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ABSTRACT

Aims. We determine the size, structure, and evolution of persistent vortices in 2D and inviscid Keplerian flows.
Methods. A Gaussian model of the vortices is built and compared with numerical solutions issued from non-linear hydrodynamical
simulations. Test vortices are also produced using a fiducial method based on the Rossby wave instability to help explore the vortex
parameters. Numerical simulations are performed using a second order finite volume method. We assume a perfect-gas law and a
non-homentropic adiabatic flow.
Results. The new model nicely fits the numerical vortex solution. In the vortex centre it is consistent with existing models, whereas
in the outer regions it enables the vortex to be connected with the background flow. Two families of vortices can be distinguished fol-
lowing the importance of the compressional effects. The model also permitted a new class of vortices to be discovered corresponding
to huge perturbations of pressure and density and whose radial sizes are significantly larger than the disk scale height, in contrast with
the standard way to define the maximum vortex size.
Conclusions. Our Gaussian model of the vortex solutions of the 2D Euler’s equations is a useful tool for studying vortex properties.
Among the large number of vortex solutions, the possible existence of giant vortices could open interesting perspectives in planetary
formation, particularly during the building stage of the giant gas planets.

Key words. hydrodynamics – instabilities – accretion, accretion disks

1. Introduction

In the context of planet formation, the early disk evolution as
well as grain growth processes are of critical interest. The turbu-
lent flow of the disk, responsible for the accretion, usually reor-
ganizes into vortex structures. This may be the consequence of
the inverse cascade of energy in nearly 2D flows or the result of
specific instabilities. The role of long-lived vortices in angular
momentum transport (see Paardekooper et al. 2010; Surville &
Barge 2012, 2013) and in solid particles capture to form plan-
etesimals (see Barge & Sommeria 1995; Johansen et al. 2004;
Heng & Kenyon 2010) has been already invoked, but detailed
studies are still necessary.

In particular, the diversity of vortices is unclear. They can
be produced by different instabilities, like the Rossby waves in-
stability (RWI, Lovelace et al. 1999; Li et al. 2000, 2001) or
by what is now known as convective overstability (see Klahr
& Bodenheimer 2003; Petersen et al. 2007a,b; Lyra & Klahr
2011), in 2D and 3D flows, but the vortex structure is strongly
dependent on the initial conditions. Vortex models can avoid this
bias, as the widely used elliptical vortex (Kida 1981; Goodman
et al. 1987; Chavanis 2000). However, other vortex solutions
may exist and may overcome the limitations of this old model.
Motivated by recent numerical results showing that, in most
cases, 3D vortices appear as nearly columnar vorticity (see Lin
2013; Richard et al. 2013), we keep on working on 2D models.

This also permits faster numerical simulations, leading to the
ability to explore a wider space of vortex structures.

We provide a detailed study of the structure and evolution
of 2D vortices when considered as solutions of the compress-
ible Euler’s equations, however they form. They are also studied
for different models of protoplanetary disks. To this end, we will
develop a new model of the vortices that permits us to fully de-
scribe their structure and to better understand their evolution.

This first paper is organized as follows. Section 2 is devoted
to describing the main disk assumptions and the basic equations.
The fiducial method used to produce the test vortices is presented
in Sect. 3. A Gaussian vortex model is built in Sect. 4, with an
accurate fit of control parameters of the vortices. In Sect. 5, we
present a detailed study of the Gaussian parameters and discrim-
inate the various vortex families. In Sect. 6, we claim the dis-
covery of a new class of vortices whose size and mass largely
exceed the expected values in standard simulations; finally, we
speculate on the possible role of this class of vortices for planet
formation.

2. Disk model and numerical method

2.1. Governing equations

We assume that the disk is composed of a mixture of molecular
hydrogen and helium for which the perfect gas description can
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be applied. Integrations over the disk thickness lead to a surface
density σ and a pressure P ∝ σT , where T is the gas tempera-
ture. A parcel of this fluid, moving at an average velocity V, has
a specific total energy

E =
P

γ − 1
+

1
2
σV2, (1)

where γ = 1.4 is the adiabatic index. In the adiabatic assumption,
the entropy of a gas parcel, S = ln(P/σγ), remains constant in
the Lagrangian sense and its time derivative, DtS , is zero.

