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Introduction

Exponential inequalities are a powerful tool to control the tail probability that a random variable X exceeds some prescribed value t. They have been extensively investigated by many researchers due to the fact that they are a crucial step in deriving many results in numerous fields such as statistics, learning theory, discrete mathematics, statistical mechanics, information theory or convex geometry. There is a vast literature that provides a comprehensive overview of the theory of exponential inequalities in the i.i.d.

setting. An interested reader is referred to [START_REF] Bai | Probability Inequalities[END_REF], [START_REF] Boucheron | Inequalities. A Nonasymptotic Theory of Independence[END_REF] or van der Vaart and Wellner (1996).

The wealth of possible applications of exponential inequalities has naturally led to development of this theory in the dependent setting. In this paper we are particularly interested in results that establish exponential bounds for the tail probabilities of the additive functional of the regenerative Markov chain of the form

f (X 1 ) + • • • + f (X n ),
where (X n ) n∈N is a regenerative Markov chain. It is noteworthy that when deriving exponential inequalities for Markov chains (or any other process with some dependence structure) one can not expect to recover fully the classical results from the i.i.d. case. The goal is then to get some counterparts of the inequalities for i.i.d. random variables with some extra terms that appear in the bound as a consequence of a Markovian structure of the considered process.

In the recent years such (non-)asymptotic results have been obtained for Markov chains via many approaches: martingale arguments (see [START_REF] Glynn | Hoeffding?s Inequality for Uniformly Ergodic Markov Chains[END_REF], where Hoeffding's inequality for uniformly ergodic Markov chains has been presented), coupling techniques (see [START_REF] Chazottes | Concentration inequalities for Markov processes via coupling[END_REF] and [START_REF] Dedecker | Subgaussian concentration inequalities for geometrically ergodic Markov chains[END_REF]). In fact, [START_REF] Dedecker | Subgaussian concentration inequalities for geometrically ergodic Markov chains[END_REF] have proved that Hoeffding's inequality holds when the Markov chain is geometrically ergodic and thus weakened the assumptions imposed on the Markov chain in [START_REF] Glynn | Hoeffding?s Inequality for Uniformly Ergodic Markov Chains[END_REF]. Winterberger (2016) has generalized the result of [START_REF] Dedecker | Subgaussian concentration inequalities for geometrically ergodic Markov chains[END_REF] by showing that Hoeffding's inequality is valid also for unbounded functions of geometrically ergodic Markov chains provided that the sum is correctly self-normalized. [START_REF] Paulin | Concentration inequalities for Markov chains by Marton couplings and spectral methods[END_REF] has presented McDiarmid inequality for Markov chains using Merton coupling and spectral methods. [START_REF] Clémençon | Moment and probability inequalities for sums of bounded additive functionals of regular Markov chains via the Nummelin splitting technique[END_REF], [START_REF] Adamczak | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF], Bertail and Clémençon (2009), and [START_REF] Adamczak | Exponential concentration inequalities for additive functionals of Markov chains[END_REF] have obtained exponential inequalities for ergodic Markov chains via regeneration techniques (see [START_REF] Smith | Regenerative stochastic processes[END_REF]).

Regeneration techniques for Markov chains are particularly appealing to us mainly due to the fact that it requires much fewer restrictions on the ergodicity properties of the chain in comparison to alternative methods. In this paper we establish Hoeffding and Bernstein type of inequalities for statistics of the form

1 n ∑ n i=1 f (X i )
, where (X n ) n∈N is a regenerative Markov chain. We show that under proper control of the size of class of functions F (measured by its uniform entropy number), one can get non-asymptotic bounds on the suprema over the class of F of such empirical process for regenerative Markov chains. It is noteworthy that it is easy to generalize such results from regenerative case to the Harris recurrent one, using Nummelin extension of the initial chain (see [START_REF] Nummelin | A splitting technique for Harris recurrent chains[END_REF]).

The paper is organized as follows. In chapter 2 we introduce the notation and preliminary assumptions for Markov chains. We also recall some classical results from the i.i.d. setting which we generalize to the Markovian case. In chapter 3 we present the main results -Bernstein and Hoeffding type inequalities for regenerative Markov chains. The main ingredient to provide a crude exponential bound (with bad constants) is based on Montgomery-Smith which allows to reduce the problem on a random number of blocks to a fixed number of independent blocks. We then proposed a refined inequality by first controlling the the number of blocks in the inequality and then applying again Montgomery-Smith inequality on a remainder term. Next, we generalize these results and obtain Hoeffding and Bernstein type of bounds for suprema of empirical processes over a class of functions F. We also present the inequalities when the chain is Harris recurrent. Some technical parts of the proofs are postponed to the Appendix.

Preliminaries

We begin by introducing some notation and recall the key concepts of the Markov chains theory (see [START_REF] Meyn | Markov chains and stochastic stability[END_REF] for a detailed review and references). Let X = (X n ) n∈N be a positive recurrent, ψ-irreducible Markov chain on a countably generated state space (E, E) with transition probability Π and initial probability ν. We assume further, that X is regenerative (see [START_REF] Smith | Regenerative stochastic processes[END_REF]), i.e. there exists a measurable set A, called an atom, such that ψ(A) > 0 and for all (x, y) ∈ A 2 we have Π(x, •) = Π(y, •). We define the sequence of regeneration times (τ A (j)) j≥1 which is the sequence of successive points of time when the chain visits A and forgets its past. Throughout the paper we write τ A = τ A [START_REF] Adamczak | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF]. It is well-known that we can cut the sample path of the process into data segments of the form

