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ABSTRACT

Galaxy clusters and groups are important cosmological probes and giant cosmic laboratories for studying galaxy evolution. Much
effort has been devoted to understanding how and when baryonic matter cools at the centre of potential wells. However, a clear
picture of the efficiency with which baryons are converted into stars is still missing. We present the K-band luminosity–halo mass
relation, LK,500 − M500,WL, for a subsample of 20 of the 100 brightest clusters in the XXL Survey observed with WIRCam at the
Canada-France-Hawaii Telescope (CFHT). For the first time, we have measured this relation via weak-lensing analysis down to
M500,WL = 3.5 × 1013 M�. This allows us to investigate whether the slope of the LK − M relation is different for groups and clusters,
as seen in other works. The clusters in our sample span a wide range in mass, M500,WL = 0.35−12.10 × 1014 M�, at 0 < z < 0.6.
The K-band luminosity scales as log10(LK,500/1012 L�) ∝ β log10(M500,WL/1014 M�) with β = 0.85+0.35

−0.27 and an intrinsic scatter of
σln LK |M = 0.37+0.19

−0.17. Combining our sample with some clusters in the Local Cluster Substructure Survey (LoCuSS) present in the
literature, we obtain a slope of 1.05+0.16

−0.14 and an intrinsic scatter of 0.14+0.09
−0.07. The flattening in the LK − M seen in previous works is

not seen here and might be a result of a bias in the mass measurement due to assumptions on the dynamical state of the systems. We
also study the richness-mass relation and find that group-sized halos have more galaxies per unit halo mass than massive clusters.
However, the brightest cluster galaxy (BCG) in low-mass systems contributes a greater fraction to the total cluster light than BCGs
do in massive clusters; the luminosity gap between the two brightest galaxies is more prominent for group-sized halos. This result is
a natural outcome of the hierarchical growth of structures, where massive galaxies form and gain mass within low-mass groups and
are ultimately accreted into more massive clusters to become either part of the BCG or one of the brighter galaxies.
Key words. galaxies: clusters: general – galaxies: photometry – gravitational lensing: weak – galaxies: stellar content –
X-rays: galaxies: clusters – galaxies: groups: general

1. Introduction
Galaxies grow through predominantly dissipative processes
within dark matter halos (e.g. White & Rees 1978; Davis et al.
1985; Springel et al. 2006); according to the standard paradigm
of cosmological structure formation, these galaxies assemble
first in groups and then in clusters and are the largest objects to
form in the process. Galaxy clusters are important both as cos-
mological probes and as laboratories for galaxy evolution studies
(see e.g. Kravtsov & Borgani 2012, for a recent review).

It is still not understood how baryonic matter cools and frag-
ments at the centre of gravitational potential wells to trigger star

? The Master Catalogue is available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A2

formation and increase galaxy stellar mass. Much effort has been
devoted to the study of stellar versus halo mass to constrain
the star formation efficiency of galaxy groups and clusters. In
particular, many works present in the literature find that stel-
lar and halo mass are closely correlated with a slope shallower
than unity (e.g. Giodini et al. 2009; Patel et al. 2015; Andreon
2010; Balogh et al. 2014; Kravtsov et al. 2014; van der Burg
et al. 2014). This implies that group-sized halos are more effi-
cient at forming stars than their more massive counterparts (see
also Gonzalez et al. 2013).

A similar conclusion has been reached by earlier authors us-
ing near-infrared luminosity and in particular the K-band lu-
minosity LK as a tracer of stellar mass (e.g. Lin et al. 2003,
2004; Ramella et al. 2004; Muzzin et al. 2007). There are many
advantages of using LK instead of stellar mass: it is relatively
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inexpensive compared to multiwavelength observations; it is not
affected very much by extinction or recent star formation (Cowie
et al. 1994); and k-corrections are small and almost independent
of galaxy type (e.g. Poggianti 1997). The Two Micron All-Sky
Survey (2MASS; Jarrett et al. 2000) offers a complete infrared
map of the sky, which enables the study of large sample of galax-
ies, groups, and clusters (e.g. Lin et al. 2003, 2004; Kochanek
et al. 2001; Ramella et al. 2004). The K-band luminosity-mass
(LK − M) relation for local systems revealed a slope of 0.6 with
system masses measured via dynamical analysis (Ramella et al.
2004) or inferred from X-ray scaling relations (Lin et al. 2004).
Muzzin et al. (2007) have explored the LK −M for massive clus-
ters in a wide redshift range (0.17 < z < 0.54), finding consistent
results with other work in the local Universe. They conclude that
there is little evolution in the LK − M relation with redshift and
cluster mass.

All the aforementioned studies estimate cluster masses via
X-ray scaling relations or dynamical analysis. This means that
they rely on assumptions on the dynamical state of the systems.
Mulroy et al. (2014) investigated, for the first time, the M−LK re-
lation using weak-lensing masses. Their sample from the Local
Cluster Substructure Survey (LoCuSS1) comprised clusters with
masses of M500,WL > 2 × 1014 M�. These authors find a slope of
unity and an intrinsic scatter of σln M|LK = 0.1. The difference in
slope between the Mulroy et al. lensing-based study of massive
clusters and the literature indicate that the slope of the M−LK re-
lation is a function of halo mass and/or that earlier studies were
affected by systematic uncertainties in mass measurements.

Weak-lensing analysis is difficult to perform for low-mass
systems, mainly owing to the weakness of the signal. For this
reason there are no studies on LK − M with masses measured
via weak-lensing (MWL) down to group-sized halos. In this work
we present the first LK − MWL relation down to ∼1013 M� for
20 of the 100 brightest clusters in the XXL2 Survey. This pilot
study aims to explore the slope of the LK − MWL relation for a
wide range of masses to shed light on their star formation effi-
ciency without relying on any hydrostatic equilibrium assump-
tions. This allows us to investigate, for the first time, whether the
change in slope of the LK − MWL relation is a function of halo
mass or whether it is due to a bias in the mass measurements in
previous works.