The conservation of mass, momentum, and energy lead to the
standard time evolution equations of an inviscid compressible
gas flowing around the star. In a polar coordinate system, these
equations read

∂tσ +
1
r
∂rrσU +

1
r
∂θσV = 0, (2)

∂tσU +
1
r
∂rr(σU2 + P) +

1
r
∂θσUV = σ f e · er + σ

V2

r
+

P
r
,

(3)

∂tσV +
1
r
∂rr(σVU) +

1
r
∂θ(σV2 + P) = σ f e · eθ − σ

UV
r
, (4)

∂tE +
1
r
∂rr(E + P)U +

1
r
∂θ(E + P)V = σV · f e, (5)

where V = Uer + Veθ is the gas velocity, and the gravitational
force f e reduces to the Keplerian gravity of the star:

f k(r) = −
GM?

‖ r ‖3
r. (6)

The energy equation Eq. (5) includes the adiabatic property of
the flow. We also used ∂∗ instead of ∂/∂∗.

We will focus on the possible vortex solutions of these equa-
tions neglecting the self-gravity of the disk.

2.2. Equilibrium state of the disk

The equilibrium state of the disk corresponds to the steady so-
lution of equations Eqs. (2)−(5). The various physical quantities
are constrained by the observations of protoplanetary disks that
provide models for the density and the temperature. Here we will
use the MMSN model (Hayashi 1981) assuming that the density
and temperature of the gas vary as power laws of the radial dis-
tance to the star,

σ0(r) = σ0(r0)
(

r
r0

)βσ
, (7)

T0(r) = T0(r0)
(

r
r0

)βT

, (8)

with typical values of the gradient parameters βσ = −1.5 and
βT = −0.5. It must be noted that the density σ0(r0) does not
change the global flow since self-gravity is not taken into ac-
count. Then, using the perfect gas law, the pressure reads

P0(r) = P0(r0)
(

r
r0

)βP

, (9)

with βP = βσ + βT , and the adiabatic expression of the sound
speed is

cs0 (r) =

√
γ

P0(r)
σ0(r)

∝
√

T0(r). (10)

At steady state, the gas is in circular motion around the star
(U0 = 0) and f k(r) imposes a Keplerian angular velocity Ωk(r) =
(GM?)1/2 r−3/2, which in a more general way can be written

Ωk(r) = Ωk(r0)
(

r
r0

)βΩ

, (11)

where the parameter βΩ is equal to −3/2 in the Keplerian case.
However, the centrifugal balance (in Eq. (3)) must account for
the radial pressure gradient of the gas, so the steady angular ve-
locity of the flow reads

Ω0(r) = Ωk(r)
1 +

βP

γ

cs
2
0(r)

r2Ω2
k(r)

1/2

, (12)

which is generally sub-Keplerian, because in most cases βP < 0.
Now, we can close the system and normalize the various disk

quantities assuming a pressure scale height

H0(r) =
cs0(r)
Ωk(r)

, (13)

with H0(r0) = 0.06r0 at the reference radius r0. This value is
commonly used by the other workers and makes the comparison
easier; it also corresponds to an aspect ratio of the disk small
enough to be consistent with the 2D assumption.

At equilibrium, the vorticity of the flow is defined by the
simple scalar ω0(r) = r−1∂rrV0(r), where V0(r) = rΩ0(r) is the
steady azimuthal velocity. It also writes

ω0(r) = 2Ω0(r)
(
1 +

βΩ

2

)
· (14)

The precision of this expression is ∼5 × 10−4 for the values of
the disk parameters chosen in this study. 1 The vorticity of the
background flow is thus ω0(r) = Ω0(r)/2 when βΩ = −3/2, and
differs from that of a pure Keplerian motion when the flow of the
disk is sub-Keplerian (βP < 0).