B j = (X 1+τ A (j) , • • • , X τ A (j+1) ), j ≥ 1
according to consecutive visits of the chain to the regeneration set A. By the strong Markov property the blocks are i.i.d. random variables taking values in the torus ∪ ∞ k=1 E k . In the following, we assume that the mean inter-renewal time α = E A [τ A ] < ∞ and point out that in this case, the stationary distribution is a Pitman occupation measure given by

∀B ∈ E, µ(B) = 1 E A [τ A ] E A [ τ A ∑ i=1 I {X i ∈B} ]
,

where I B is the indicator function of the event B. Assume that we observe (X 1 , • • • , X n ). We introduce few more pieces of notation: throughout the paper we write l n = ∑ n i=1 I{X i ∈ A} for the total number of consecutive visits of the chain to the atom A, thus we observe l n + 1 data blocks. We make the convention that B (n) ln = ∅ when τ A (l n ) = n. Furthermore, we denote by l(B j ) = τ A (j + 1) -τ A (j), j ≥ 1, the length of regeneration blocks. Let f : E → R be µ-integrable function. In the following, we assume without loss of generality that µ(f ) = E µ [f (X 1 )] = 0. We introduce the following notation for partial sums of the regeneration cycles f

(B i ) = ∑ τ A (j+1) i=1+τ A (j) f (X i ).
Then, the regenerative approach is based on the following decomposition of the sum

∑ n i=1 f (X i ) : n ∑ i=1 f (X i ) = ln ∑ i=1 f (B i ) + ∆ n ,
where

∆ n = τ A ∑ i=1 f (X i ) + n ∑ i=τ A (ln-1) f (X i ).
We denote by

σ 2 (f ) = 1 E A (τ A ) E A ( τ A ∑ i=1 {f (X i ) -µ(f )} ) 2
the asymptotic variance.

For the completeness of the exposition, we recall now well-known classical results concerning some exponential inequalities for independent random variables. Firstly, we present the inequality for the i.i.d. bounded random variables due to [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]. 

a i ≤ X i ≤ b i (i = 1, • • • , n), then for t > 0 P ( 1 n n ∑ i=1 X i -EX 1 ≥ t ) ≤ exp ( - 2t 2 ∑ n i=1 (b i -a i ) 2
) .

Below we recall the generalization of Hoeffding's inequality to unbounded functions. Interested reader, can find different variations of the following inequality (depending on imposed conditions on the random variables) in [START_REF] Boucheron | Inequalities. A Nonasymptotic Theory of Independence[END_REF]. Theorem 2.2 (Bernstein's inequality) Let X 1 , • • • , X n be independent random variables with expectation EX l for X l , l ≥ 1 respectively, such that, for all integers p ≥ 2,

E|X l | p ≤ p!R p-2 σ 2 l /2 for all l ∈ {1, • • • , n}.
Then, for all t > 0,

P ( n ∑ i=1 (X l -EX l ) ≥ t ) ≤ 2 exp ( - t 2 2(σ 2 + Rt)
)

,

where σ 2 = ∑ n i=1 σ 2 l . The purpose of this paper is to derive similar bounds for Markov chains using the nice regenerative structure of Markov chains.

Exponential inequalities for the tail probability for suprema of empirical processes for Markov chains

In the following, we denote f (x) = f (x) -µ(f ). Moreover, we write respec-

tively f (B 1 ) = ∑ τ A i=1 f (X i ) and | f |(B 1 ) = ∑ τ A i=1 | f |(X i
). We will work under following conditions. A1. (Bernstein's block moment condition) There exists a positive constant M 1 such that for any p ≥ 2 and for every f ∈ F

E A f (B 1 ) p ≤ 1 2 p!σ 2 (f )M p-2 1 . ( 1 
)
A2. (Non-regenerative block exponential moment assumption) There exists

λ 0 > 0 such that for every f ∈ F we have E ν [ exp [ λ 0 ∑ τ A i=1 f (X i ) ]] < ∞.

A3. (Exponential block moment assumption) There exists λ

1 > 0 such that for every f ∈ F we have E A [ exp [ λ 1 f (B 1 ) ]] < ∞.
Remark 3.1 It is noteworthy to mention that assumption A1 implies the existence of an exponential moment of f (B 1 ) :

E A exp(λ f (B 1 )) ≤ exp ( λ 2 /2 1 -M 1 |λ| ) for all λ < 1 M 1 .
In this section, we formulate two Bernstein type inequalities for Markov chains, one is established via simple use of Montgomery-Smith inequality (see Montgomery-Smith (1993) and de la Peña, and Giné (1999)) which results in much larger constants (comparing to the i.i.d. setting) in the dominating parts of the bound. The second Bernstein's bound contains small constants in the main counterparts of the bound, however at a cost of having an extra term in the bound. Before we state the theorems, we will give a short discussion on already existing results for exponential inequalities for Markov chains.

Remarks 3.1 Since there is plenty of results concerning exponential inequal-

ities for Markov chains under many assumptions, it may be difficult to compare their strength (measured by assumptions imposed on the chain) and applicability. Thus, before we present the proofs of Theorem 3.2 and Theorem 3.3 , we make a short comparison of our result to already existing inequalities for Markov chains. We also strongly recommend seeing an exhaustive overview on the recent results of that type in [START_REF] Adamczak | Exponential concentration inequalities for additive functionals of Markov chains[END_REF].

