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Abstract : The purpose of this paper is to present Bernstein and Ho-
effding type inequalities for regenerative Markov chains. Furthermore, we
generalize these results and establish exponential bounds for suprema of em-
pirical processes over a class of functions F which size is controlled by its
uniform entropy number. All constants involved in the bounds of the con-
sidered inequalities are given in an explicit form which can be advantageous
for practical considerations. We present the theory for regenerative Markov
chains, however the inequalities are also valid in the Harris recurrent case.

1 Introduction

Exponential inequalities are a powerful tool to control the tail probability
that a random variable X exceeds some prescribed value t. They have been
extensively investigated by many researchers due to the fact that they are
a crucial step in deriving many results in numerous fields such as statis-
tics, learning theory, discrete mathematics, statistical mechanics, informa-
tion theory or convex geometry. There is a vast literature that provides a
comprehensive overview of the theory of exponential inequalities in the i.i.d.
setting. An interested reader is referred to Bai and Lin (2009), Boucheron et
al. (2013) or van der Vaart and Wellner (1996).

The wealth of possible applications of exponential inequalities has natu-
rally led to development of this theory in the dependent setting. In this paper
we are particularly interested in results that establish exponential bounds for
the tail probabilities of the additive functional of the regenerative Markov

1Keywords : uniform entropy, exponential inequalities, empirical processes indexed
by classes of functions, regenerative Markov chain.
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chain of the form
f(X1) + · · · + f(Xn),

where (Xn)n∈N is a regenerative Markov chain. It is noteworthy that when
deriving exponential inequalities for Markov chains (or any other process with
some dependence structure) one can not expect to recover fully the classical
results from the i.i.d. case. The goal is then to get some counterparts of the
inequalities for i.i.d. random variables with some extra terms that appear
in the bound as a consequence of a Markovian structure of the considered
process.

In the recent years such (non-)asymptotic results have been obtained for
Markov chains via many approaches: martingale arguments (see Glynn and
Ormoneit (2002), where Hoeffding’s inequality for uniformly ergodic Markov
chains has been presented), coupling techniques (see Chazottes and Redig
(2009) and Dedecker and Gouëzel (2015)). In fact, Dedecker and Gouëzel
(2015) have proved that Hoeffding’s inequality holds when the Markov chain
is geometrically ergodic and thus weakened the assumptions imposed on the
Markov chain in Glynn and Ormoneit (2002). Winterberger (2016) has gen-
eralized the result of Dedecker and Gouëzel (2015) by showing that Hoeffd-
ing’s inequality is valid also for unbounded functions of geometrically ergodic
Markov chains provided that the sum is correctly self-normalized. Paulin
(2015) has presented McDiarmid inequality for Markov chains using Mer-
ton coupling and spectral methods. Clémençon (2001), Adamczak (2008),
Bertail and Clémençon (2009), and Adamczak and Bednorz (2015) have ob-
tained exponential inequalities for ergodic Markov chains via regeneration
techniques (see Smith (1955)).

Regeneration techniques for Markov chains are particularly appealing to
us mainly due to the fact that it requires much fewer restrictions on the er-
godicity properties of the chain in comparison to alternative methods. In this
paper we establish Hoeffding and Bernstein type of inequalities for statistics
of the form 1

n

∑n
i=1 f(Xi), where (Xn)n∈N is a regenerative Markov chain.

We show that under proper control of the size of class of functions F (mea-
sured by its uniform entropy number), one can get non-asymptotic bounds
on the suprema over the class of F of such empirical process for regenerative
Markov chains. It is noteworthy that it is easy to generalize such results from
regenerative case to the Harris recurrent one, using Nummelin extension of
the initial chain (see Nummelin (1978)).

The paper is organized as follows. In chapter 2 we introduce the nota-
tion and preliminary assumptions for Markov chains. We also recall some
classical results from the i.i.d. setting which we generalize to the Markovian
case. In chapter 3 we present the main results - Bernstein and Hoeffding type
inequalities for regenerative Markov chains. The main ingredient to provide
a crude exponential bound (with bad constants) is based on Montgomery-
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Smith which allows to reduce the problem on a random number of blocks to
a fixed number of independent blocks. We then proposed a refined inequality
by first controlling the the number of blocks in the inequality and then ap-
plying again Montgomery-Smith inequality on a remainder term. Next, we
generalize these results and obtain Hoeffding and Bernstein type of bounds
for suprema of empirical processes over a class of functions F . We also present
the inequalities when the chain is Harris recurrent. Some technical parts of
the proofs are postponed to the Appendix.

2 Preliminaries

We begin by introducing some notation and recall the key concepts of the Markov
chains theory (see Meyn & Tweedie (1996) for a detailed review and refer-
ences). Let X = (Xn)n∈N be a positive recurrent, ψ−irreducible Markov
chain on a countably generated state space (E, E) with transition probabil-
ity Π and initial probability ν. We assume further, that X is regenerative
(see Smith (1955)), i.e. there exists a measurable set A, called an atom, such
that ψ(A) > 0 and for all (x, y) ∈ A2 we have Π(x, ·) = Π(y, ·). We define the
sequence of regeneration times (τA(j))j≥1 which is the sequence of successive
points of time when the chain visits A and forgets its past. Throughout the
paper we write τA = τA(1). It is well-known that we can cut the sample path
of the process into data segments of the form

Bj = (X1+τA(j), · · · , XτA(j+1)), j ≥ 1

according to consecutive visits of the chain to the regeneration set A. By the
strong Markov property the blocks are i.i.d. random variables taking values
in the torus ∪∞

k=1E
k.

