Gusdial, Santos & Badre, 1994) is also noticeable
for its facilities of abstraction based on a specific
programming language. But these tools are dedicated to
usage modeling and not to cognitive modeling. The need
remains for facilities which could help model the mapping
between low level events and higher level explicative
concepts, and help investigate the meaning of these
concepts.

We suggest addressing this need by modeling the
sequential data as a “trace”, as defined by Laflaquiere,
Sofiane-Settouti, Pri¢, and Mille (2006). For them, a trace
is a graph where nodes are facts or events and arcs are
relations between them. A trace is associated with a “trace



model” that consists of an ontology where the semantic of
facts, events, and relations is defined. On this basis,
transformation and mapping of traces can be modeled and
performed by what they call a “Trace-Based System”, which
is a Knowledge-Based System dedicated to traces.

The ABSTRACT Software Tool

Our implementation of a Trace-Based System for cognitive
activity analysis is named ABSTRACT (Analysis of
Behavior and Situation for menTal Representation
Assessment and Cognitive acTivity modeling). It is
described from a computer science point of view in
(Georgeon, Mille & Bellet, 2006). ABSTRACT relies on
several basic standards and tools to represent and
manipulate the traces. The traces themselves are encoded
under the RDF format (Resource Description Framework), a
standard for encoding graphs. The trace models are encoded
under the RDFS format (Resource Description Framework
Schema), a standard for encoding ontologies. The inference
rules for abstracting the traces are written in SPARQL, a
graph query language for RDF. The graphical visualization
is made in the SVG format (Scalable Vector Graphic). It is a
vector graphic standard which enables interaction.

The most challenging issue concerns interactivity, since
the whole process rests on the identification, the
understanding and the definition of patterns of interest by
the ergonomist. We address this issue by providing facilities
to easily browse and transform the visual plots, define new
explicative symbols and specify inference rules for
producing new instances of these symbols. So far, the
specification of these inference rules requires the
ergonomist to have a basic understanding of the SPARQL
langage. He creates them in a semi-graphic way, i.e. he
interactively produces skeletons of queries, and then he
manually completes them. We are still working on
improving the functionality of creating these queries
towards a full graphical interface.

The Modeling Process with ABSTRACT

The Experimental Data

In our example, the data is collected with an instrumented
car during driving experimentations on an open road. Figure
1 shows an example of the video recording. The top left
image is the video output of the obstacle detection system,
the top right is the front view, the lower left - upper part is
the rear view, the lower left - bottom part is the lane view,
and the lower right is the video output of the eye tracker. In
addition, data is collected from sensors: speed, steering
angle, pedal use, distance ahead, obstacle detection from
telemeters, and GPS positioning. Situations of interest are
marked by the experimenter in the car by pressing a button.
Subjective evaluation is obtained from the driver during a
post-experiment “self-confrontation” interview. The driver
reviews the video with the ergonomist and is asked to assess
specific situations by placing cursors on linear scales for
each criteria: difficult, critical, dangerous, stressful,
responsibility, surprise, fear, and performance.

The experimentation collects a set of time-stamped data.
Its choice and its form is not neutral; it is based on the initial
knowledge of the activity, and on the research goals. This
choice constitutes a form of “anticipatory data reduction”.
This data is also possibly pre-processed with algorithms of
noise reduction or of sensor calibration.
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Figure 1: Confronting the collected trace to the video.

The Collected Trace

The collected trace is the first level of trace in ABSTRACT.
It is obtained by converting the collected data into a
succession of low level events precisely defined in an
ontology. For instance, Figure 2 shows how points of
interest of the analogical curves are extracted and merged
into the trace: Thresholds, local Minimums and Maximums,
inflection points, etc.

e

A

Time

Ead N H T 1 ' H Y ;5 T
vwovy v v w v Y orvy w v
——00—O0—O0C 010000 C——O0——O—

v
Trace

Figure 2: Discretization of the analogical data.