The paper is organised as follows: in Sect. 2 we describe our
data set and sample; in Sect. 3 we introduce our method for mea-
suring the K-band luminosity and for investigating the LK−MWL
and the richness-mass relations in Sect. 4; we discuss our results
and compare them with other works present in the literature in
Sect. 5; and we draw our conclusions in Sect. 6. Throughout our
analysis we adopt the Vega magnitude system and the WMAP9
(Hinshaw et al. 2013) cosmology of H0 = 70 h70 km s−1 Mpc−1,
ΩM = 0.28, and ΩΛ = 0.72.

2. Sample and data

The XXL Survey, described in detail by Pierre et al. (2016,
Paper I), is a 50 deg2 XMM-Newton survey with a sensitivity
of ∼5 × 10−15 erg s−1 cm−2 in the [0.5−2] keV band for point-
sources. This survey is an extension of the 11 deg2 XMM-LSS
survey (Pierre et al. 2004) and consists of two regions of 25 deg2

each, XXL-North and XXL-South. The main aim of XXL is to
provide a well-defined galaxy cluster sample for studies of pre-
cision cosmology, galaxy evolution, and active galactic nuclei.

1 http://www.sr.bham.ac.uk/locuss
2 http://irfu.cea.fr/xxl

Within the XXL Survey, the bright XXL 100 cluster sample
(XXL-100-GC3 and via the XMM XXL DataBase4) is defined as
a flux-limited sample based on the 100 brightest clusters (more
details available in Pacaud et al. (2016, hereafter Paper II). Some
of these clusters were previously studied as part of the XMM-
LSS and XMM-BCS surveys (Clerc et al. 2014; Šuhada et al.
2012) and span a wide redshift range (0.05 <∼ z <∼ 1.07). All sys-
tems within the XXL-100-GC sample are characterised as either
C1 or C2 classification. All C1 objects have high extension and
detection likelihood with a low probability of contamination by
spurious detection or point sources, while C2 objects are much
less pure, with only half of the sources corresponding to real
clusters. All of the clusters used in this work are C1 systems, al-
though we stress that we did not base our selection on whether
clusters are ranked as C1 or C2.

As described in Papers I and II, an extensive follow-up pro-
gramme has been carried out to obtain spectroscopic redshifts
for all XXL galaxy clusters. We assume that a cluster is spec-
troscopically confirmed if three consistent redshifts lie within
500 kpc from the X-ray centroid or if at least the BCG has a
spectroscopic redshift. The spectroscopic redshifts for the sys-
tems studied in this work are listed in Table 1, while the number
of spectroscopic members can be found in Table 1 of Pacaud
et al. (2016).

2.1. Sample

In this work we use a sample of clusters drawn from the over-
lap between XXL-100-GC, CFHTLenS (Erben & CFHTLenS
Collaboration 2012; Heymans et al. 2012), and MIRACLES (a
wide near-infrared survey covering a large part of the XXL-N
field with WIRCam observations, Arnouts et al., in prep.), for
which reliable weak-lensing masses are available from Lieu et al.
(2016, hereafter Paper IV). Paper IV selects a sample of 38
galaxy clusters for which redshifts (Paper II); faint galaxy shape
measurements; and X-ray temperatures, TX (Giles et al. 2016,
hereafter Paper III), are available. From these 38 clusters we se-
lect all the clusters with K-band data, which results in a sample
of 20 clusters (see Table 1) all of which are classified as C1 (thus
with a reliable X-ray detection) and have masses in the range
M500,WL = 0.35−12.10 × 1014 M� at 0 < z < 0.6.

2.2. Weak-lensing masses

We use weak-lensing masses from Paper IV in the overlap-
ping region with the WIRCam coverage (yielding 20 clusters,
Table 1). All details on weak-lensing analysis and mass mea-
surement can be found in Paper IV. We summarise the main
points here. Paper IV analyses 38 systems drawn from the
XXL-100-GC sample, for which the CFHTLenS (Heymans et al.
2012) shear catalog is publicly available5. To obtain weak-
lensing masses M500,WL, a Navarro et al. (1997) profile is fitted
to the shear profile of each cluster and integrated to the radius at
which the mean density of the halo is 500 times the critical den-
sity of the universe at the cluster redshift. In this work we also
use masses integrated to the radius of 1 Mpc, M1 Mpc,500.

3 XXL-100-GC data is available as electronic format via the XXL
Master Catalogue at http://cosmosdb.iasf-milano.inaf.it/
XXL
4 http://xmm-lss.in2p3.fr
5 http://www.cfhtlens.org/astronomers/
content-suitable-astronomers
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Table 1. Cluster properties.

XLSSC ID z M500,WL M1 Mpc,WL LK,500 LK,1 Mpc M?,500 M?,1 Mpc N500

(1014 M�) (1014 M�) (1012 LK,�) (1012 LK,�) (1012 M�) (1012 M�)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