The bounds obtained in this paper are related to the Fuk and Nagaev sharp bound inequality obtained in Bertail and Clémençon (2010). It is also based on the regeneration properties and decomposition of the chain. However, our techniques of proof differ and allow us to obtain a better rate in the main subgaussian part of the inequality under the hy-

potheses. The proofs of the inequalities are simplified and do not require the partitioning arguments which was used in [START_REF] Bertail | Sharp bounds for the tail of functionals of Markov chains[END_REF]. [START_REF] Dedecker | Subgaussian concentration inequalities for geometrically ergodic Markov chains[END_REF] and [START_REF] Chazottes | Concentration inequalities for Markov processes via coupling[END_REF] or any restrictions on the starting point of the chain as in [START_REF] Dedecker | Subgaussian concentration inequalities for geometrically ergodic Markov chains[END_REF]. Moreover, [START_REF] Adamczak | Exponential concentration inequalities for additive functionals of Markov chains[END_REF] use the assumption of strong aperiodicity for Harris Markov chain. We state a remark that this condition can be relaxed and we can only assume that Harris Markov chain is aperiodic (see Remark 3.9). [START_REF] Adamczak | A tail inequality for suprema of unbounded empirical processes with applications to Markov chains[END_REF], [START_REF] Clémençon | Moment and probability inequalities for sums of bounded additive functionals of regular Markov chains via the Nummelin splitting technique[END_REF], [START_REF] Dedecker | Subgaussian concentration inequalities for geometrically ergodic Markov chains[END_REF]). Our inequalities work for unbounded functions satisfying Bernstein's block moment condition. Moreover, all terms involved in our inequalities are given by explicit formulas. Thus, the results can be directly used in practical considerations. Note also that all the constants are given in simple, easy to interpret form and they do not depend on other underlying parameters.

It is noteworthy that we do not impose condition of stationarity of the considered Markov chain as in

Many results concerning exponential inequalities for Markov chains are established for bounded functions f (see for instance

Winterberger (2016) has established exponential inequalities in unbounded

case extending the result of [START_REF] Dedecker | Subgaussian concentration inequalities for geometrically ergodic Markov chains[END_REF] to the case when the chain can start from any x ∈ E. However, the constant involved in the bound of the Theorem 2.1 (obtained for bounded and unbounded functions) is very large. [START_REF] Boucheron | Inequalities. A Nonasymptotic Theory of Independence[END_REF]. As mentioned in the paper of Adamczak, there is many exponential inequalities that satisfy spectral gaps (see for instance Gao and Guillin, [START_REF] Lezaud | Chernoff and Berry-Esseen inequalities for Markov processes[END_REF]). Spectral gap inequalities allow to recover the Bernstein type inequality at its full strength. We need to mention that the geometric ergodicity assumption does not ensure in the non-reversible case that considered Markov chains admit a spectral gap (see Theorem 1.4 in [START_REF] Kontoyiannis | Geometric ergodicity and the spectral gap of non-reversible Markov chains[END_REF]).

We formulate a Bernstein type inequality for Markov chains below. Theorem 3.2 Assume that X = (X n ) n∈N is a regenerative positive recurrent Markov chain. Then, under assumptions A1 -A3, we have

P ν [ n ∑ i=1 f (X i ) -µ(f ) ≥ x ] ≤ 18 exp [ - x 2 2 × 90 2 (nσ 2 (f ) + M 1 x/90) ] + C 1 exp [ - λ 0 x 3 ] + C 2 exp [ - λ 1 x 3 ] ,
where

C 1 = E ν [ exp λ 0 τ A ∑ i=1 f (X i ) ] , C 2 = E A [ exp[λ 1 f (B 1 )]
] .

Remark 3.2 Observe that we do not impose a moment condition on E

A [τ A ] p < ∞ for p ≥ 2.
At the first glance, this might be surprising since one usually assumes the existence of E A [τ A ] 2 < ∞ when proving central limit theorem for regenerative Markov chains. A simple analysis of the proof of the central limit theorem in a Markovian case (see for instance [START_REF] Meyn | Markov chains and stochastic stability[END_REF])

reveals that it is sufficient to require only E A [τ A ] < ∞ when we consider cen- tered function f instead of f.
Proof. Firstly, we consider the sum of random variables of the following form

Z n ( f ) = ln ∑ i=1 f (B j ).
(2)

Furthermore, we have that

S n ( f ) = Z n ( f ) + ∆ n ( f ).
We recall, that l n is random and correlated with blocks itself. In order to apply Bernstein's inequality for i.i.d. random variables we apply the Montgomery-Smith inequality (see [START_REF] Montgomery-Smith | Comparison of sums of independent identically distributed random vectors[END_REF]) . It follows easily that

P A [ ln ∑ i=1 f (B i ) ≥ x/3 ] ≤ P A [ max 1≤k≤n k ∑ i=1 f (B i ) ≥ x/3 ] ≤ 9P A [ n ∑ i=1 f (B i ) ≥ x/90 ] (3)
and under Bernstein's condition A1 we obtain

P A [ n ∑ i=1 f (B i ) ≥ x/90 ] ≤ 2 exp [ - x 2 2 × 90 2 (M 1 x/90 + nσ 2 (f )) ] . ( 4 
)
Next, we want to control the remainder term ∆ n .

∆ n = τ A ∑ i=1 f (X i ) + n ∑ i=τ A (ln-1) f (X i ). ( 5 
)
The control of ∆ n is guaranteed by Markov's inequality, i.e.