The line at the bottom of the figure represents the
collected trace. The circles represent the events from
different sources. Numerical or textual properties are
attached to these events as needed: their time-code, their
source, their type, their value, their duration, the variation
rate of their value at this point, etc. This collected trace
requires a validation by the ergonomist to ensure that these
events can respond to his scientific issues. The adjustment
of the various parameters used for producing these events is
a delicate but important step. This validation is made with
the help of a facility provided by ABSTRACT for playing
the video in synchronization with the trace (Figure 1). The
collected trace is represented in a spreadsheet with a line for
each event and their properties in columns. A color code
makes it easier to read. The spreadsheet is automatically
scrolled up or down to follow the video when it is played
forwards or backwards. The first event of Figure 1
represents a triggering event of the left mirror area of the
eye tracker. It lasts 184 ms and happened at a speed of 108
km/h with a steering wheel angle of 3.28°. The last line of
the figure is a threshold crossing event upwards of the
steering wheel angle. The threshold value of 5° was chosen
after different trials and checks because it proved to be a
meaningful/useful threshold for studying lane changes on
motorways. The video is not entirely encoded into symbols
and remains exploited by the ergonomist in parallel with the
symbolic traces.

The Analyzed Traces

The collected trace is then enriched by more abstract
symbols to produce traces as shown in Figures 4 and 5. In
these displays, the time goes from left to right and the “x”
position of the events is given by their time-code. The
ergonomist is free to define the shapes of symbols, their
colors and their “y” position in the display. He can click on
symbols to see their properties. These figures use a display
model where the lower level symbols are the dots at the
bottom. The middle level symbols are placed around the
middle horizontal axis. What concerns the left of the vehicle
is placed above this axis and what concerns the right is
placed below it. Triangles oriented to the right concern
something “frontward” (e.g. “Look ahead”), triangles
oriented to the left concern something “backward” (e.g.
“Left mirror glance”). The lines are the relations of
inference from lower level symbols to higher level symbols.
The upper part of the display is used for the highest level
symbols which are not concerned by this left/right rule (e.g.
“Decision”). The colors in the real display are used to
indicate the type of data (i.e., blinker in orange), it makes it
much easier to read than in print. When applied, an
inference rule adds a new instance of a symbol in the trace
everywhere the specified pattern is found. Filters can mask
the undesired symbols.

The Ontology

Parallel to the creation of the inference rules, the ergonomist
defines the class of the symbols in an ontology.
ABSTRACT provides them with an access to the “Protégé”
ontology editor to let them define the semantic and visual

properties of each class of symbol. This ontology is
exploited by the SPARQL inference engine and by the
display functions.

Class Hierarchy
v co
| Car_Dynamic

v Driver_Behavior

| Driver_Action
Y Driver_Stance
v Eye

> Eye_Beside_|Left
v Eye_Beside_Right

Eye_Far_Right
Eye_Right_Mirror
| 3 Eye_Center_Mirrar
| 3 Eye_Front
> Eye_Low
Eye_Off

> Evye_Gual
| Human_Input
| 2 Road_Enviranment
v Activity_Analysis

v Lane_Change
Lane_Change_Delayed
Lane_Change_Anticipated

v Mental_States
Decision

Surprise

Figure 3: The ontology edited with Protégé.

Figure 3 shows an extract of the top classes of the current
ontology. The CO class defines all the Collected Objects
existing in the collected trace. One branch of the eye tracker
data is expanded to show how the area of interest can be
organized. Heritage is supported so that inference rules and
visualization settings can be defined at any level of the
hierarchy.

The Activity Analysis class concerns concepts that are
inferred from CO. For instance, two types of lane changes
could be modeled and can be recognized from specific
patterns in the data: lane-change-anticipated and lane-
change-delayed, published in (Henning, Georgeon &
Krems, 2007). All these concepts are defined on a pragmatic
and evolutionist basis as said above. They come from a
trade-off between, on one hand, the possibility of inferring
them from the data and on the other hand from the
ergonomist’s quest for explanation. Moreover they can be
searched in collaboration between the ergonomist and the
subject himself during the self-confrontation interview.