027 0.295 2.1+2.4
−1.4 2.6+1.3

−1.7 5.1 ± 1.0 5.1 ± 1.4 3.7 ± 0.8 3.7 ± 1.0 49 ± 15
054 0.054 0.7+1.1

−0.5 1.1+0.6
−1.0 2.2 ± 0.5 2.6 ± 1.0 1.6 ± 0.4 1.9 ± 0.7 39 ± 9

055 0.232 5.2+4.7
−2.0 4.6+1.2

−2.1 8.3 ± 1.9 7.6 ± 1.6 6.1 ± 1.4 5.5 ± 1.2 114 ± 26
056 0.348 2.8+1.7

−1.5 3.2+1.3
−1.1 11.1 ± 1.6 11.6 ± 1.9 8.1 ± 1.2 8.5 ± 1.4 84 ± 15

060 0.139 1.4+0.9
−1.0 1.9+1.0

−1.0 7.3 ± 1.1 9.6 ± 1.6 5.3 ± 0.8 7.0 ± 1.2 103 ± 10
061 0.259 2.4+0.5

−1.3 2.8+1.2
−0.4 2.7 ± 1.3 2.8 ± 1.1 2.0 ± 0.8 1.9 ± 1.0 71 ± 18

083 0.430 2.5+2.2
−1.7 3.1+1.7

−1.5 8.5 ± 1.5 9.5 ± 1.9 6.2 ± 1.1 7.0 ± 1.4 87 ± 12
084 0.430 2.7+1.9

−2.0 3.3+2.0
−1.3 7.5 ± 1.1 9.8 ± 1.4 5.5 ± 0.8 7.1 ± 1.0 89 ± 13

087 0.141 0.3+0.3
−0.2 0.6+0.4

−0.4 1.0 ± 0.4 1.5 ± 1.1 0.7 ± 0.3 1.1 ± 0.8 18 ± 8
088 0.295 1.2+0.9

−0.9 1.7+1.1
−1.2 6.9 ± 0.8 8.7 ± 1.4 5.0 ± 0.6 6.3 ± 1.0 60 ± 10

091 0.186 6.2+2.1
−1.8 4.9+1.0

−0.9 18.0 ± 2.2 17.2 ± 1.8 13.2 ± 1.6 12.5 ± 1.3 233 ± 27
098 0.297 1.8+2.3

−1.5 2.4+1.6
−1.8 4.0 ± 0.9 4.4 ± 1.3 2.9 ± 0.7 3.2 ± 1.0 44 ± 13

103 0.233 5.4+2.6
−1.8 4.6+1.1

−1.2 2.5 ± 1.5 2.6 ± 1.2 1.8 ± 1.1 1.9 ± 0.9 35 ± 25
104 0.294 1.7+2.6

−0.9 2.2+0.9
−1.8 4.3 ± 0.8 4.6 ± 1.2 3.2 ± 0.6 3.4 ± 0.9 50 ± 13

105 0.429 12.1+3.9
−4.6 8.0+1.2

−2.5 8.8 ± 2.4 8.3 ± 1.5 6.4 ± 1.7 6.0 ± 1.1 101 ± 30
106 0.300 4.3+1.8

−2.1 4.1+1.5
−1.0 10.9 ± 1.7 11.3 ± 1.6 8.0 ± 1.2 8.2 ± 1.2 129 ± 22

109 0.491 4.7+4.0
−2.8 4.8+2.1

−2.1 4.4 ± 1.8 4.4 ± 1.8 3.2 ± 1.3 3.2 ± 1.3 28 ± 16
110 0.445 2.9+3.2

−1.0 3.4+0.8
−2.0 9.3 ± 2.2 9.6 ± 1.8 7.0 ± 1.3 6.8 ± 1.6 65 ± 13

111 0.299 6.3+1.8
−1.8 5.2+1.0

−0.8 13.2 ± 1.8 15.0 ± 2.3 11.0 ± 1.7 9.7 ± 1.3 139 ± 28
112 0.139 0.8+0.6

−0.5 1.3+0.8
−0.5 2.3 ± 0.7 1.9 ± 1.3 1.6 ± 0.5 1.4 ± 0.9 18 ± 10

Notes. Column 1 shows the cluster identification number; Col. 2 shows the cluster redshift (from Paper II); the weak-lensing masses measured
within r500,WL (from Paper IV) and 1 Mpc are shown in Cols. 3 and 4, respectively; Cols. 5 and 6 show the K-band luminosities measured within
r500,WL and 1 Mpc from the X-ray centroid of the cluster, respectively; Cols. 7 and 8 are the stellar masses obtained by multiplying the K-band
luminosities within r500,WL and 1 Mpc by a fixed mass-to-light ratio of 0.73; Col. 9 is the number of galaxies contributing to the K-band luminosity
within r500,WL. The position (right ascension and declination) of these objects can be found in Table 1 of Paper II.

The individual masses measured for the systems span a
wide range of masses (M500,WL ∼ 1013−1015) and temperatures
(1 KeV <∼ TX <∼ 6 KeV) and represent the largest sample of
groups and clusters with weak-lensing masses for which the
mass-temperature relation has ever been studied.

Table 1 lists the main properties of the 20 clusters considered
in this work.

2.3. Optical and near-infrared imaging

This paper uses ugriz imaging data from the Canada-France-
Hawaii Telescope Legacy Survey (CFHTLS6) in addition to
CFHT WIRCam Ks-band data over a subset of the CFHTLS W1
field. The WIRCam camera consists of four HAWAII2-RG de-
tectors, each containing 2048 × 2048 pixels. The four detectors
image an area of 20′ × 20′ with a pixel scale of 0.3′′/pixel (the
cross-shaped gap between the four detectors is 45′′ wide). A to-
tal of 151 WIRCam pointings were observed, each for a total of
1050 s with observations acquired as two sequences of 21 spa-
tially dithered exposures of 25 s.

The WIRCam data is part of the MIRACLES survey and is
reduced subsequently at CFHT and TERAPIX7. This pipeline
makes extensive use of the software from the Astromatic web-
page8 and is similar to the one used to process the CFHT-WIRDS

6 http://www.cfht.hawaii.edu/Science/CFHTLS
7 http://terapix.iap.fr
8 http://www.astromatic.net

(Bielby et al. 2014) and the ESO-UltraVISTA (McCracken et al.
2012) surveys. As a first step, we performed a single exposure
detrending using the I’iwi preprocessing pipeline9 with the aim
of removing the instrumental imprints from individual images:
flagging of saturated, bad and hot pixels, correction for non-
linearity, bias removal, guide window masking, and dome and
sky flat fielding. We then computed a first astrometric solution
for each exposure and used standard star observations to com-
pute the photometric zero-points.

The initial median-combined stacks constructed using Swarp
at the instrument pixel scale allowed us to detect faint objects af-
ter an initial sky subtraction. The same objects were then masked
on individual exposures (taken over time intervals ∆t < 15 min
and angular separations ∆θ < 10′) to obtain an improved sky
background estimate. The images were then sky-subtracted us-
ing these sky frames.

We computed a refined astrometric calibration using SCAMP
on catalogs detected from the new sky subtracted exposures,
reaching an internal astrometric precision of 0.025′′ (better than
a tenth of a pixel) and an external astrometric precision of 0.18′′
(the external astrometric precision is limited by the internal ac-
curacy of the 2MASS-PSC catalog used as reference). Before
the final stack, we performed a quality assessment of the in-
dividual images to remove those with severe defects. We mea-
sured the seeing for each image using PSFEx, removing outliers

9 http://cfht.hawaii.edu/Instruments/Imaging/WIRCam/
IiwiVersion1Doc.html
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in the image quality before combining the sample and keeping
an average seeing of ∼0.9′′. We used Swarp to produce the final
stacks in four versions, two with different kernels (bilinear and
Lanczos3) and two with different grid sizes (native WIRCam and
CFHTLS-MegaCam), with a 128px mesh for large-scale back-
ground gradient subtraction.