P ν

[ τ A ∑ i=1 f (X i ) ≥ x 3 ] ≤ E ν [ exp λ 0 τ A ∑ i=1 f (X i ) ] exp [ - λ 0 x 3 ] .
We deal similarly with the last term of ∆ n . We complement the data 1 + τ A (l n ) + 1 by observations up to the next regeneration time 1 + τ A (l n + 1) and obtain

P ν   n ∑ i=1+τ A (ln)+1 f (X i ) ≥ x 3   ≤ P ν   n ∑ i=1+τ A (ln)+1 f (X i ) ≥ x 3   ≤ P ν   1+τ A (ln+1) ∑ i=1+τ A (ln)+1 f (X i ) ≥ x 3   ≤ E A [ exp[λ 1 f (B 1 )] ] exp [ - λ 1 x 3 ] .
We note that although the Montgomery-Smith inequality allows to obtain easily Bernstein's bound for Markov chains, the constants are rather large. Interestingly, under an additional assumption on E A [τ A ] p we can obtain the Bernstein type inequality for regenerative Markov chains with much smaller constants for the dominating counterparts of the bound.

A4. (Block length moment assumption)

There exists a positive constant M 2 such that for any p ≥ 2

E A [τ A ] p ≤ p!M p-2 2 E A [τ 2 A ] and E ν [τ A ] p ≤ p!M p-2 2 E ν [τ 2 A ].
Before we formulate Bernstein's inequality for regenerative Markov chains we introduce a lemma which provides a bound for tail probability of

√ n ( ln n -1 α )
which will be cruciall for the proof of Bernstein's bound but also may be of independent interest. Lemma 3.1 Suppose that condition A4 holds. Then

P ν ( n 1/2 ( l n n - 1 α ) ≥ x ) is bounded by exp ( - 1 2 
(αx √ n -2α) 2 ( E ν τ 2 A + ( n α + x √ n)E A τ 2 A ) + (αx √ n + E ν τ A )M 2 ( E ν τ 2 A + ( n α + x √ n)E A τ 2 A ) 1/2
) .

Proof of Lemma 3.1 is postponed to the Appendix.

Remark 3.3 Note that when n → ∞, the dominating part in the exponential term is of order

1 2 α 2 x 2 E A τ 2 A /α + α 1/2 xM 2 (E A τ 2 A ) 1/2 + O(n -1/2 ) = 1 2 α 2 x 2 E A τ 2 A /α(1 + αxM 2 (E A τ 2 A /α) -1/2 ) + O(n -1/2 ) = 1 2 (αx) 2 / (E A τ 2 A /α) (1 + αxM 2 (E A τ 2 A /α) -1/2 ) + O(n -1/2 ),
thus we have a Gaussian tail with the right variance for moderate x and an exponential tail for large x and, in consequence, the constants are asymptotically optimal.

Now we are ready to state an alternative Bernstein type inequality for regenerative Markov chains, where under additional condition on the length of the blocks we can obtain much better inequality in terms of constants. Theorem 3.3 Assume that X = (X n ) n∈N is a regenerative positive recurrent Markov chain. Then, under assumptions A1-A4 we have for any a > 0, for x > 0 and N > 0

P ν [ n ∑ i=1 f (X i ) -µ(f ) ≥ x ] ≤ 2 exp [ -x 2 2 × 3 2 (1 + a) 2 (⌊ n α ⌋ σ 2 (f ) + M 1 3 x 1+a ) ] + 18 exp [ -x 2 2 × 90 2 (1 + a) 2 ( N √ nσ 2 (f ) + M 1 90 x 1+a ) ] + P ν ( n 1/2 [ l n n - 1 α ] > N ) + C 1 exp [ - λ 0 x 3 ] + C 2 exp [ - λ 1 x 3 ] , ( 6 
)
where

C 1 = E ν [ exp λ 0 τ A ∑ i=1 f (X i ) ] , C 2 = E A [ exp[λ 1 f (B 1 )] ] .
Remark 3.4 If we choose N = log(n), then by Lemma 3.1 we can see that

P ν ( n 1/2 [ ln n -1 α ] ≥ log(n) ) = o ( 1 n 
) and in that case the second term in [START_REF] Chazottes | Concentration inequalities for Markov processes via coupling[END_REF] remains small uniformly in x.

Proof. We start by the obvious observation that

P ν [ n ∑ i=1 f (X i ) -µ(f ) ≥ x ] ≤ P A [ ln ∑ i=1 f (B i ) ≥ x/3 ] + P ν [ τ A ∑ i=1 f (X i ) ≥ x/3 ] + P A   n ∑ i=τ A (ln-1) f (X i ) ≥ x/3   . ( 7 
)
Remark 3.5 Instead of dividing x by 3 in [START_REF] Clémençon | Moment and probability inequalities for sums of bounded additive functionals of regular Markov chains via the Nummelin splitting technique[END_REF], one can use a different splitting to improve a little bit the final constants.