2.3. Numerical method

The system of equations Eqs. (2)−(5) is solved using a finite vol-
ume method in order to preserve at best compressibility effects
and shocks. It is inspired by the work of Inaba et al. (2005). A
fixed grid is defined on an annular computational domain be-
tween rin = 5 and rout = 10 measured in astronomical units
(AU). The domain is divided into Nr cells in the radial direc-
tion and Nθ cells in the azimuthal direction; in practice the typ-
ical values we used were Nr = 500 and Nθ = 1000. The spa-
tial resolution in the radial direction, in terms of the disk scale
height, depends on the distance to the star; for a reference radius
at r0 = 7.5 AU we get 75 cells per scale height at rin, 45 cells at
r0, and 32 cells at rout, as H0(r) varies in the disk as (r/r0)βT /2−βΩ .

The evolution of the conserved quantities in each cell is
solved in time using a second order Runge-Kutta method and
with a simultaneous determination of the flux and the source
terms. The numerical fluxes are computed thanks to a third
order limited parabolic interpolation at the cell boundaries.
We also use an exact Riemann solver (Toro 1999). Combined
with a non-splitting of the radial and azimuthal directions and
a balance of the flux and source residual errors, inspired by

1 The error comes from estimating rΩ−1
0 (r)∂rΩ0(r) with βΩ. The pre-

cision is given by γ−1βPr−2H2
0 (r)(βT /2 − βΩ − 1)β−1

Ω
, which is null for

Keplerian disks if βT = −1.
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Fig. 1. Formation of vortices by the RWI (fiducial case). From left to right: evolution of the density in the (r, θ) plane at t = 0, t = 30, and
t = 190 rotations. The density is relative to the disk, σ/σ0(r) − 1, and shows the formation of a chain of six vortices, in agreement with the m = 6
most unstable azimuthal mode. After fewer than 200 rotations, the chain merges in a single vortex. The aspect ratio of the vortices is of the order
of 5.2 at t = 30 rotations and 7.4 at t = 190 rotations.

Guillard & Daniel (2005), we obtain a stable and accurate nu-
merical scheme that is perfectly appropriate for the long-term
evolutions (more than 1000 rotations) necessary in the present
work.

The boundary conditions are established at each sub-time-
step of the second order time integration. We use two ghost-cells
outside the computational domain with periodic conditions in
the azimuthal direction and sheared damping conditions in the
radial direction. The use of sheared damping conditions permits
a smooth continuity with the steady solution assumed outside
the computational domain and avoids spurious reflections at the
inner and outer boundaries.

This numerical method, first developed for the simulation
of protoplanetary disks, has been adapted for the simulation of
other rotating fluids. The present code is called ROtating System
Simulation for BI-fluids (ROSSBI) and will be fully described
in an upcoming paper.

3. A fiducial way to get test vortices

The RWI is presently one of the most efficient ways to form vor-
tices in 2D protoplanetary disks, particularly in the dead zone
where the gas is assumed to be inviscid (Varnière & Tagger
2006). The choice of this non-homentropic instability is also
adapted to form vortices in adiabatic disks (Lin 2013). Once the
instability has grown and saturated, a single vortex remains in
the computational domain; it survives independently of the ini-
tial conditions and for a large number of rotation periods (Li
et al. 2001). Such vortices forget the initial conditions from
which they grow and can be considered as quasi-steady solutions
of Euler’s equations. Below, they will be used as test vortices for
the purpose of exploring the space of the parameters and the long
term evolution (cf. Paper II).

3.1. Vortex formation by RWI

Various initial conditions can make the disk unstable to RWI.
Here we have used a locally isothermal density bump with a
Gaussian radial profile,

σ(r) = σ0(r)
[
1 + f (r)

]
, (15)

P(r) = P0(r)
[
1 + f (r)

]
, (16)

where f (r) = f0 exp
(
−(r − r0)2/∆2

r

)
. The amplitude of the bump

is set to f0 = 20% and its radial width to ∆r = 0.3 AU. On the

other hand, the initial velocity field is directly issued from the
centrifugal balance:

U = 0, (17)

V(r) = V0(r)
1 − 2r

r − r0

∆2
r

f (r)
1 + f (r)

cs
2
0(r)

γV2
0 (r)

1/2

· (18)

First, in order to test the consistency of our results with those
from other workers (Li et al. 2001; Meheut et al. 2013), we
perturbed the surface density and the pressure with periodic az-
imuthal perturbations of amplitude 1% and mode m. We found
that m = 6 is the most unstable mode with an exponential growth
rate of 0.71T−1, where T = 2πΩ−1

0 (r0) is the reference orbital
period of the gas. This is in good agreement with the previous
results cited above.