Each exposure was finally delivered with an initial astro-
metric and photometric calibration in two flavours: the de-
trended exposures, and the detrended images with the sky re-
moved. TERAPIX finally used QualityFITS on detrended
sky subtracted exposures to produce weight maps, object cata-
logues, and overviews of individual image qualities (e.g. seeing,
depth). The production of the weight maps was possible via the
WeightWatcher software (Marmo & Bertin 2008), while astro-
metric and photometric calibration was performed using SCAMP
(Bertin 2006) with the Two Micron All Sky Survey (2MASS)
taken as the astrometric reference catalogue.

Source extraction and photometry were performed on the
ugrizKs images using SExtractor v2.5.0 (Bertin & Arnouts
1996) in dual image mode with the Ks-band as the detection im-
age in each case. Photometry was extracted within fixed circular
apertures (3, 4, and 8′′) or in flexible Kron-like elliptical aper-
tures (Kron 1980) with a Kron-factor of 2.5 and a minimum ra-
dius of 3.5 pixels. The CFHTLS and Ks image files form an over-
lapping grid of tiles 1 deg2 in size. Catalogues generated from
each of these tiles were merged into a single master catalogue
following the procedures outlines in Gwyn (2012). We used a
3′′ diameter circular aperture to measure the colour of galaxies,
while the K-band luminosity was derived from MAG_AUTO, which
is a Kron-like magnitude.

To distinguish between stars and galaxies, we used the half-
light radius (rh, defined as the radius within which 50% of the
object flux is enclosed). For all galaxies with zAB < 15 we clas-
sified as stars all sources with rh < 2 pixels, consistently with
Coupon et al. (2009). We also cleaned the catalogue by remov-
ing all sources for which the photometry was doubtful or con-
taminated by neighbouring objects using a SExtractor (Bertin
& Arnouts 1996) flag greater than 3. We tested our selection
using an eye inspection, confirming that most of the stars were
removed and galaxies were in place.

Clusters with bluer colours (z − K ∼ 2, i.e. at redshift <∼0.1)
exhibit a higher stellar contamination as many bright stars have
z−K colours similar to galaxies in these low redshift systems. We
used class_starz > 0.99 from the z-band catalogue provided by
CFHTLS to successfully identify bright stars with blue colours
(z − K <∼ 2).

3. Analysis

We computed the K-band luminosity for each cluster galaxy in
our sample with the aim of measuring the LK −MWL relation. As
our spectroscopic coverage is not high or uniform, we were not
able to determine cluster members using a dynamical analysis
(see e.g. Biviano et al. 2006, Ziparo et al. 2012, 2013). Thus, we
estimated a projected total K-band luminosity, i.e. via a colour
selection plus statistical correction for contamination by non-
members (e.g. Lin et al. 2003, Giodini et al. 2009).

3.1. K-band luminosity

We selected candidate cluster members following the recipe
of Mulroy et al. (2014). The authors use the (J − K)/K
colour–magnitude space to select candidate cluster members.

Fig. 1. Colour–magnitude diagram for all galaxies lying in the projected
distance of r500,WL for XLSSC 27 (at z = 0.295) in the XXL sample (top
panel) and an area selected as background within the same projected
distance (bottom panel). The dashed line shows the best linear fit for
the candidate cluster members, also shown in the bottom panel for ref-
erence. The galaxies selected to account for the total K-band luminosity
of the cluster and the field are shown in green (KBCG ≤ K < K∗ + 3
and ±0.3 mag from the dashed line), while the BCG is highlighted in
red. The colour sequence for the clusters appears more populated (in
particular at bright magnitudes) than the background region (field) as
expected.

Near-infrared wavelengths are relatively insensitive to the star-
formation and dust extinction, while (J −K) increases monoton-
ically with redshift out to z ∼ 0.5. This creates a narrow sequence
of coeval galaxies in the (J −K)/K space including both passive
and star-forming sources. In the presence of a cluster, this se-
quence will be more populated than the field, in particular at the
bright magnitudes.

As J-band observations were not available for our cluster
sample, we used the (z − K)/K colour−magnitude diagram. We
observed a similar sequence seen by Mulroy et al. (2014) with
slightly higher scatter (Fig 1). For this reason, we considered all
the galaxies lying within ±0.3 mag (instead of ±0.15 mag) of the
ridge line of cluster members in the (z−K)/K space (Fig. 1) and
with KBCG ≤ K < K∗ + 3, where KBCG is the K-band magnitude
of the brightest cluster galaxy (BCG, for details on the identifi-
cation see Lavoie et al., in prep.) and K∗ is the knee of the lu-
minosity function taken from Lin et al. 2006. Of these galaxies,
we selected all sources lying within a projected distance from
the X-ray centroid of r500,WL, where r500,WL is estimated via the
weak-lensing analysis, to compute LK,500. We also computed the
luminosity within 1 Mpc, LK,1 Mpc. By counting galaxies with
K < K∗ + 3 we expect to miss ∼10% of the total K-band lu-
minosity assuming a faint end slope of the cluster galaxy lumi-
nosity function α = −1.0 (e.g. Mulroy et al. 2014; Balogh et al.
2011). We neglected the intra-cluster light (ICL) contribution in
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Fig. 2. Observed z − K colour for all candidate cluster members as
a function of cluster redshift. The colours of individual galaxies are
shown in grey, while the black dots and errors represent the mean colour
and standard deviation for each cluster. The evolution in the z−K colour
for three stellar population models (see text for details) are plotted as
solid lines as indicated in the legend.

the total cluster luminosity as we expect it to contribute less than
20% (Zibetti et al. 2005).