In the following, we assume that the mean inter-renewal time α = EA[τA] <
∞ and point out that in this case, the stationary distribution is a Pitman
occupation measure given by

∀B ∈ E , µ(B) =
1

EA[τA]
EA

[
τA∑
i=1

I{Xi∈B}

]
,

where IB is the indicator function of the event B. Assume that we observe
(X1, · · · , Xn). We introduce few more pieces of notation: throughout the
paper we write ln =

∑n
i=1 I{Xi ∈ A} for the total number of consecutive

visits of the chain to the atom A, thus we observe ln + 1 data blocks. We

make the convention that B
(n)
ln

= ∅ when τA(ln) = n. Furthermore, we denote
by l(Bj) = τA(j + 1) − τA(j), j ≥ 1, the length of regeneration blocks. Let
f : E → R be µ− integrable function. In the following, we assume without
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loss of generality that µ(f) = Eµ[f(X1)] = 0. We introduce the following

notation for partial sums of the regeneration cycles f(Bi) =
∑τA(j+1)

i=1+τA(j) f(Xi).
Then, the regenerative approach is based on the following decomposition of
the sum

∑n
i=1 f(Xi) :

n∑
i=1

f(Xi) =
ln∑
i=1

f(Bi) + ∆n,

where

∆n =

τA∑
i=1

f(Xi) +
n∑

i=τA(ln−1)

f(Xi).

We denote by

σ2(f) =
1

EA(τA)
EA

(
τA∑
i=1

{f(Xi) − µ(f)}

)2

the asymptotic variance.
For the completeness of the exposition, we recall now well-known classi-

cal results concerning some exponential inequalities for independent random
variables. Firstly, we present the inequality for the i.i.d. bounded random
variables due to Hoeffding (1963).

Theorem 2.1 (Hoeffding’s inequality) Let X1, X2, · · · , Xn be indepen-

dent identically distributed random variables with common expectation EX1

and such that ai ≤ Xi ≤ bi (i = 1, · · · , n), then for t > 0

P

(
1

n

n∑
i=1

Xi − EX1 ≥ t

)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Below we recall the generalization of Hoeffding’s inequality to unbounded
functions. Interested reader, can find different variations of the following
inequality (depending on imposed conditions on the random variables) in
Boucheron et al. (2013).

Theorem 2.2 (Bernstein’s inequality) Let X1, · · · , Xn be independent ran-

dom variables with expectation EXl for Xl, l ≥ 1 respectively, such that, for

all integers p ≥ 2,

E|Xl|p ≤ p!Rp−2σ2
l /2 for all l ∈ {1, · · · , n}.
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Then, for all t > 0,

P

(∣∣∣∣∣
n∑

i=1

(Xl − EXl)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2(σ2 +Rt)

)
,

where σ2 =
∑n

i=1 σ
2
l .

The purpose of this paper is to derive similar bounds for Markov chains
using the nice regenerative structure of Markov chains.

3 Exponential inequalities for the tail prob-

ability for suprema of empirical processes

for Markov chains

In the following, we denote f̄(x) = f(x) − µ(f). Moreover, we write respec-
tively f̄(B1) =

∑τA
i=1 f̄(Xi) and |f̄ |(B1) =

∑τA
i=1 |f̄ |(Xi). We will work under

following conditions.

A1. (Bernstein’s block moment condition) There exists a positive constant
M1 such that for any p ≥ 2 and for every f ∈ F

EA

∣∣f̄(B1)
∣∣p ≤ 1

2
p!σ2(f)Mp−2

1 . (1)

A2. (Non-regenerative block exponential moment assumption) There exists
λ0 > 0 such that for every f ∈ F we have Eν

[
exp

[
λ0
∣∣∑τA

i=1 f̄(Xi)
∣∣]] <

∞.

A3. (Exponential block moment assumption) There exists λ1 > 0 such that
for every f ∈ F we have EA

[
exp

[
λ1
∣∣f̄ ∣∣ (B1)

]]
<∞.

Remark 3.1 It is noteworthy to mention that assumption A1 implies the

existence of an exponential moment of f̄(B1) :

EA exp(λf̄(B1)) ≤ exp

(
λ2/2

1 −M1|λ|

)
for all λ <

1

M1

.

In this section, we formulate two Bernstein type inequalities for Markov
chains, one is established via simple use of Montgomery-Smith inequality (see
Montgomery-Smith (1993) and de la Peña, and Giné (1999)) which results
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in much larger constants (comparing to the i.i.d. setting) in the dominating
parts of the bound. The second Bernstein’s bound contains small constants
in the main counterparts of the bound, however at a cost of having an extra
term in the bound.

Before we state the theorems, we will give a short discussion on already
existing results for exponential inequalities for Markov chains.

Remarks 3.1 Since there is plenty of results concerning exponential inequal-

ities for Markov chains under many assumptions, it may be difficult to com-

pare their strength (measured by assumptions imposed on the chain) and ap-

plicability. Thus, before we present the proofs of Theorem 3.2 and Theorem

3.3 , we make a short comparison of our result to already existing inequal-

ities for Markov chains. We also strongly recommend seeing an exhaustive

overview on the recent results of that type in Adamczak and Bednorz (2015).

1. The bounds obtained in this paper are related to the Fuk and Nagaev

sharp bound inequality obtained in Bertail and Clémençon (2010). It

is also based on the regeneration properties and decomposition of the

chain. However, our techniques of proof differ and allow us to obtain a

better rate in the main subgaussian part of the inequality under the hy-

potheses. The proofs of the inequalities are simplified and do not require

the partitioning arguments which was used in Bertail and Clémençon

(2010).