Then the instability was triggered with a random white noise
of 1% amplitude and the evolution of the disk was followed on
200 periods (see Fig. 1). The density map shows (i) the forma-
tion of a chain of six vortices after 30 rotation periods, in agree-
ment with the quick preeminence of the m = 6 mode (growth in
∼1 rotation); (ii) the progressive merging of these vortices in a
big solitary vortex. In fact, the duration of the merging process
depends on the radial distribution of the noise initially injected
in the system; for example in Fig. 1 the time necessary to obtain
a single vortex was of the order of 190 rotations.

Inside the vortex, the density increases up to 55% above the
disk level or nearly three times the amplitude of the initial bump.
The radial width of the vortex is also larger than the initial ∆r.
Thus, in practice, it is difficult to completely control the shape of
a test vortex produced with the RWI probably because a vortex
also excites sound waves, which appear as spiral density patterns
in the disk (see Bodo et al. 2005). After ∼30 rotations, each vor-
tex of the chain resulting from the instability is coupled to spiral
arms whose amplitude is a significant fraction of the vortex am-
plitude. On the other hand, after 190 rotations, the solitary vortex
is accompanied only by very tiny waves. This is due to the grad-
ual increase of the aspect ratio of the vortices during the merging
process.

We checked that the extent of the computational zone has no
influence on the vortex formation and evolution. A run with a
disk of size [1/4, 4] r0 having the same radial resolution as with
the standard disk size [2/3, 4/3] r0 used in the paper poduces
similar results. The RWI saturation and the structure of the fi-
nal vortex both agree with better than 10% accuracy. Indeed, as
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Fig. 2. Structure of a quasi-steady Rossby vortex. Top: radial profiles
of the density (solid line) and the pressure (dashed line) relative to the
disk: σ/σ0(r)−1 and P/P0(r)−1, respectively. These radial cuts nicely
well fit a Gaussian profile. Bottom: radial profile of the vorticity inside
the vortex and relative to the disk. It is expressed as a Rossby number
Ro(r) (see text).

disk gravity is ignored, the disk size has no consequence on the
simulation.

3.2. Vortex structure and GNG model

In this section our goal is to describe the structure of the vortices,
but we will neglect the closely related density waves which are
difficult to take into account. To this end, we have plotted in
Fig. 2 (top panel) the radial profiles of the relative density and
pressure, defined as σ/σ0(r) − 1 and P/P0(r) − 1, respectively.
A parabola or a Gaussian function can fit the radial structure of
the vortex fairly well. The azimuthal structure is very similar and
can also be adjusted by the same functions.

The higher amplitude of the relative pressure with respect to
the relative density indicates that the vortex is a region of higher
temperature than the background disk. Of course this property is
in relation with the adiabatic assumption made for the gas and
could be different in the presence of thermal transfer. Once es-
timated with the relation P0(r) [σ/σ0(r)]γ − 1, we find that the
relative pressure has an amplitude nearly equal to 0.8, a value in
very good agreement with what can be measured on the plot.

In the lower part of Fig. 2 the Rossby number, defined as
Ro(r) = [|∇ × V| − ω0(r)] / [2Ω0(r)], is plotted as a function of
the distance to the star. As expected, we see the signature of an
anticyclonic vortex with a negative Rossby number, nearly con-
stant on the vortex area and equal to Ro ∼ −0.08. The positive
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Fig. 3. Velocity structure of a quasi-steady Rossby vortex (normalized
to V0(r0)). Top: radial velocity in the vortex core located at r0 ∼ 7.5 AU,
in the azimuthal direction. We note the nearly linear behaviour around
the centre at θ0 = 1.8. Bottom: azimuthal velocity V−V0(r) in the vortex
core in the radial direction. We also note the linear shape between 7 and
8 AU.

values on each side of the vortex are residuals from the initial
bump that triggered the RWI.