The bounds for the first and last non-regenerative blocks can be handled the same way as in Theorem 3.2. Next, we observe that, for any a > 0, we have

P A [ ln ∑ i=1 f (B i ) ≥ x/3 ] ≤ P A    ⌊ n α ⌋ ∑ i=1 f (B i ) ≥ x 3(1 + a)    + P A   ln 2 ∑ ln 1 f (B i ) ≥ x 3(1 + a)   , ( 8 
)
where

l n 1 = min( ⌊ n α ⌋ , l n ) and l n 2 = max( ⌊ n α ⌋ , l n ). We observe that ∑ ⌊ n α ⌋ i=1 f (B i )
is a sum of independent, identically distributed and sub-exponential random variables. Thus, we can directly apply Bernstein's bound and obtain

P A    ⌊ n α ⌋ ∑ i=1 f (B i ) ≥ x 3(1 + a)    ≤ 2 exp [ -x 2 2 × 3 2 (1 + a) 2 (⌊ n α ⌋ σ 2 (f ) + M 1 x/3(1 + a) ) ] . ( 9 
)
The control of

∑ ln 2 ln 1 f (B i
) is slightly more challenging due to the fact that l n is random and correlated with the blocks itself. In the following, we will make use of the Montgomery-Smith inequality. Notice however, that since we expect the number of terms in this sum to be at most of the order √ n, this term will be much more smaller than the leading term (9) and will be asymptotically negligible. We have

P A   ln 2 ∑ ln 1 f (B i ) ≥ x 3(1 + a)   ≤ P A   ln 2 ∑ ln 1 f (B i ) ≥ x 3(1 + a) , √ n [ l n n - 1 α ] ≤ N   + P ν ( √ n [ l n n - 1 α ] > N ) = A + B. ( 10 
)
Firstly, we will bound term A in (10) using Montgomery-Smith inequality and the fact that if

√ n [ ln n -1 α ] ≤ N, then l n 1 -l n 2 ≤ √ nN. P A   ln 2 ∑ ln 1 f (B i ) ≥ x 3(1 + a) , √ n [ l n n - 1 α ] ≤ N   ≤ P A ( max 1≤k≤N √ n k ∑ i=1 f (B i ) ≥ x 3(1 + a) ) ≤ 9P A   N √ n ∑ i=1 f (B i ) ≥ x 90(1 + a)   ≤ 18 exp [ -x 2 2 × 90 2 (1 + a) 2 ( N √ nσ 2 (f ) + M 1 90 x 1+a ) ] .
Lemma 3.1 allows to control term B.

Maximal inequalities under uniform entropy

In empirical processes theory for processes indexed by class of functions, it is important to assess the complexity of considered classes. The information about entropy of F helps us to inspect how large our class is. Generally, control of entropy of certain classes may be crucial step when investigating asymptotic behaviour of empirical processes indexed by a class of functions. In our setting, we will measure the size of class of functions F via covering numbers and uniform entropy number. The following definition is due to [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes With Applications to Statistics[END_REF].

Definition 3.4 (Covering and uniform entropy number)

The covering number N p (ϵ, Q, F) is the minimal number of balls {g : ∥g -f ∥ L p (Q) < ϵ} of radius ϵ needed to cover the set F. The entropy (without bracketing) is the logarithm of the covering number. We define uniform entropy number as

N p (ϵ, F) = sup Q N p (ϵ, Q, F)
, where the supremum is taken over all discrete probability measures Q.

In the following we state assumptions on the size of considered class of functions F. Rather than considering the assumptions A2 and A3, we impose the assumptions on the first and the last non-regenerative blocks for the envelope F of F. A2 ′ . (Non-regenerative block exponential moment assumption) There exists

λ 0 > 0 such that E ν [ exp [ 2λ 0 ∑ τ A i=1 F (X i ) ]] < ∞.
A3 ′ . (Exponential block moment assumption) There exists

λ 1 > 0 such that E A [ exp [ 2λ 1 F (B 1 ) ]] < ∞. A5. (Uniform entropy number condition) N 2 (ϵ, F) < ∞.
Before we formulate Bernstein deviation type inequality for unbounded classes of functions, we introduce one more piece of notation, let

σ 2 m = max f ∈F σ 2 (f ) > η > 0.
Theorem 3.5 Assume that X = (X n ) n∈N is a regenerative positive recurrent Markov chain. Then, under assumptions A1, A2 ′ , A3 ′ and A5 and for any 0 < ϵ < x and for n large enough we have

P ν [ sup f ∈F n ∑ i=1 f (X i ) -µ(f ) ≥ x ] ≤ N 2 (ϵ, F) { 18 exp [ - (x -2ϵ) 2 2 × 90 2 (nσ 2 m + M 1 (x -2ϵ)/90) ] +C 1 exp [ λ 0 (x -2ϵ) 3 ] + C 2 exp [ - λ 1 (x -2ϵ) 3 ]} , ( 11 
)
where

C 1 = E ν [ exp 2λ 0 τ A ∑ i=1 F (X i ) ] , C 2 = E A [exp[2λ 1 |F | (B 1 )]]
and F is an envelope function for F.

Before we proceed with the proof of Theorem 3. 

||f || C P (E ′ ) = sup x∈E ′ |f (x)| + sup x 1 ∈E ′ ,x 2 ∈E ′ ( f (x 1 ) -f (x 2 ) d(x 1 , x 2 ) p ) then we have M = sup x∈X F (x) < ∞ as well as L = sup f,g∈F ,f ̸ =g sup z |f (z)-g(z)| ||f -g|| C P (E ′ )
< ∞ so that we can directly control the empirical sum by the obvious inequality

sup f,g∈F 1 n n ∑ i=1 f (X i ) -g(X i ) ≤ L||f -g|| C P (E ′ ) .

It follows that if we replace the notion of uniform covering number N 2 (ε, F)

with respect to the norm ∥.∥ L 2 (Q) by the covering numbers N C p (ε, F) with respect to ||.|| C P (E ′ ) , then the results hold true for any n, provided that N 2 (ε, F) is replaced by N C p ( ε L , F) in the inequality. Proof of Theorem 3.5.