2. It is noteworthy that we do not impose condition of stationarity of

the considered Markov chain as in Dedecker and Gouëzel (2015) and

Chazottes and Redig (2009) or any restrictions on the starting point

of the chain as in Dedecker and Gouëzel (2015). Moreover, Adamczak

and Bednorz (2015) use the assumption of strong aperiodicity for Harris

Markov chain. We state a remark that this condition can be relaxed and

we can only assume that Harris Markov chain is aperiodic (see Remark

3.9).
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3. Many results concerning exponential inequalities for Markov chains are

established for bounded functions f (see for instance Adamczak (2008),

Clémençon (2001), Dedecker and Gouëzel (2015)). Our inequalities

work for unbounded functions satisfying Bernstein’s block moment con-

dition. Moreover, all terms involved in our inequalities are given by

explicit formulas. Thus, the results can be directly used in practical

considerations. Note also that all the constants are given in simple,

easy to interpret form and they do not depend on other underlying pa-

rameters.

4. Winterberger (2016) has established exponential inequalities in unbounded

case extending the result of Dedecker and Gouëzel (2015) to the case

when the chain can start from any x ∈ E. However, the constant in-

volved in the bound of the Theorem 2.1 (obtained for bounded and un-

bounded functions) is very large.

5. As mentioned in the paper of Adamczak, there is many exponential in-

equalities that satisfy spectral gaps (see for instance Gao and Guillin,

Lezaud (2001)). Spectral gap inequalities allow to recover the Bernstein

type inequality at its full strength. We need to mention that the geo-

metric ergodicity assumption does not ensure in the non-reversible case

that considered Markov chains admit a spectral gap (see Theorem 1.4

in Kontoyiannis and Meyn (2012)).

We formulate a Bernstein type inequality for Markov chains below.

Theorem 3.2 Assume that X = (Xn)n∈N is a regenerative positive recurrent

Markov chain. Then, under assumptions A1 − A3, we have

Pν

[∣∣∣∣∣
n∑

i=1

f(Xi) − µ(f)

∣∣∣∣∣ ≥ x

]
≤ 18 exp

[
− x2

2 × 902 (nσ2(f) +M1x/90)

]
+ C1 exp

[
−λ0x

3

]
+ C2 exp

[
−λ1x

3

]
,
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where

C1 = Eν

[
exp

∣∣∣∣∣λ0
τA∑
i=1

f̄(Xi)

∣∣∣∣∣
]
,

C2 = EA

[
exp[λ1

∣∣f̄ ∣∣ (B1)]
]
.

Remark 3.2 Observe that we do not impose a moment condition on EA[τA]p <

∞ for p ≥ 2. At the first glance, this might be surprising since one usually

assumes the existence of EA[τA]2 < ∞ when proving central limit theorem

for regenerative Markov chains. A simple analysis of the proof of the central

limit theorem in a Markovian case (see for instance Meyn & Tweedie (1996))

reveals that it is sufficient to require only EA[τA] <∞ when we consider cen-

tered function f̄ instead of f.

Proof. Firstly, we consider the sum of random variables of the following
form

Zn(f̄) =
ln∑
i=1

f̄(Bj). (2)

Furthermore, we have that Sn(f̄) = Zn(f̄) + ∆n(f̄).
We recall, that ln is random and correlated with blocks itself. In or-

der to apply Bernstein’s inequality for i.i.d. random variables we apply the
Montgomery-Smith inequality (see Montgomery-Smith (1993)) . It follows
easily that

PA

[∣∣∣∣∣
ln∑
i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/3

]
≤ PA

[
max
1≤k≤n

∣∣∣∣∣
k∑

i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/3

]

≤ 9PA

[∣∣∣∣∣
n∑

i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/90

]
(3)

and under Bernstein’s condition A1 we obtain

PA

[∣∣∣∣∣
n∑

i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/90

]
≤ 2 exp

[
− x2

2 × 902 (M1x/90 + nσ2(f))

]
. (4)
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Next, we want to control the remainder term ∆n.

∆n =

τA∑
i=1

f̄(Xi) +
n∑

i=τA(ln−1)

f̄(Xi). (5)

The control of ∆n is guaranteed by Markov’s inequality, i.e.

Pν

[∣∣∣∣∣
τA∑
i=1

f̄(Xi)

∣∣∣∣∣ ≥ x

3

]
≤ Eν

[
exp

∣∣∣∣∣λ0
τA∑
i=1

f̄(Xi)

∣∣∣∣∣
]

exp

[
−λ0x

3

]
.

We deal similarly with the last term of ∆n. We complement the data 1 +
τA(ln) + 1 by observations up to the next regeneration time 1 + τA(ln + 1)
and obtain

Pν

∣∣∣∣∣∣
n∑

i=1+τA(ln)+1

f̄(Xi)

∣∣∣∣∣∣ ≥ x

3

 ≤ Pν

 n∑
i=1+τA(ln)+1

∣∣f̄ ∣∣ (Xi) ≥
x

3


≤ Pν

 1+τA(ln+1)∑
i=1+τA(ln)+1

∣∣f̄ ∣∣ (Xi) ≥
x

3


≤ EA

[
exp[λ1

∣∣f̄ ∣∣ (B1)]
]

exp

[
−λ1x

3

]
.

We note that although the Montgomery-Smith inequality allows to obtain
easily Bernstein’s bound for Markov chains, the constants are rather large.
Interestingly, under an additional assumption on EA[τA]p we can obtain the
Bernstein type inequality for regenerative Markov chains with much smaller
constants for the dominating counterparts of the bound.