To convert from apparent magnitude to rest frame solar lu-
minosity, we used the absolute K-band magnitude of the Sun
K� = 3.39 (Kochanek et al. 2001) and the galactic extinction
from the Schlegel (1998) maps via the NASA/IPAC Infrared
Science archive10. Assuming that all galaxies within r500,WL are
at the redshift of the cluster, we computed a k- and evolution-
correction (Poggianti 1997) using different simple stellar popu-
lation (SSP) models from Bruzual & Charlot (2003, hereafter
BC03) to match our z − K colours. These models assume a
Chabrier (2003) initial mass function (IMF) and a variety of
other parameters such as the age and duration of the star burst,
the metallicity of the stars, and dust extinction. In particular,
we compared three models: one with 2.5× solar metallicity, one
with solar metallicity, and a mixture of them from Lidman et al.
(2012). We note that many works use k(r) = −6 log(1 + z), yield-
ing a k+evolution correction very close to that predicted by the
models tested in this work, but only up to z ∼ 0.3. At z > 0.3
the k-correction appeared too strong for k(r) = −6 log(1 + z),
therefore we used the BC03 models.

The observed z − K colours at different redshifts for our
sample are bracketed by two models with different metallicity
(Fig. 2), one with solar metallicity and the other with Z = 0.05.
We derived a mean k+evolution correction based on these two
models and we took their difference into account in the K-band
luminosity error.

To remove possible interlopers we performed a statistical
background correction by measuring the total K-band luminosity
in 167 circular areas of the same radius used for a given system.
This is the maximum number of apertures we can use that do not
overlap with any cluster of our sample or with any other of the
XXL-100-GC clusters. Background/field galaxies were selected
with the same colour and magnitude criteria used for the clus-
ters. The mean and standard deviation of the total LK computed
in the 167 areas were associated with the background luminosity
and its uncertainty, respectively. We finally subtracted the back-
ground luminosity from the initial estimate of the cluster LK .

We derived the error on the luminosity for each cluster by
adding in quadrature different components. We already men-
tioned the standard deviation on the background luminosities

10 http://irsa.ipac.caltech.edu

Fig. 3. LK-mass for the 20 XXL clusters considered in this work. The
black solid line and the shaded region represent the best fit and 68%
confidence interval, respectively. We use a mass-to-light ratio of 0.73 to
convert LK to stellar mass M?.

and the error of the k-correction coming from the use of dif-
ferent models from BC03. Finally, we performed a bootstrap re-
sampling with replacement for 105 resamples of the cluster can-
didate members before subtracting the background luminosity.
The bootstrap error contribution was computed as the standard
deviation of these values. The dominant component of the total
luminosity error comes from the background subtraction, while
the bootstrap resampling is the least important contribution.

4. Results

In this section we present the LK −MWL relation for the 20 XXL
clusters considered in this work. We measure a linear relation of
the form(

LK

1012 L�

)
= α + β log10

(
MWL

1014 M�

)
, (1)

where α and β are the intercept and slope, respectively. We
use the publicly available IDL code of Kelly (2007) who use
a Bayesian approach to linear regression. We average the asym-
metric errors in mass for the fit and we measure the intrinsic
scatter in the form σln LK |M .

In this section we also perform a joint fit for the XXL and
LoCuSS clusters for which masses and luminosities have been
measured in a consistent way (Mulroy et al. 2014). This allows
us to extend the mass range from low-mass systems to massive
clusters.

Finally, we present the richness-mass relation and the BCG
light contribution to explore the galaxy population as a function
of halo mass.

4.1. K-band luminosity relation – weak-lensing mass

We use weak-lensing masses for 20 objects in our sample
to compute LK − MWL within r500,WL from the X-ray cen-
troid (Fig. 3 and Table 2). With this sample we extend the
LK,500 − M500,WL relation to the low-mass regime (M500,WL =
3.5 × 1013 M�) with masses calculated via weak-lensing anal-
ysis, i.e. making no assumptions on the dynamical state of the
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Table 2. Fit parameters for the log10(LK,500/1012 L�) = α + β log10(M500,WL/1014 M�) relation.

Sample Radius nsystems Intercept Slope Intrinsic scatter
α β σ = ln LK |M

XXL r500,WL 20 0.39+0.17
−0.22 0.85+0.35

−0.27 0.37+0.19
−0.17

XXL+LoCuSS r500,WL 37 0.34+0.12
−0.13 1.05+0.16

−0.14 0.14+0.09
−0.07

XXL 1 Mpc 20 0.31+0.35
−0.43 1.00+0.69

−0.59 0.41+0.17
−0.15

XXL+LoCuSS 1 Mpc 37 0.30+0.14
−0.16 0.97+0.18

−0.16 0.14+0.08
−0.07

XXL L: 1 Mpc; M: r500,WL 20 0.56+0.17
−0.25 0.58+0.39

−0.29 0.41+0.16
−0.14

XXL+LoCuSS L: 1 Mpc: M: r500,WL 37 0.27+0.14
−0.17 0.99+0.19

−0.17 0.11+0.07
−0.06

XXL
LoCuSS

XXL
LoCuSS

Fig. 4. LK-mass for XXL (in black) and LoCuSS (in red) clusters (from Mulroy et al. 2014) using an aperture of r500,WL (left panel) and 1 Mpc
(right panel). The black solid line and the light blue shaded region are the best fit and 68% confidence interval for XXL only points, while the red
dashed line and the darker blue shaded region show the joint XXL and LoCuSS fit and the corresponding 68% confidence interval.

cluster. We find that these objects are best represented by the
relation

log10

(
LK,500

1012L�

)
= 0.39+0.17

−0.22 + 0.85+0.35
−0.27 log10

(
M500,WL

1014 M�

)
. (2)

To better compare our results with other works we convert LK to
stellar mass using a fixed mass-to-light ratio of 0.73 (Cole et al.
2001) (right axis of Fig. 3).