The velocity field of the vortex is presented in Fig. 3. The up-
per panel is the radial velocity of the gas in the azimuthal direc-
tion, whereas the lower panel is the azimuthal velocity V −V0(r)
in the radial direction. Far from the vortex, the flow can be con-
sidered to be unperturbed by the presence of the vortex. From the
vortex centre to the rest of the disk, the gas velocities begin to
vary linearly, then reach an extremum, and finally smoothly re-
cover the zero value corresponding to the background disk flow.

In the central part of the vortex, a simple linear model like the
one derived by Kida (1981) or by Goodman et al. (1987; here-
after GNG), can account for the nearly linear spatial dependance
of the velocity field. Here we will briefly describe the widely
used standard GNG model for the purpose of comparison with
our new vortex model.

The GNG model describes the velocity field of an incom-
pressible elliptic vortex in a shearing sheet approximation. Using
a cartesian frame of reference centred on the vortex core, with
the x-axis in the er direction and the y-axis in the eθ direction,
the two components of the gas velocity field are

Vx = ηΩ0y/χ, (19)
Vy = −ηΩ0χx. (20)

In this model, η is the ratio of the internal turn-over frequency of
the vortex to its orbital frequency, here Ω0 = Ωk(r0), and χ is the
aspect ratio of the elliptic streamlines. Assuming also that the
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background has constant density and temperature, along with a
polytropic equation of state with index n, we find by following
GNG that the enthalpy Q ∝ σ1/n reads

Q = χη
(
1 −

χ

2
η
) (

a2 − x2 −
y2

χ2

)
, (21)

and

η =

(
−2βΩ

χ2 − 1

)1/2

, (22)

where a is the extent of the vortex in the x direction. In the central
part of the vortex the model clearly shows a linear dependance
of the velocity field and a parabolic dependance of the enthalpy
(with approximately the same dependance for the density and
the pressure). This is in good agreement with the structure of
our test vortices.

Finally, in the local rotating frame, the vorticity is

ωv = −η
χ2 + 1
χ

Ω0, (23)

which contains the shearing sheet vorticity.

However, the GNG model also has a number of limitations:

– the transition between the inner part of the vortex and the
background flow cannot be taken into account, resulting in
discontinuous velocity field and enthalpy;

– it is limited to constant profiles of the density and the
temperature backgrounds (it is hard to account for radial
stratification);

– in principle, the model is limited to closed elliptic stream-
lines and excludes the compressional effects of strong
vortices.

We now propose a vortex model that can fulfill the above re-
quirements and that allows us to consider a wider range of the
vortex parameters.

4. A Gaussian model of the vortices

We search for a vortex model in a polar system of coordinates,
avoiding the local shearing-sheet approximation. We will con-
serve the radial dependance of Ω0, σ0 and T0, thus preserving
the radial stratification of the disk.

4.1. Velocity equations

The evolution equations of the fluid velocity, derived from the
continuity and the momentum equations, read

∂tU + U∂rU +
V
r
∂θU =

V2

r
− rΩ2

k(r) − σ−1∂rP,

∂tV + U∂rV +
V
r
∂θV = −

UV
r
− σ−1 1

r
∂θP,

(24)

and obviously account for the compressibility of the gas. When
the disk contains a vortex, the gas velocity field can be decom-
posed into the superimposition of a vortex velocity field (u, v) on
top of the background flow:

U = U0 + u,
V = V0(r) + v.

(25)

Of course when the vortex velocities u and v tend to zero or
cancel, the gas flow equals the unperturbed background flow.

Then, the vortex orbiting at r0 is assumed to be a quasi-
steady pattern rotating at the angular velocity Ω0(r0), which
means that the background advection operator cancels, ∂t +
Ω0(r0)∂θ = 0. Combining with Eq. (11), one obtains the non-
linear system of equations that must satisfy a vortex solution

u∂ru +
v + r∆Ω

r
∂θu −

v2

r
= v2Ω0(r) − σ−1∂rP +

βP

γ

cs
2
0(r)
r

,

u
r
∂θu +

v + r∆Ω

r
∂θv = −u2Ω0(r)

(
Ro + 1 +

βΩ

2

)
− σ−1 1

r
∂θP,

(26)

where ∆Ω = Ω0(r) − Ω0(r0), indicates the sub-Keplerian nature
of the flow.