A4. (Block length moment assumption) There exists a positive constant M2

such that for any p ≥ 2

EA[τA]p ≤ p!Mp−2
2 EA[τ 2A]

and
Eν [τA]p ≤ p!Mp−2

2 Eν [τ 2A].

Before we formulate Bernstein’s inequality for regenerative Markov chains we
introduce a lemma which provides a bound for tail probability of

√
n
(
ln
n
− 1

α

)
which will be cruciall for the proof of Bernstein’s bound but also may be of
independent interest.
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Lemma 3.1 Suppose that condition A4 holds. Then

Pν

(
n1/2

(
ln
n
− 1

α

)
≥ x

)
is bounded by

exp

(
−1

2

(αx
√
n− 2α)2(

Eντ 2A + (n
α

+ x
√
n)EAτ 2A

)
+ (αx

√
n+ EντA)M2

(
Eντ 2A + (n

α
+ x

√
n)EAτ 2A

)1/2
)
.

Proof of Lemma 3.1 is postponed to the Appendix.

Remark 3.3 Note that when n→ ∞, the dominating part in the exponential

term is of order

1

2

α2x2

EAτ 2A/α + α1/2xM2 (EAτ 2A)
1/2

+O(n−1/2)

=
1

2

α2x2

EAτ 2A/α(1 + αxM2 (EAτ 2A/α)
−1/2

)
+O(n−1/2)

=
1

2

(αx)2/ (EAτ
2
A/α)

(1 + αxM2 (EAτ 2A/α)
−1/2

)
+O(n−1/2),

thus we have a Gaussian tail with the right variance for moderate x and an

exponential tail for large x and, in consequence, the constants are asymptot-

ically optimal.

Now we are ready to state an alternative Bernstein type inequality for
regenerative Markov chains, where under additional condition on the length
of the blocks we can obtain much better inequality in terms of constants.

Theorem 3.3 Assume that X = (Xn)n∈N is a regenerative positive recurrent

Markov chain. Then, under assumptions A1-A4 we have for any a > 0, for

x > 0 and N > 0

Pν

[∣∣∣∣∣
n∑

i=1

f(Xi) − µ(f)

∣∣∣∣∣ ≥ x

]
≤ 2 exp

[
−x2

2 × 32(1 + a)2
(⌊

n
α

⌋
σ2(f) + M1

3
x

1+a

)]

+ 18 exp

[
−x2

2 × 902(1 + a)2
(
N
√
nσ2(f) + M1

90
x

1+a

)]

+ Pν

(
n1/2

[
ln
n
− 1

α

]
> N

)
+ C1 exp

[
−λ0x

3

]
+ C2 exp

[
−λ1x

3

]
, (6)

10



where

C1 = Eν

[
exp

∣∣∣∣∣λ0
τA∑
i=1

f̄(Xi)

∣∣∣∣∣
]
,

C2 = EA

[
exp[λ1

∣∣f̄ ∣∣ (B1)]
]
.

Remark 3.4 If we choose N = log(n), then by Lemma 3.1 we can see that

Pν

(
n1/2

[
ln
n
− 1

α

]
≥ log(n)

)
= o

(
1
n

)
and in that case the second term in (6)

remains small uniformly in x.

Proof. We start by the obvious observation that

Pν

[∣∣∣∣∣
n∑

i=1

f(Xi) − µ(f)

∣∣∣∣∣ ≥ x

]
≤ PA

[∣∣∣∣∣
ln∑
i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/3

]

+ Pν

[∣∣∣∣∣
τA∑
i=1

f̄(Xi)

∣∣∣∣∣ ≥ x/3

]
+ PA

∣∣∣∣∣∣
n∑

i=τA(ln−1)

f̄(Xi)

∣∣∣∣∣∣ ≥ x/3

 . (7)

Remark 3.5 Instead of dividing x by 3 in (7), one can use a different split-

ting to improve a little bit the final constants.

The bounds for the first and last non-regenerative blocks can be handled the
same way as in Theorem 3.2. Next, we observe that, for any a > 0, we have

PA

[∣∣∣∣∣
ln∑
i=1

f̄(Bi)

∣∣∣∣∣ ≥ x/3

]
≤ PA


∣∣∣∣∣∣∣
⌊n

α⌋∑
i=1

f̄(Bi)

∣∣∣∣∣∣∣ ≥
x

3(1 + a)

+ PA

∣∣∣∣∣∣
ln2∑
ln1

f̄(Bi)

∣∣∣∣∣∣ ≥ x

3(1 + a)

 ,
(8)

where ln1 = min(
⌊
n
α

⌋
, ln) and ln2 = max(

⌊
n
α

⌋
, ln).We observe that

∑⌊n
α⌋

i=1 f̄(Bi)
is a sum of independent, identically distributed and sub-exponential random
variables. Thus, we can directly apply Bernstein’s bound and obtain

PA


∣∣∣∣∣∣∣
⌊n

α⌋∑
i=1

f̄(Bi)

∣∣∣∣∣∣∣ ≥
x

3(1 + a)

 ≤ 2 exp

[
−x2

2 × 32(1 + a)2
(⌊

n
α

⌋
σ2(f) +M1x/3(1 + a)

)] .
(9)
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The control of
∑ln2

ln1
f̄(Bi) is slightly more challenging due to the fact that

ln is random and correlated with the blocks itself. In the following, we will
make use of the Montgomery-Smith inequality. Notice however, that since
we expect the number of terms in this sum to be at most of the order

√
n,

this term will be much more smaller than the leading term (9) and will be
asymptotically negligible. We have

PA

∣∣∣∣∣∣
ln2∑
ln1

f̄(Bi)

∣∣∣∣∣∣ ≥ x

3(1 + a)

 ≤ PA

∣∣∣∣∣∣
ln2∑
ln1

f̄(Bi)

∣∣∣∣∣∣ ≥ x

3(1 + a)
,
√
n

[
ln
n
− 1

α

]
≤ N


+ Pν

(√
n

[
ln
n
− 1

α

]
> N

)
= A+B. (10)

Firstly, we will bound term A in (10) using Montgomery-Smith inequality
and the fact that if

√
n
[
ln
n
− 1

α

]
≤ N, then ln1 − ln2 ≤

√
nN.