We choose functions

g 1 , g 2 , • • • , g M , where M = N 2 (ϵ, F) such that min j Q|f -µ(f ) -g j + µ(g 1 )| ≤ ϵ for each f ∈ F ,
where Q is any discrete probability measure. We also assume that g 1 , g 2 , • • • , g M belong to F and satisfy conditions A1, A2 ′ , A3 ′ . We write f * for the g j , where the minimum is achieved. Our further reasoning is based on the following remarks.

Remark 3.7 Let f, g be functions with the expectations µ(f ), µ(g) respectively. Then,

∥f -µ(f ) -g + µ(g)∥ L 2 ≤ ∥f -g∥ L 2 + ∥µ(f ) -µ(g)∥ L 2 ≤ 2∥f -g∥ L 2 .
In our reasoning, we will also make use of the following remark.

Remark 3.8 Assume that the functions f, g ∈ F and ∥f -g∥ 2,Pn < ϵ. Then, for n large enough (depending only on ϵ),

P(f -g) 2 ≤ P n (f -g) 2 + |(P n -P)(f -g) 2 | ≤ 2ϵ 2
since uniformly |(P n -P)(f -g) 2 | ≤ ϵ 2 by the uniform strong law of large numbers for regenerative Markov chains (see Theorem 3.6 from [START_REF] Levental | Uniform limit theorems for Harris recurrent Markov chains[END_REF]).

As a consequence, any ϵ-net in L 2 (P n ) is also √ 2ϵ-net in L 2 (P) (see also [START_REF] Kosorok | Introduction to empirical processes and semiparametric inference[END_REF], page 151 for some refinements in the i.i.d. case). Moreover, note that ∃ N such that ∀ n ≥ N ∥g i -g j ∥ 2,P ≤ ϵ and we have

∥g i -g j ∥ 2,Pn -∥g i -g j ∥ 2,P + ∥g i -g j ∥ 2,P ≤ 2ϵ.
Next, by the definition of uniform numbers and the Remark 3.8, we obtain

P ν [ sup f ∈F 1 n n ∑ i=1 (f (X i ) -µ(f )) ≥ x ] ≤ P ν { sup f ∈F [ 1 n n ∑ i=1 |f (X i ) -µ(f ) -f * (X i ) + µ(f * ) + 1 n n ∑ i=1 |f * (X i ) -µ(f * )| ] ≥ x } ≤ P ν [ max j∈{1,••• ,N 2 (ϵ,F)} 1 n n ∑ i=1 g j (X i ) -µ(g 1 ) ≥ x -2ϵ ] ≤ N 2 (ϵ, F) max j∈{1,••• ,N 2 (ϵ,F)} P ν { 1 n n ∑ i=1 g j (X i ) -µ(g 1 ) ≥ x -2ϵ } .
We set the notation that g j = g j -µ(g 1 ).

In what follows, our reasoning is analogous as in the proof of Theorem 3.2. Instead of taking any f ∈ F , we work with the functions g j ∈ F. Thus, we consider now the processes

Z n (g j ) = ln ∑ i=1 g j (B i ) (12) 
and S n (g j ) = Z n (g j ) + ∆ n (g j ).

Under the assumptions A1, A2 ′ and A3 ′ for g j , we get the analogous to that from Theorem 3.2 Bernstein's bound for Z n (g j ), namely

P A [ ln ∑ i=1 g j (B i ) ≥ x -ϵ ] ≤ 18 exp [ - (x -2ϵ) 2 2 × 90 2 (nσ 2 (g 1 ) + M 1 (x -2ϵ)/90) ] . (13) 
We find the upper bound for the remainder term ∆ n (g j ) applying the same reasoning as in Theorem 3.2. Thus,

P ν [ τ A ∑ i=1 g j (X i ) ≥ x -2ϵ 3 ] ≤ C 1 exp [ - λ 0 (x -2ϵ) 3 ] (14) 
and

P A   n ∑ i=τ A (ln-1) ḡj (X i ) ≥ x -2ϵ 3   ≤ C 2 exp [ - λ 1 (x -2ϵ) 3 ] , ( 15 
)
where

C 1 = E ν [ exp λ 0 τ A ∑ i=1 g j (X i ) ] , C 2 = E A [ exp[λ 1 g j (B 1 )] ] .
Finally, notice that

E ν [ exp λ 0 τ A ∑ i=1 g j (X i ) ] ≤ E ν [ exp 2λ 0 τ A ∑ i=1 F (X i ) ] < ∞ and E A [ exp[λ 1 g j (B 1 )] ] ≤ E A [exp[2λ 1 |F | (B 1 )]] < ∞
and insert it into ( 14) and ( 15) which yields the proof. Below we will formulate a maximal version of Theorem 3.3. Theorem 3.6 Assume that X = (X n ) n∈N is a regenerative positive recurrent Markov chain. Then, under assumptions A1, A2 ′ , A3 ′ , A4 -A5 and for any 0 < ϵ < x and for n large enough and N > 0 we have

P ν [ sup f ∈F n ∑ i=1 f (X i ) -µ(f ) ≥ x ] ≤ N 2 (ϵ, F) { 2 exp [ -(x -2ϵ) 2 2 × 3 2 (1 + a) 2 (⌊ n α ⌋ σ 2 (f ) + M 1 3 x-2ϵ 1+a ) ] + 18 exp   -(x -2ϵ) 2 2 × 90 2 (1 + a) 2 ( N √ nσ 2 (f ) + M 1 90 (x-2ϵ) 1+a )   +P ν ( n 1/2 [ l n n - 1 α ] > N ) + C 1 exp [ - λ 0 (x -2ϵ) 3 ] + C 2 exp [ - λ 1 (x -2ϵ) 3 ]} ,
where

C 1 = E ν [ exp 2λ 0 τ A ∑ i=1 F (X i ) ] , C 2 = E A [exp[2λ 1 |F | (B 1 )]] .
Proof. The proof is a combination of the proofs of Theorem 3.3 and Theorem 3.5. We deal with the supremum over F the same way as in Theorem 3.5. Then we apply Theorem 3.3.