To populate the massive end of the LK − MWL and increase
the statistics, we consider other results on LK − MWL based on
weak-lensing analysis. As our analysis and the work on mas-
sive clusters in the LoCuSS sample (Mulroy et al. 2014) are per-
formed in a similar way, we jointly fit the LK −MWL relation for
our clusters and the systems in LoCuSS. We multiply LoCuSS
masses by 1.2 to account for the 20% bias in the mass measure-
ment found by Okabe et al. (2013). As the luminosities are mea-
sured within r500,WL (i.e. there is dependence on the mass) we
also multiply the LoCuSS luminosities by 1.21/b, where b is the
best fit slope measured by Mulroy et al. (2014) for this set of
points. The joint fit yields slope and intercept consistent with
values estimated for the XXL-only sample (left panel of Fig. 4):

log10

(
LK,500

1012L�

)
= 0.34+0.12

−0.13 + 1.05+0.16
−0.14 log10

(
M500,WL

1014 M�

)
. (3)

The inclusion of the LoCuSS points in the fit allows us to mea-
sure a lower intrinsic scatter σln LK |M = 0.14+0.09

−0.07 and lower pa-
rameter uncertainties with respect to the XXL-only fit (Table 2).

Measuring LK and MWL within r500,WL introduces an intrin-
sic correlation between these quantities because r500,WL scales
with M1/3

500. To check the impact of this intrinsic correlation on
our results we first measure LK within a fixed physical aperture
of radius 1 Mpc, following Mulroy et al. (2014) and Lin et al.
(2004). The fit between LK,1 Mpc and M500,WL for the XXL sam-
ple gives a slope of 0.58+0.39

−0.29, which is much shallower than
the previous fits (Table 2). Conversely, when fitting XXL and
LoCuSS points together, we find a slope consistent with unity,
i.e. much different from the value we obtain for XXL only. The
main difference in the two samples, is that XXL spans a wide
mass range (with r500,WL = 0.5−1.4 Mpc), while LoCuSS has
r500,WL of the order of 1 Mpc. Thus, luminosity and mass are
measured within very different regions for the XXL sample. In
other words, a fixed aperture is not ideal for measuring the lumi-
nosity of clusters spanning a wide size range.

A like-for-like comparison is given by MWL and LK mea-
sured within the same fixed aperture of 1 Mpc (right panel of
Fig. 4). Although the uncertainty on the fit parameters increases
for the XXL-only sample, we find a slope of unity perfectly con-
sistent with the joint XXL+LoCuSS fit.

4.2. Richness and BCG contribution

The joint XXL+LoCuSS fit is consistent with star formation effi-
ciency being independent of halo mass across the range of cluster
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Fig. 5. Number of galaxies as a function of weak-lensing mass
for the XXL sample considered in this work. The black solid line
shows the best fit relation represented by log10 N500 = 1.54+0.13

−0.19 +

0.70+0.29
−0.23 log10(M500,WL/1014 M�). The shaded region shows the 68%

confidence interval.

and group masses probed by our sample. However, as we cannot
exclude a slope shallower than unity at >2σ, we investigate this
issue from another point of view. We study the richness–weak-
lensing mass (N500 −M500,WL) relation (Fig. 5) for the XXL sys-
tems, where N500 is the number of all galaxies within r500,WL
that contribute to the cluster LK,500. The XXL systems follow a
positive correlation with a best fit of

log10 N500 = 1.54+0.13
−0.19 + 0.70+0.29

−0.23 log10

(
M500,WL

1014 M�

)
· (4)

The slope is slightly shallower than that found by Lin et al.
(2004), but consistent within the errors. We measure an intrin-
sic scatter of σln N |M = 0.33+0.16

−0.14, lower than that measured by
Lin et al. (2004).

While the K-band luminosity scales with the halo mass with
a slope consistent with unity, the N500−M500,WL relation exhibits
a shallower slope. This means that the cluster K-band luminos-
ity steadily increases with the halo mass, whereas less massive
clusters are populated, on average, by a larger number of galax-
ies than expected for more massive clusters. This implies that
group-sized halos host less luminous/massive galaxies than their
massive counterparts.

We investigate the relative contribution of the BCG to the
K-band luminosity of the cluster (left panel of Fig. 6). The frac-
tional BCG contribution and the halo mass are anti-correlated
with a Spearman correlation coefficient of −0.52 and a proba-
bility that this happens by chance of 1.18 × 10−2. This suggests
that the BCG fractional light contribution is more important for
low-mass clusters (LK,BCG/LK,500 ∼ 0.4) than for massive ones
(LK,BCG/LK,500 ∼ 0.04), in agreement with Lin & Mohr (2004)
and Gonzalez et al. (2013).

The higher BCG contribution to the stellar budget of low-
mass clusters can be reconciled with the number of galaxies be-
ing higher, in particular if galaxies in low-mass systems are less
luminous than those in massive ones. In fact, one would expect

galaxies to grow in stellar mass via merging and star formation,
decreasing the number of galaxies. To investigate this, we ex-
plore the fractional light contribution of the BCG as a function
of the magnitude gap between the BCG and the second brightest
member (right panel of Fig. 6). We select the brightest galax-
ies within the colour selection we use for the cluster candidate
members before performing the background subtraction. The
Spearman test reveals a coefficient of 0.60 with a probability of
non-correlation of 4.37 × 10−3, i.e. the light contribution of the
BCG increases with the luminosity gap. This can be expected if
we consider the effects of dynamical friction: a galaxy of given
mass is dragged on a shorter timescale to the centre of a group
than a more massive cluster is. Thus, dynamical friction easily
explains the larger magnitude gap (right panel of of Fig. 6) and
the higher contribution of the BCG to the system light (left panel
of Fig. 6) in groups rather than in clusters.

5. Discussion

We have investigated the LK − MWL relation for 20 galaxies
of the XXL-100-GC sample with a wide range of masses and
redshifts. For the first time, we have measured this relation us-
ing weak-lensing analysis to estimate cluster masses down to
M500,WL = 3.5 × 1013 M�. This has allowed us to investigate
whether the slope of the LK − M relation is a function of halo
mass or whether previous claims of different star formation ef-
ficiencies for group-sized halos compared to massive clusters
are due to a bias in the mass measurements. We find a pos-
itive correlation between K-band luminosity and mass with a
slope of 0.86+0.37

−0.28 and an intrinsic scatter σln LK |M = 0.37+0.19
−0.17.