PA

∣∣∣∣∣∣
ln2∑
ln1

f̄(Bi)

∣∣∣∣∣∣ ≥ x

3(1 + a)
,
√
n

[
ln
n
− 1

α

]
≤ N


≤ PA

(
max

1≤k≤N
√
n

∣∣∣∣∣
k∑

i=1

f̄(Bi)

∣∣∣∣∣ ≥ x

3(1 + a)

)

≤ 9PA

∣∣∣∣∣∣
N
√
n∑

i=1

f̄(Bi)

∣∣∣∣∣∣ ≥ x

90(1 + a)


≤ 18 exp

[
−x2

2 × 902(1 + a)2
(
N
√
nσ2(f) + M1

90
x

1+a

)] .
Lemma 3.1 allows to control term B.

3.1 Maximal inequalities under uniform entropy

In empirical processes theory for processes indexed by class of functions, it
is important to assess the complexity of considered classes. The information
about entropy of F helps us to inspect how large our class is. Generally,
control of entropy of certain classes may be crucial step when investigating
asymptotic behaviour of empirical processes indexed by a class of functions.
In our setting, we will measure the size of class of functions F via covering
numbers and uniform entropy number. The following definition is due to
Van der Vaart and Wellner (1996).

Definition 3.4 (Covering and uniform entropy number) The covering

number Np(ϵ, Q,F) is the minimal number of balls {g : ∥g − f∥Lp(Q) < ϵ}

12



of radius ϵ needed to cover the set F . The entropy (without bracketing) is

the logarithm of the covering number. We define uniform entropy number as

Np(ϵ,F) = supQNp(ϵ,Q,F), where the supremum is taken over all discrete

probability measures Q.

In the following we state assumptions on the size of considered class of func-
tions F . Rather than considering the assumptions A2 and A3, we impose the
assumptions on the first and the last non-regenerative blocks for the envelope
F of F .

A2′. (Non-regenerative block exponential moment assumption) There exists
λ0 > 0 such that Eν

[
exp

[
2λ0

∣∣∑τA
i=1 F̄ (Xi)

∣∣]] <∞.

A3′. (Exponential block moment assumption) There exists λ1 > 0 such that
EA

[
exp

[
2λ1

∣∣F̄ ∣∣ (B1)
]]
<∞.

A5. (Uniform entropy number condition) N2(ϵ,F) <∞.

Before we formulate Bernstein deviation type inequality for unbounded classes
of functions, we introduce one more piece of notation, let σ2

m = maxf∈F σ
2(f) >

η > 0.

Theorem 3.5 Assume that X = (Xn)n∈N is a regenerative positive recurrent

Markov chain. Then, under assumptions A1, A2′, A3′ and A5 and for any

0 < ϵ < x and for n large enough we have

Pν

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

f(Xi) − µ(f)

∣∣∣∣∣ ≥ x

]
≤ N2 (ϵ,F)

{
18 exp

[
− (x− 2ϵ)2

2 × 902 (nσ2
m +M1(x− 2ϵ)/90)

]
+C1 exp

[
λ0(x− 2ϵ)

3

]
+ C2 exp

[
−λ1(x− 2ϵ)

3

]}
, (11)

where

C1 = Eν

[
exp

∣∣∣∣∣2λ0
τA∑
i=1

F (Xi)

∣∣∣∣∣
]
,

C2 = EA [exp[2λ1 |F | (B1)]]

and F is an envelope function for F .

Before we proceed with the proof of Theorem 3.5, we indicate that under
additional assumptions it is possible to obtain Bernstein type concentration
inequality.

13



Remark 3.6 Notice that our bound is a deviation bound in that it holds

only for n large enough. This is due to the control of the covering functions

(under Pn) by a control under P (see Remark 3.8 in the proof). However, by

making additional assumptions on the regularity of the class of functions and

by choosing the adequate norm, it is possible to obtain by the same arguments

an exponential inequality valid for any n as in Zou, Zhang and Xu (2009)

or Cucker and Smale (2002). See also examples of such classes of functions

used in statistical learning in this latter. Indeed, if F belongs to a ball of

a Hölder space CP (E ′) on a compact set E ′ of an Euclidean space endowed

with the norm

||f ||CP (E′) = sup
x∈E′

|f(x)| + sup
x1∈E′,x2∈E′

(
f(x1) − f(x2)

d(x1, x2)p

)
then we haveM = supx∈XF (x) <∞ as well as L = supf,g∈F ,f ̸=g supz

|f(z)−g(z)|
||f−g||CP (E′)

<

∞ so that we can directly control the empirical sum by the obvious inequality

sup
f,g∈F

∣∣∣∣∣1n
n∑

i=1

f(Xi) − g(Xi)

∣∣∣∣∣ ≤ L||f − g||CP (E′).

It follows that if we replace the notion of uniform covering number N2(ε,F)

with respect to the norm ∥.∥L2(Q) by the covering numbers NCp(ε,F) with re-

spect to ||.||CP (E′), then the results hold true for any n, provided that N2(ε,F)

is replaced by NCp( ε
L
,F) in the inequality.