We can obtain even sharper upper bound when class F is uniformly bounded. In the following, we will show that it is possible to get a Hoeffding type inequality and have a stronger control of moments of the sum S n (f ) which is a natural consequence of uniform boundedness assumption imposed on F.

A6. The class of functions F is uniformly bounded, i.e. there exists a constant D such that ∀f ∈ F |f | < D.

Theorem 3.7 Assume that X = (X n ) n∈N is a regenerative positive recurrent Markov chain. Then, under assumptions A1, A2 ′ , A3 ′ , A5 -A6 and for any 0 < ϵ < x, we have for n large enough

P ν [ sup f ∈F n ∑ i=1 f (X i ) -µ(f ) σ(f ) ≥ x ] ≤ N 2 (ϵ, F) { 18 exp [ - (x -2ϵ) 2 2n × 90 2 D 2 ] +C 1 exp [ - λ 0 (x -2ϵ) 3 ] + C 2 exp [ - λ 1 (x -2ϵ) 3 ]} , ( 16 
)
where

C 1 = E ν exp |2λ 0 τ A D| , C 2 = E A exp |2λ 1 l(B 1 )D| .
Proof. The proof bears resemblance to the proof of Theorem 3.5, with few natural modifications which are a consequence of the uniform boundedness of F.

Under additional condition A4 we can obtain easily the bound with smaller constants, we follow the analogous way as in Theorem 3.6.

General Harris recurrent case

It is noteworthy that Theorems 3.2, 3.5, 3.7 are also valid in Harris recurrent case under slightly modified assumptions. It is well known that it is possible to retrieve all regeneration techniques also in Harris case via the Nummelin splitting technique which allows to extend the probabilistic structure of any chain in order to artificially construct a regeneration set. The Nummelin splitting technique relies heavily on the notion of small set. For the clarity of exposition we recall the definition.

Definition 3.8

We say that a set S ∈ E is small if there exists a parameter δ > 0, a positive probability measure Φ supported by S and an integer m ∈ N * such that

∀x ∈ S, B ∈ E Π m (x, B) ≥ δ Φ(B), (17) 
where Π m denotes the m-th iterate of the transition probability Π.

We expand the sample space in order to define a sequence (Y n ) n∈N of independent r.v.'s with parameter δ. We define a joint distribution P ν,M of

X M = (X n , Y n ) n∈N . The construction relies on the mixture representation of Π on S, namely Π(x, B) = δΦ(B) + (1 -δ) Π(x,B)-δΦ(B) 1-δ
. It can be retrieved by the following randomization of the transition probability Π each time the chain X visits the set S. If X n ∈ S and • if Y n = 1 (which happens with probability δ ∈ ]0, 1[), then X n+1 is distributed according to the probability measure Φ,

• if Y n = 0 (that happens with probability 1-δ), then X n+1 is distributed according to the probability measure (1

-δ) -1 (Π(X n , •) -δΦ(•)).
This bivariate Markov chain X M is called the split chain. It takes its values in E × {0, 1} and possesses an atom, namely A = S × {1}. The split chain X M inherits all the stability and communication properties of the chain X. The regenerative blocks of the split chain are i.i.d. (in case m = 1 in ( 17)) (see [START_REF] Meyn | Markov chains and stochastic stability[END_REF] for further details). We will formulate a Bernstein type inequality for unbounded classes of functions in the Harris recurrent case (equivalent of Theorem 3.2). Theorems 3.5 and 3.7 can be reformulated for Harris chains in similar way. We impose the following conditions: AH1. (Bernstein's block moment condition) There exists a positive constant M 1 such that for any p ≥ 2 and for every f ∈ F

sup y∈S E y f (B 1 ) p ≤ 1 2 p!σ 2 (f )M p-2 1 . ( 18 
)
AH2. (Non-regenerative block exponential moment assumption) There exists a constant λ 0 > 0 such that for every

f ∈ F we have E ν [ exp λ 0 ∑ τ S i=1 f (X i ) ] < ∞.

AH3. (Exponential block moment assumption) There exists a constant λ

1 > 0 such that for every f ∈ F we have sup y∈S E y [ exp[λ 1 f (B 1 )] ] < ∞. Let sup y∈S E y [τ S ] = α M < ∞.
We are ready to formulate a Bernstein type inequality for Harris recurrent Markov chains.

Theorem 3.9 Assume that X M is a Harris recurrent, strongly aperiodic Markov chain. Then, under assumptions AH1-AH3, we have

P ν [ n ∑ i=1 f (X i ) -µ(f ) ≥ x ] ≤ 18 exp [ - x 2 2 × 90 2 (nσ 2 (f ) + M 1 x/90) ] + C 1 exp [ - λ 0 x 3 ] + C 2 exp [ - λ 1 x 3 ] , (19) 
where

C 1 = E ν [ exp λ 0 τ S ∑ i=1 f (X i ) ] , C 2 = sup y∈S E y [ exp[λ 1 f (B 1 )
] .

The proof of Theorem 3.9 is analogous to the proof of Theorem 3. 