The expression between parentheses (normalized to 2Ω0(r))
is the sum of the vorticity of the vortex,

Ro(r, θ) =

(
∂rv +

v

r
−

1
r
∂θu

)
1

2Ω0(r)
, (27)

and of the background vorticity in the inertial frame, 1 + βΩ/2,
as presented in Sect. 2.2. The parameter Ro will be referred to as
a relative Rossby number in the rest of the paper; it is negative
for an anticyclonic vortex and usually larger than 5% for large
scale structures.

The left hand sides of the equations contain terms that are
either of third order in space (like u∂ru or (v + r∆Ω)r−1∂θv) or
smaller than the others in the limit of small velocities. If they are
completely neglected, we obtain a linear system of equations that
can provide the vortex velocity field as a function of the density
and the pressure gradients:

u2Ω0(r) = −

(
Ro + 1 +

βΩ

2

)−1

σ−1 1
r
∂θP,

v2Ω0(r) = σ−1∂rP −
βP

γ

cs
2
0(r)
r
·

(28)

It must be noted that these expressions correspond to a general-
ized geostrophic balance in which local and background vortic-
ities are taken into account; this is in contrast with the standard
geostrophic equilibrium (e.g. Adams & Watkins 1995).

To get the solution of the velocity equations, it is obviously
necessary to close the system for density and pressure. To this
end, we used the identities

σ = σ0(r)σ∗,
P = P0(r)P∗,

(29)

with σ∗ = P∗ = 1 for an unperturbed disk. In the polytropic
assumption for the perturbed disk, one sets

P = P0(r)σ∗α, (30)

with α = γ for an adiabatic vortex, α = 1 for an isother-
mal vortex, and other values of α for different thermodynamical
assumptions.

Inspired by the GNG model, we define a pseudo-enthalpy:

H =
P0(r)
σ0(r)

α
σ∗(α−1) − 1
α − 1

, if α , 1,

H =
P0(r)
σ0(r)

ln(σ∗), if α = 1 (isothermal case).
(31)
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We thus obtain the velocity field of the vortex solution:

u2Ω0(r) = −

(
Ro + 1 +

βΩ

2

)−1 1
r
∂θH ,

v2Ω0(r) = ∂rH +
(α − 1)βσ − βT

α

H

r
·

(32)

This new model provides vortex-shaped velocity fields from
approximate enthalpy functions. This is in contrast with the
GNG model, which derives density and pressure from the elliptic
streamlines of the Kida’s incompressible model. This approach
leads to more general solutions because any profile ofH can de-
fine a velocity field that accurately satisfies the equations near
the vortex centre.

In order to test the relevance and accuracy of this model, we
have compared the velocity field in Eq. (32), in the adiabatic
case (α = γ), with the velocity field directly issued from the
numerical simulation. To this end, we have used the pressure
P∗ = P/P0(r) in addition to σ∗ in Eq. (31) to compute Hnum, to
better fit the equations, since σ∗α−1 = P∗/σ∗. The results we get
for a test vortex, resulting from a RWI after 190 rotations, are
presented in Fig. 4.

In the top row of Fig. 4, we clearly see how smoothly the ve-
locity field merges with the unperturbed disk in both radial and
azimuthal directions. Week spiral patterns reveal the emission
of sound waves, but their amplitude is a very small fraction of
the vortex values in that case. An axisymmetric pattern due to
the residual vorticity left after RWI has saturated is noticeable at
corotation. In the vortex core, we also observe small scale struc-
tures in the vorticity distribution, that are remnants of the suc-
cessive merging processes and also indicative of the very small
viscosity of our code.