Proof of Theorem 3.5.
We choose functions g1, g2, · · · , gM , where M = N2(ϵ,F) such that

min
j

Q|f − µ(f) − gj + µ(g1)| ≤ ϵ for each f ∈ F ,

whereQ is any discrete probability measure. We also assume that g1, g2, · · · , gM
belong to F and satisfy conditions A1, A2′, A3′. We write f ∗ for the gj, where
the minimum is achieved. Our further reasoning is based on the following
remarks.

Remark 3.7 Let f, g be functions with the expectations µ(f), µ(g) respec-

tively. Then,

∥f − µ(f) − g + µ(g)∥L2 ≤ ∥f − g∥L2 + ∥µ(f) − µ(g)∥L2 ≤ 2∥f − g∥L2 .

14



In our reasoning, we will also make use of the following remark.

Remark 3.8 Assume that the functions f, g ∈ F and ∥f−g∥2,Pn < ϵ. Then,

for n large enough (depending only on ϵ),

P(f − g)2 ≤ Pn(f − g)2 + |(Pn − P)(f − g)2| ≤ 2ϵ2

since uniformly |(Pn−P)(f−g)2| ≤ ϵ2 by the uniform strong law of large num-

bers for regenerative Markov chains (see Theorem 3.6 from Levental(1988)).

As a consequence, any ϵ-net in L2(Pn) is also
√

2ϵ-net in L2(P) (see also

Kosorok (2008), page 151 for some refinements in the i.i.d. case). More-

over, note that ∃ N such that ∀ n ≥ N ∥gi − gj∥2,P ≤ ϵ and we have

∥gi − gj∥2,Pn − ∥gi − gj∥2,P + ∥gi − gj∥2,P ≤ 2ϵ.

Next, by the definition of uniform numbers and the Remark 3.8, we obtain

Pν

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(Xi) − µ(f))

∣∣∣∣∣ ≥ x

]

≤ Pν

{
sup
f∈F

[∣∣∣∣∣ 1n
n∑

i=1

|f(Xi) − µ(f) − f ∗(Xi) + µ(f ∗)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑

i=1

|f ∗(Xi) − µ(f ∗)|

∣∣∣∣∣
]
≥ x

}

≤ Pν

[
max

j∈{1,··· ,N2(ϵ,F)}

∣∣∣∣∣ 1n
n∑

i=1

gj(Xi) − µ(g1)

∣∣∣∣∣ ≥ x− 2ϵ

]

≤ N2 (ϵ,F) max
j∈{1,··· ,N2(ϵ,F)}

Pν

{
1

n

∣∣∣∣∣
n∑

i=1

gj(Xi) − µ(g1)

∣∣∣∣∣ ≥ x− 2ϵ

}
.

We set the notation that gj = gj − µ(g1).
In what follows, our reasoning is analogous as in the proof of Theorem 3.2.

Instead of taking any f ∈ F , we work with the functions gj ∈ F . Thus, we
consider now the processes

Zn(gj) =
ln∑
i=1

gj(Bi) (12)

and
Sn(gj) = Zn(gj) + ∆n(gj).
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Under the assumptions A1, A2′ and A3′ for gj, we get the analogous to
that from Theorem 3.2 Bernstein’s bound for Zn(gj), namely

PA

[∣∣∣∣∣
ln∑
i=1

gj(Bi)

∣∣∣∣∣ ≥ x− ϵ

]
≤ 18 exp

[
− (x− 2ϵ)2

2 × 902 (nσ2(g1) +M1(x− 2ϵ)/90)

]
.

(13)

We find the upper bound for the remainder term ∆n(gj) applying the same
reasoning as in Theorem 3.2. Thus,

Pν

[∣∣∣∣∣
τA∑
i=1

gj(Xi)

∣∣∣∣∣ ≥ x− 2ϵ

3

]
≤ C1 exp

[
−λ0(x− 2ϵ)

3

]
(14)

and

PA

 n∑
i=τA(ln−1)

ḡj(Xi) ≥
x− 2ϵ

3

 ≤ C2 exp

[
−λ1(x− 2ϵ)

3

]
, (15)

where

C1 = Eν

[
exp

∣∣∣∣∣λ0
τA∑
i=1

gj(Xi)

∣∣∣∣∣
]
,

C2 = EA

[
exp[λ1

∣∣gj∣∣ (B1)]
]
.

Finally, notice that

Eν

[
exp

∣∣∣∣∣λ0
τA∑
i=1

gj(Xi)

∣∣∣∣∣
]
≤ Eν

[
exp

∣∣∣∣∣2λ0
τA∑
i=1

F (Xi)

∣∣∣∣∣
]
<∞

and
EA

[
exp[λ1

∣∣gj∣∣ (B1)]
]
≤ EA [exp[2λ1 |F | (B1)]] <∞

and insert it into (14) and (15) which yields the proof.
Below we will formulate a maximal version of Theorem 3.3.

Theorem 3.6 Assume that X = (Xn)n∈N is a regenerative positive recurrent

Markov chain. Then, under assumptions A1, A2′, A3′, A4 −A5 and for any

16



0 < ϵ < x and for n large enough and N > 0 we have

Pν

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

f(Xi) − µ(f)

∣∣∣∣∣ ≥ x

]

≤ N2 (ϵ,F)

{
2 exp

[
−(x− 2ϵ)2

2 × 32(1 + a)2
(⌊

n
α

⌋
σ2(f) + M1

3
x−2ϵ
1+a

)]

+ 18 exp

 −(x− 2ϵ)2

2 × 902(1 + a)2
(
N
√
nσ2(f) + M1

90
(x−2ϵ)
1+a

)


+Pν

(
n1/2

[
ln
n
− 1

α

]
> N

)
+ C1 exp

[
−λ0(x− 2ϵ)

3

]
+ C2 exp

[
−λ1(x− 2ϵ)

3

]}
,

where

C1 = Eν

[
exp

∣∣∣∣∣2λ0
τA∑
i=1

F (Xi)

∣∣∣∣∣
]
,

C2 = EA [exp[2λ1 |F | (B1)]] .