With the aim of increasing the statistics and populating the mas-
sive end of the LK − MWL relation, we have increased our sam-
ple with clusters from the LoCuSS survey presented by Mulroy
et al. (2014). As these authors use weak-lensing masses and
compute near-infrared luminosities in a similar way to our own
method, we have performed a joint fit, confirming a slope con-
sistent with unity (1.05+0.16

−0.14) and obtaining an intrinsic scatter
σln LK |M = 0.14+0.09

−0.07.
We compare our results with previous work in the litera-

ture with cluster masses and luminosities computed in different
ways (Fig. 7). Lin et al. (2004) derive masses using the mass-
temperature relation and integrate the luminosity function down
to K∗ + 3 to derive the total LK . Balogh et al. (2011) perform a
dynamical analysis to retrieve system masses and cluster mem-
bers; they sum up individual member luminosities to compute
the cluster near-infrared luminosities. For the sake of compari-
son, we de-project our total K-band luminosities i.e. we convert
the luminosities measured within a cylinder to luminosities on
a spherical space. We follow Mulroy et al. (2014) who multiply
their LK by 0.68, a value estimated by the weak-lensing analy-
sis of Okabe et al. (2010). After de-projecting the LK we find a
general agreement with the other authors (Fig. 7).

The LK,500 − M500 seems to flatten for group-sized halos, in
particular for systems for which the mass has not been computed
via weak-lensing analysis. Lin et al. (2004) find a slope for the
LK,500 −M500 of 0.69 ± 0.04, arguing that low-mass systems are
more efficient at forming stars than their massive counterparts.
Although we cannot completely rule out this scenario, the slope
of the LK − MWL we measure is also consistent with unity, sug-
gesting that the star formation efficiency might be independent
of the mass of the system. The direct comparison with the find-
ings of Lin et al. (2004, see Fig. 7) suggests that the flattening
of the LK,500 − M500 at low masses might be due to a bias in the
mass measurement. While the weak-lensing masses used in this
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Fig. 6. Fractional contribution in luminosity of the BCG as a function of weak-lensing mass (left panel) and as a function of the magnitude gap
between the two brightest members of the clusters (right panel).

This work
Balogh et al. (2011)
Lin et al. (2004)
Mulroy et al. (2014)

Fig. 7. M500 − LK,500 relation for this work and other works in the liter-
ature as indicated by the legend. The dashed lines show the best linear
fit for XXL only (black) and XXL+LoCuSS (red). Balogh et al. (2011)
and Lin et al. (2004) measure 3D luminosities, while we de-project LK
for XXL and LoCuSS (as in Mulroy et al. 2014) by multiplying these
luminosities by 0.68 (see text for details).

work do not rely on any assumptions about the dynamical state
of the clusters, Lin et al. (2004) assume hydrostatic equilibrium
as they derive cluster masses from an X-ray scaling relation.

Several authors in the literature have used stellar mass to
trace halo mass. We have used a fixed mass-to-light ratio to con-
vert LK into stellar mass. Our XXL+LoCuSS slope is at odds
with Giodini et al. (2009) who find a slope of 0.72 ± 0.13 for a
secure sample of low-mass X-ray groups in the COSMOS field
(although our result is marginally consistent with their slope of
0.81 ± 0.11 for their entire sample). Patel et al. (2015) comple-
ment the sample of Giodini et al. (2009) with 23 low-mass X-ray
groups, finding consistent results with Giodini et al. (2009), but

with a larger scatter (0.25 dex). For both works the stellar masses
come from a multiwavelength template fit while the halo masses
are estimated using the mass-X-ray luminosity scaling relation
of Leauthaud et al. (2010). Recent results (Balogh et al. 2014;
van der Burg et al. 2014) based on systems at z ∼ 1 with halo
masses derived via dynamical analysis show consistency with
Giodini et al. (2009) and Patel et al. (2015).

Our results are also at odds with Kravtsov et al. (2014) who
analyse a set of nine clusters. These authors find a close rela-
tion (scatter of ∼0.1 dex) between stellar mass and halo mass
and a slope of 0.59 ± 0.08. We note that their sample is comple-
mented with that of Gonzalez et al. (2013), thus the total sample
avoids highly disturbed systems, and estimates halo masses from
X-ray temperature or by using the YX parameter. These results
are much closer to those of Andreon (2010) than ours. Indeed,
Andreon (2010) find a slope of 0.45 ± 0.08 for a sample of local
clusters for which dynamical masses are available. We note that
of the aforementioned works, the only one that relies on weak-
lensing masses is Mulroy et al. (2014).

Recently, Hilton et al. (2013) have studied the stellar-to-halo
mass relation for a sample of 14 clusters. Using observations at
3.6 µm and 4.5 µm and the background subtraction technique,
they find a slope of 0.9 ± 0.4, which is consistent with our
results.

To avoid any dependence on the cluster mass, we have also
measured the K-band luminosity for our systems within a fixed
aperture of 1 Mpc. We have followed the example of Mulroy
et al. (2014) and Lin et al. (2004) who discuss the potential use
of the galaxy K-band light as a proxy for cluster mass. The dif-
ferent slopes found for LK,1 Mpc − M500,WL using XXL only and
XXL+LoCuSS samples suggest that measuring the luminosity
in a fixed aperture for systems with a wide mass range is not
ideal. While r500,WL for low-mass XXL systems is of the or-
der of ∼500 kpc, massive clusters have r500,WL & 1 Mpc. Thus,
MWL and LK are measured in different region sizes. This be-
comes clearer when we measure the LK,1 Mpc −M1 Mpc,WL within
a fixed aperture of 1 Mpc for both masses and luminosities. We
find a slope of unity, consistent with Mulroy et al. (2014).
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The issues mentioned above do not apply to Mulroy et al.
(2014) who find similar slope and slightly higher scatter in their
LK,1 Mpc − M500,WL relation compared to their LK,500 − M500,WL.
In fact, their sample spans a narrower range of masses than ours
with typical cluster radii being of the order of 1 Mpc.