Examples of Modeling

Figure 4 shows a typical example of a lane-change-delayed
schema. In this figure, the “Start-thinking” symbol
corresponds to the moment when the driver declares that he
starts considering changing lane in the self-confrontation
interview. The “Button” is a signal from the experimenter
recorded during the course for indexing every lane change,
and the “Lane-crossing” is the moment where the left front



wheel crosses the lane, manually encoded from the video.
All other symbols are automatically inferred from the sensor
data.

In this kind of situation the driver is impeded by a vehicle
slower than his desired speed. He may check his left mirror
several times, then, when he decides to overtake, he
accelerates while checking his mirror; he switches his
blinker on, starts steering, and crosses the line. In this
situation, the decision to perform the lane change can be
inferred from the conjunction of both the acceleration and
the left mirror glance within a certain lap of time
(“Decision” symbol). This symbol can be useful as a
predictor of the lane change in this situation, we call it
“Decision” within the explicative framework of “operational
schemas”. The inference is made by a query expressing:
“add a new node of type “decision”, linked through edges of
type “inferred”, to pairs of nodes matching the condition:
one is of type “accelerate”, other is of type “Left mirror
glance” and their “time-stamp” properties are comprised
within one second. Once defined, this query can be applied
to the whole trace for statistical assessment of true detection
and false alarm. This driver made 11 lane changes, 5 could
be categorized as “delayed” and 2 as “anticipated”. The

decision is detected before the blinker in the 5 lane-change-
delayed, and there is one false detection.

Another example of analysis is shown in figure 5. It is a
case study where the driver attempts to change lane but did
not see a car arriving from the rear on the left lane. He
initiated the maneuver but aborted it at the last moment. The
figure shows that the driver did not look at his rear mirror:
he was looking at his speedometer instead. He stabilized his
speed at a higher value than the car ahead. The “Distance
ahead” event at a relative speed of 3.5km/h comes from the
front telemeter. From these two pieces of information we
can already make the diagnosis that he was intending to
overtake. Then he looked at his left mirror almost at the
same time as switching his indicator on. At this moment he
saw the car coming on the left lane from behind and he
aborted the lane change. He made an abrupt steering back to
the right, switched off his indicator, and pressed the brake
pedal to avoid bumping into the car he was intended to
overtake. Finally he started looking again at his left mirror
and accelerated again to perform the lane change when the
other car had passed him.

The subjective evaluation from the interview indicates
that he was very surprised: (90% of the scale), stressed
(75%) but the difficulty was not so high: 30%.
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Figure 4: Prototype of a “lane-change-delayed” schema.
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Figure 5: Lane change attempt with mistake of situation awareness.



This example shows how we can explain a mistake by an
error of “situation awareness”. It also let us propose a
threshold value of the variation rate of the steering wheel
that can indicate the subjective surprise of the driver.
Finally, it shows that more than one second before this
mistake, we could automatically make the diagnosis that the
driver was intending to make an error from the objective
data. Based on this diagnosis, a driving assistance system
could warn him.

Conclusion

A methodology and tool were presented to support the
activity analysis and the cognitive modeling of an operator.
They are intended to formalize the process of explaining
activity by the mental states and processes of the operator.
The tool can capitalize on the expertise of the ergonomist
through inference rules, ontologies, and visualization
settings. The resulting models consist of explicative
concepts defined in the ontology and of abstract traces
describing patterns of behavior with these concepts. The
modeling process lets categories emerge from situations in
parallel with their description and provides means to
validate them by statistics. The analysis is made from data
collected in the field of the studied activity. It consists of a
step-by-step process of abstraction driven by the ergonomist
in interaction with a software tool. It is shown how this
analysis can help design assistance systems for dealing with
specific situations.

The obtained models could also be exploited for
programming  simulations in  cognitive simulation
frameworks, which would confront them to theoretical
constraints on human cognition.
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