Proof. The proof is a combination of the proofs of Theorem 3.3 and Theorem
3.5. We deal with the supremum over F the same way as in Theorem 3.5.
Then we apply Theorem 3.3.

We can obtain even sharper upper bound when class F is uniformly
bounded. In the following, we will show that it is possible to get a Hoeffding
type inequality and have a stronger control of moments of the sum Sn(f)
which is a natural consequence of uniform boundedness assumption imposed
on F .

A6. The class of functions F is uniformly bounded, i.e. there exists a
constant D such that ∀f ∈ F |f | < D.

Theorem 3.7 Assume that X = (Xn)n∈N is a regenerative positive recurrent

Markov chain. Then, under assumptions A1, A2′, A3′, A5 −A6 and for any

0 < ϵ < x, we have for n large enough

Pν

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

f(Xi) − µ(f)

σ(f)

∣∣∣∣∣ ≥ x

]
≤ N2 (ϵ,F)

{
18 exp

[
− (x− 2ϵ)2

2n× 902D2

]
+C1 exp

[
−λ0(x− 2ϵ)

3

]
+ C2 exp

[
−λ1(x− 2ϵ)

3

]}
, (16)
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where

C1 = Eν exp |2λ0τAD| ,

C2 = EA exp |2λ1l(B1)D| .

Proof. The proof bears resemblance to the proof of Theorem 3.5, with few
natural modifications which are a consequence of the uniform boundedness
of F .
Under additional condition A4 we can obtain easily the bound with smaller
constants, we follow the analogous way as in Theorem 3.6.

3.2 General Harris recurrent case

It is noteworthy that Theorems 3.2, 3.5, 3.7 are also valid in Harris recurrent
case under slightly modified assumptions. It is well known that it is possible
to retrieve all regeneration techniques also in Harris case via the Nummelin
splitting technique which allows to extend the probabilistic structure of any
chain in order to artificially construct a regeneration set. The Nummelin
splitting technique relies heavily on the notion of small set. For the clarity
of exposition we recall the definition.

Definition 3.8 We say that a set S ∈ E is small if there exists a parameter

δ > 0, a positive probability measure Φ supported by S and an integer m ∈ N∗

such that

∀x ∈ S, B ∈ E Πm(x,B) ≥ δ Φ(B), (17)

where Πm denotes the m-th iterate of the transition probability Π.

We expand the sample space in order to define a sequence (Yn)n∈N of in-
dependent r.v.’s with parameter δ. We define a joint distribution Pν,M of
XM = (Xn, Yn)n∈N . The construction relies on the mixture representation

of Π on S, namely Π(x,B) = δΦ(B) + (1− δ)Π(x,B)−δΦ(B)
1−δ

. It can be retrieved
by the following randomization of the transition probability Π each time the
chain X visits the set S. If Xn ∈ S and

• if Yn = 1 (which happens with probability δ ∈ ]0, 1[), then Xn+1 is
distributed according to the probability measure Φ,

• if Yn = 0 (that happens with probability 1−δ), then Xn+1 is distributed
according to the probability measure (1 − δ)−1(Π(Xn, ·) − δΦ(·)).
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This bivariate Markov chain XM is called the split chain. It takes its val-
ues in E × {0, 1} and possesses an atom, namely A = S × {1}. The split
chain XM inherits all the stability and communication properties of the
chain X. The regenerative blocks of the split chain are i.i.d. (in case m = 1
in (17)) (see Meyn & Tweedie (1996) for further details).

We will formulate a Bernstein type inequality for unbounded classes of
functions in the Harris recurrent case (equivalent of Theorem 3.2). Theorems
3.5 and 3.7 can be reformulated for Harris chains in similar way. We impose
the following conditions:

AH1. (Bernstein’s block moment condition) There exists a positive constant
M1 such that for any p ≥ 2 and for every f ∈ F

sup
y∈S

Ey

∣∣f̄(B1)
∣∣p ≤ 1

2
p!σ2(f)Mp−2

1 . (18)

AH2. (Non-regenerative block exponential moment assumption) There exists
a constant λ0 > 0 such that for every f ∈ F we have Eν

[
exp

∣∣λ0∑τS
i=1 f̄(Xi)

∣∣] <
∞.

AH3. (Exponential block moment assumption) There exists a constant λ1 > 0
such that for every f ∈ F we have supy∈S Ey

[
exp[λ1

∣∣f̄ ∣∣ (B1)]
]
<∞.

Let supy∈S Ey [τS] = αM < ∞. We are ready to formulate a Bernstein type
inequality for Harris recurrent Markov chains.

Theorem 3.9 Assume that XM is a Harris recurrent, strongly aperiodic

Markov chain. Then, under assumptions AH1-AH3, we have

Pν

[∣∣∣∣∣
n∑

i=1

f(Xi) − µ(f)

∣∣∣∣∣ ≥ x

]
≤ 18 exp

[
− x2

2 × 902 (nσ2(f) +M1x/90)

]
+ C1 exp

[
−λ0x

3

]
+ C2 exp

[
−λ1x

3

]
, (19)

where

C1 = Eν

[
exp

∣∣∣∣∣λ0
τS∑
i=1

f(Xi)

∣∣∣∣∣
]
,

C2 = sup
y∈S

Ey

[
exp[λ1

∣∣f ∣∣ (B1)
]
.