5.1. Richness and BCG contribution

We have investigated the richness as a function of weak-lensing
mass for our sample finding a slope shallower than that of the
LK −MWL relation. The slope we find (0.70+0.29

−0.23) is slightly shal-
lower than, but not inconsistent with, the value reported by Lin
et al. (2004) who measure a slope of 0.82 ± 0.04. These results
indicate that low-mass systems host more galaxies than expected
compared to more massive systems.

Our findings are in full agreement with the observed N500 −

M500 relation of Poggianti et al. (2010) who find a slope of
0.77 ± 0.03. Poggianti et al. (2010) also find that this slope
is dominated by systematic errors in their mass measurements.
In fact, while they expect a slope of 1.00 ± 0.04 from their
simulated clusters, they find consistent results with observations
when they introduce selection effects in their simulated data. The
authors argue that projection effects may bias their observational
estimate of the halo masses. Although we cannot exclude pro-
jection effects (e.g. clusters elongated along the line of sight),
our slope of 0.70+0.29

−0.23 is marginally consistent, within the errors,
with unity.

The different slopes of LK−MWL and N500−M500,WL suggest
that, while the total near-infrared luminosity increases steadily
with halo mass, some processes act to decrease (or not increase)
the number of galaxies. Good candidates are galaxy merging,
i.e. the galaxies increase their stellar mass, thus their LK , and
decrease in number. The most obvious objects to be formed
via merging are the BCGs (e.g. Dubinski 1998). More specifi-
cally, the process known as galactic cannibalism (White 1976;
Ostriker & Hausman 1977) indicates that BCGs mainly increase
their mass via dissipationless merging events of galaxies already
in place at higher redshift. According to Lidman et al. (2012)
the build-up of stellar mass in BCGs mainly occurs through ma-
jor mergers with a stellar mass increase of a factor of ∼1.5 over
0 < z < 1 (a factor of ∼3 according to Laporte et al. 2013). This
scenario is supported by Behroozi (2013) who study the stellar-
to-halo mass relation using the abundance matching technique.
They find that galaxies more massive than the Milky Way grow
via mergers at 0 < z < 1, while galaxies less massive increase
their mass via star formation activity.

We have found that the relative light contribution of the BCG
to the K-band luminosity of the cluster (left panel of Fig. 6) is
much more important for group-sized halos than for massive
clusters, in agreement with Lin & Mohr (2004). This has also
been noted by Ziparo et al. (2013) who find mass segregation
only in the inner regions of galaxy groups, most likely due to
the dominance of the BCG. To reconcile the slopes of LK −MWL
and N500−M500,WL, bright galaxy members (excluding the BCG)
should be, on average, more luminous in massive clusters than
in groups. This scenario is confirmed by the correlation between
the fractional light contribution of the BCG with the luminosity
gap (right panel of Fig. 6). Indeed, the magnitude gap shows the
difference in luminosity between the first two brightest galax-
ies in a cluster, implying that its amplitude is a function of both
the formation epoch and the recent infall history of the cluster
(Smith et al. 2010).

According to the pre-processing (Zabludoff & Mulchaey
1998) mechanism, massive clusters grow via the accretion of
smaller systems where galaxies gain both light and mass (e.g.
McGee et al. 2009; Berrier et al. 2009). Observational evidence
has been found from the identification of groups embedded in
the large-scale structure of clusters (Cortese et al. 2006; Tanaka
et al. 2007; Ziparo et al. 2012; Eckert et al. 2014). This would ex-
plain, as already suggested by Lin & Mohr (2004), the decreas-
ing light contribution of the central brightest galaxies in clusters:
BCGs would form in low-mass systems and then become bright
galaxies in clusters as part of the hierarchical structure formation
(Merritt 1985; Edge 1991; De Lucia & Blaizot 2007; De Lucia
et al. 2012).

6. Summary and conclusions

We have explored the LK − MWL (M? − MWL) relation for a
subsample of the the XXL-100-GC observed with WIRCam. For
the first time, we have measured this relation using weak-lensing
analysis to estimate cluster masses down to M500,WL = 3.5 ×
1013 M�. We summarise our results below.

– LK −MWL has a slope of 0.86+0.37
−0.28, consistent with unity, and

an intrinsic scatter of σln M|LK = 0.37. Extending our study to
massive clusters from LoCuSS (Mulroy et al. 2014) yields a
slope of 1.05+0.16

−0.14 and a scatter of σln M|LK = 0.14.
– Comparisons with previous studies based on masses esti-

mated via X-ray properties or derived from scaling relations,
in particular for low-mass systems, suggest that star forma-
tion efficiency is independent of halo mass.

– The different slopes obtained for LK,1 Mpc − M500,WL and
LK,1 Mpc − M1 Mpc,WL show that measuring the luminosities
within a fixed aperture is not ideal for samples with a wide
mass range like XXL. In fact, XXL includes a variety of clus-
ter sizes with r500,WL being much different from the radius
within which the luminosity is measured.

– The N500 − M500,WL relation yields a slope shallower than
unity. This suggests that group-sized halos host a higher
number of galaxies compared to that expected from their
massive counterparts. To reconcile the LK − MWL and the
N500 − M500,WL we conclude that galaxies in groups are less
luminous than cluster galaxies.

– BCGs contribute more to the total luminosity budget of low-
mass systems than their massive counterparts. The domi-
nance of the BCG increases with the luminosity gap, sug-
gesting that BCGs form and evolve in groups before falling
into massive clusters where they become bright galaxies
or BCGs in clusters as part of the hierarchical structure
formation.

This work is based on 20 clusters in the XXL Survey. In order
to have more robust estimates of the quantities explored so far,
we need to increase our sample. In a future work, we plan to in-
clude clusters observed by the VIDEO11 and UKIDSS12 surveys
to improve statistical precision, using all weak-lensing masses
presented in Paper IV. Moreover, we will expand our sample
of clusters with accurate weak-lensing masses as more weak-
lensing data becomes available for both the northern and south-
ern fields in XXL. Finally, the upcoming analysis of 50 clusters
from LoCuSS (Mulroy et al., in prep.) will allow us to extend the

11 http://star-www.herts.ac.uk/~mjarvis/video/index.
html
12 http://www.ukidss.org
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sample to high masses, yielding a more robust estimate of the fit
parameters of the LK − MWL relation.
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