[ n ∑ i=1 f (X i ) -µ(f ) ≥ x ] ≤ 2 exp [ -x 2 2 × 3 2 (1 + a) 2 (⌊ n α ⌋ σ 2 (f ) + M 1 3 x 1+a ) ] + 18 exp [ -x 2 2 × 90 2 (1 + a) 2 ( N √ nσ 2 (f ) + M 1 90 x 1+a ) ] + P ν [ n 1/2 ( l n n - 1 α ) > N ] + C 1 exp [ - λ 0 x 3 ] + C 2 exp [ - λ 1 x 3 ] ,
where

C 1 = E ν [ exp λ 0 τ S ∑ i=1 f (X i ) ] , C 2 = sup y∈S E y [ exp[λ 1 f (B 1 )] ] .
. Remark 3.9 In the Theorem 3.9 we assumed that X M is strongly aperiodic.

It is easy, however, to relax this assumption and impose only the aperiodicity condition on Harris chain by using the same trick as in [START_REF] Levental | Uniform limit theorems for Harris recurrent Markov chains[END_REF]. Note that if X M satisfies M(m, S, δ, Φ) for m > 1, then the blocks of data are 1dependent. Denote by S = S ∪ { * }, where { * } is an ideal point which is not in S. Next, we define a pseudo-atom α M = S × {1}. In order to impose only and if 0 < x ≤ √ n(1 -α -1 ), then

P ν ( n 1/2 ( l n n - 1 α ) ≥ x ) = P ν ( l n ≥ n α + x √ n ) ≤ P ν ( l n ≥ [ n α + x √ n ]) ≤ P((∆τ 1 -E ν τ A ) + [ n α +x √ n] ∑ i=2 (∆τ i -α) ≤ n -([ n α + x √ n] -1)α -E ν τ A ),
where [.] is the integer part.

Since

n α + x √ n -1 ≤ [ n α + x √ n] ≤ n α + x √ n, we get n -([ n α + x √ n] -1)α -E ν τ A ) ≤ n -( n α + x √ n -2)α -E ν τ A = -αx √ n + 2α -E ν τ A .
It follows that

P ν ( n 1/2 ( ln n -1 α ) ≥ x ) ≤ P ( (∆τ 1 -E ν τ A ) + ∑ [ n α +x √ n] i=2 (∆τ i -α) ≤ -αx √ n + 2α -E ν τ A ) ,
where [.] is the integer part Now, we can apply any Bennett's or Bernstein's inequality on these centered i.i.d. random variables to get an exponential bound. This can be done since we assumed A4. Note that other bounds (polynomial for instance) can be obtained under appropriate modifications of A4. In our case we get

P((∆τ 1 -E ν τ A ) + [ n α +x √ n] ∑ i=2 (∆τ i -α) ≤ -αx √ n + 2α -E ν τ A ) ≤ exp ( - 1 2 (αx √ n -2α + E ν τ 2 A )/S 2 n 1 + (αx √ n -2α + E ν τ A )M 2 /S n ) ,
where

S 2 n = E ν τ 2 A + ([ n α + x √ n] -1)E A τ 2 A .
The above bound can be reduced to exp

( - 1 2 (αx √ n -2α) 2 ( E ν τ 2 A + ( n α + x √ n)E A τ 2 A ) + (αx √ n + E ν τ A )M 2 ( E ν τ 2 A + ( n α + x √ n)E A τ 2 A ) 1/2
)

Theorem 2 . 1 (

 21 Hoeffding's inequality) Let X 1 , X 2 , • • • , X n be independent identically distributed random variables with common expectation EX 1 and such that

  Notice that our bound is a deviation bound in that it holds only for n large enough. This is due to the control of the covering functions

	Remark 3.6 (under P n ) by a control under P (see Remark 3.8 in the proof ). However, by
	making additional assumptions on the regularity of the class of functions and
	by choosing the adequate norm, it is possible to obtain by the same arguments
	an exponential inequality valid for any n as in Zou, Zhang and Xu (2009)
	or Cucker and Smale (2002). See also examples of such classes of functions
	used in statistical learning in this latter. Indeed, if F belongs to a ball of
	a Hölder space C
	5, we indicate that under
	additional assumptions it is possible to obtain Bernstein type concentration
	inequality.

P (E ′ ) on a compact set E ′ of an Euclidean space endowed with the norm

  2. We can obtain a bound with much smaller constants under an extra block moment condition. AH4. (Block length moment assumption) There exists a positive constant M 2 such that for any p ≥ 2 Assume that X M is a Harris recurrent, strongly aperiodic Markov chain. Then, under assumptions AH1-AH4, we have for any x > 0

	sup y∈S	E y [τ S ] p ≤ p!M p-2 2	E A τ 2 A ,
	E ν [τ S ] p ≤ p!M p-2 2	E ν τ 2 S .
	.		
	Theorem 3.10 and for N ∈ R		
	P ν		
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aperiodicity in this case it is sufficient to consider two processes {E i } and

, for some k ≥ 0 and E i = * . Every function f : S → R will be considered as defined on S with identification f ( * ) = 0 (see also [START_REF] Levental | Uniform limit theorems for Harris recurrent Markov chains[END_REF] for more details concerning those two processes). Then, we prove Bernstein type of inequality similarly as we prove Theorems 3.2 and 3.9 applying all the reasoning to {E i } and {O i } separately, yielding to a similar inequality up to an additional multiplicative constant 2.

Appendix

Proof of Lemma 3.1. Let τ k be the time of the k-th visit to the atom A (S × {1} in the general case).

In the following we make use of the argument from [START_REF] Dedecker | Subgaussian concentration inequalities for geometrically ergodic Markov chains[END_REF] and observe that we have for any k ≤ n