The proof of Theorem 3.9 is analogous to the proof of Theorem 3.2. We can
obtain a bound with much smaller constants under an extra block moment
condition.
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AH4. (Block length moment assumption) There exists a positive constant M2

such that for any p ≥ 2

sup
y∈S

Ey [τS]p ≤ p!Mp−2
2 EAτ

2
A,

Eν [τS]p ≤ p!Mp−2
2 Eντ

2
S.

.

Theorem 3.10 Assume that XM is a Harris recurrent, strongly aperiodic

Markov chain. Then, under assumptions AH1-AH4, we have for any x > 0

and for N ∈ R

Pν

[∣∣∣∣∣
n∑

i=1

f(Xi) − µ(f)

∣∣∣∣∣ ≥ x

]
≤ 2 exp

[
−x2

2 × 32(1 + a)2
(⌊

n
α

⌋
σ2(f) + M1

3
x

1+a

)]

+ 18 exp

[
−x2

2 × 902(1 + a)2
(
N
√
nσ2(f) + M1

90
x

1+a

)]

+ Pν

[
n1/2

(
ln
n
− 1

α

)
> N

]
+ C1 exp

[
−λ0x

3

]
+ C2 exp

[
−λ1x

3

]
,

where

C1 = Eν

[
exp

∣∣∣∣∣λ0
τS∑
i=1

f(Xi)

∣∣∣∣∣
]
,

C2 = sup
y∈S

Ey

[
exp[λ1

∣∣f ∣∣ (B1)]
]
.

.

Remark 3.9 In the Theorem 3.9 we assumed that XM is strongly aperiodic.

It is easy, however, to relax this assumption and impose only the aperiodicity

condition on Harris chain by using the same trick as in Levental (1988). Note

that if XM satisfies M(m,S, δ,Φ) for m > 1, then the blocks of data are 1-

dependent. Denote by S = S ∪ {∗}, where {∗} is an ideal point which is not

in S. Next, we define a pseudo-atom αM = S ×{1}. In order to impose only
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aperiodicity in this case it is sufficient to consider two processes {Ei} and

{Oi} such that Oi = f(Xi) if ταM
(2k + 1) < i ≤ ταM

(2k + 2) and Oi = ∗

otherwise Ei = f(Xi) if ταM
(2k) < i ≤ ταM

(2k + 1), for some k ≥ 0 and

Ei = ∗. Every function f : S → R will be considered as defined on S with

identification f(∗) = 0 (see also Levental (1988) for more details concerning

those two processes). Then, we prove Bernstein type of inequality similarly as

we prove Theorems 3.2 and 3.9 applying all the reasoning to {Ei} and {Oi}

separately, yielding to a similar inequality up to an additional multiplicative

constant 2.
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Appendix

Proof of Lemma 3.1. Let τk be the time of the k-th visit to the atom A
(S × {1} in the general case).

In the following we make use of the argument from Dedecker and Gouëzel
(2015) and observe that we have for any k ≤ n

Pν(ln ≥ k) = Pν(τk ≤ n) = Pν(
k∑

i=1

∆τk ≤ n)

= P((∆τ1 − EντA) +
k∑

i=2

(∆τi − α) ≤ n− (k − 1)α− EντA).

It follows that if x >
√
n(1 − α−1) (α = EAτA), then

Pν

(
n1/2

(
ln
n
− 1

α

)
≥ x

)
= 0
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and if 0 < x ≤
√
n(1 − α−1), then

Pν

(
n1/2

(
ln
n
− 1

α

)
≥ x

)
= Pν

(
ln ≥ n

α
+ x

√
n
)

≤ Pν

(
ln ≥

[n
α

+ x
√
n
])

≤ P((∆τ1 − EντA) +

[n
α
+x

√
n]∑

i=2

(∆τi − α) ≤ n− ([
n

α
+ x

√
n] − 1)α− EντA),

where [.] is the integer part.

Since n
α

+ x
√
n− 1 ≤ [n

α
+ x

√
n] ≤ n

α
+ x

√
n, we get

n− ([
n

α
+ x

√
n] − 1)α− EντA) ≤ n− (

n

α
+ x

√
n− 2)α− EντA

= −αx
√
n+ 2α− EντA.

It follows that

Pν

(
n1/2

(
ln
n
− 1

α

)
≥ x

)
≤ P

(
(∆τ1 − EντA) +

∑[n
α
+x

√
n]

i=2 (∆τi − α) ≤ −αx
√
n+ 2α− EντA

)
,

where [.] is the integer part
Now, we can apply any Bennett’s or Bernstein’s inequality on these cen-

tered i.i.d. random variables to get an exponential bound. This can be done
since we assumed A4. Note that other bounds (polynomial for instance) can
be obtained under appropriate modifications of A4. In our case we get

P((∆τ1 − EντA) +

[n
α
+x

√
n]∑

i=2

(∆τi − α) ≤ −αx
√
n+ 2α− EντA)

≤ exp

(
−

1
2
(αx

√
n− 2α + Eντ

2
A)/S2

n

1 + (αx
√
n− 2α + EντA)M2/Sn

)
,

where
S2
n = Eντ

2
A + ([

n

α
+ x

√
n] − 1)EAτ

2
A.

The above bound can be reduced to

exp

(
−1

2

(αx
√
n− 2α)2(

Eντ 2A + (n
α

+ x
√
n)EAτ 2A

)
+ (αx

√
n+ EντA)M2

(
Eντ 2A + (n

α
+ x

√
n)EAτ 2A

)1/2
)
.
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