The bottom row of Fig. 4 shows the differences between the
numerical data and the theoretical values given by the vortex

model. The residuals can be a small percentage of the high-
est values reached inside the vortex. This occurs in the regions
where the quasi-geostrophic equilibrium, on which our model
is based, is satisfied: (i) in the vortex core; and (ii) close to the
corotation zone where Rossby waves have been generated by the
instability. On the other hand, stronger residuals are observed
in the vicinity of the spiral-wave patterns because the associ-
ated compressional effects cannot be properly described by our
model.

Thus, the vortex solution derived from the first order approx-
imation model of the steady-state Euler’s equations and based on
a pseudo-enthalpy functionH is able to describe with a good ac-
curacy the full numerical solution of the non-linear conservation
equations. Now, the next step is to find an analytic expression of
H in order to construct a complete vortex model.

4.2. Gaussian approximation

Guided by the shape of the test vortices derived in Sect. 3 and in
accordance with a common assumption in incompressible fluid
dynamics (see e.g. Bodo et al. 2007), we have representedH by
a Gaussian function of r and θ. This 2D vortex model is centred
on r0 and θ0 and can be parametrized with three quantities:

– H0, the amplitude at (r0, θ0);
– χr, a normalized radial extent (or width ∆r = r0χr);
– χθ, an azimuthal aspect ratio (or width ∆θ = χrχθ).

Thus, as a function of r and θ, the pseudo-enthalpyH is approx-
imated by

H = H0 exp

−χ−2
r

( r
r0
− 1

)2

+ χ−2
θ (θ − θ0)2

 , (33)
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which reaches a maximum at the vortex centre and smoothly
connects to zero at the background level. We note that Q in the
GNG model behaves in roughly the same way asH but presents
a discontinuity; its parabolic expression can, in fact, be obtained
through a second order expansion ofH .

With this Gaussian model ofH , the system Eq. (32) leads to
the approximate expression of the velocity field of a quasi-steady
vortex solution:

u =
1

2Ω0(r)
(Ro + 1 + βΩ/2)−1 2

rχ2
r

θ − θ0

χ2
θ

H ,

v =
1

2Ω0(r)

[
−

2
r0χ2

r

(
r
r0
− 1

)
+

(α − 1)βσ − βT

α

1
r

]
H .

(34)

A second order expansion of this velocity field permits the recov-
ery of the linear behaviours u ∝ θ − θ0 and v ∝ r − r0, which are
obtained from the Kida and GNG models. This Gaussian model,
combined with the velocity field obtained before, can therefore
be interpreted as a higher order class of vortex models.

However, in the first equation of the above system, the
Rossby number Ro appears as an undetermined function of r
and θ. A simple way to close the system is to assume Ro as a
constant equal to its value at the vortex centre Ro(r0, θ0). This
can be obtained by solving the equation Ro(r, θ) = ω/[2Ω0(r)],
where ω = r−1∂r(rv) − r−1∂θu. As a function of the parameters
defining the Gaussian, we found the relation

Ro = −
(
r0χrΩ0(r0)

√
2
)−2
H0

×

[
1 +

(
χ2
θ(Ro + 1 + βΩ/2)

)−1
+
βΩ

2
χ2

r
(α − 1)βσ − βT

α

]
·

(35)

In brackets at the right-hand side of this equation, the last term
is much smaller than the others for a huge range of disk gradi-
ents. Indeed, it is less than 10−2 since χr is generally smaller than
10−1; moreover, in the case of an isentropic flow, it exactly can-
cels since βT = (γ−1)βσ. In contrast, the second term in brackets
cannot be neglected, especially when χθ <∼ 5 and Ro <∼ −0.1, as
in many of the numerical simulations.

So, we found that the Rossby number is related to the vor-
tex parameters, but is independent from the global disk parame-
ters (βσ, βT ) and from the thermodynamical index α. This prop-
erty makes Ro a better parameter than H0 to define a vortex,
as Ro also permits us to directly quantify the vortex strength or
vorticity. This is the reason why, in the rest of the paper, each
vortex will be parametrized with a triplet (Ro, χr, χθ), replacing
the pseudo-enthalpyH0 by

H0 = −2Ro
(
r0χrΩ0(r0)

)2
[
1 +

(
χ2
θ(Ro + 1 + βΩ/2)

)−1
]−1
. (36)

This relation is very instructive regarding the main properties
of the vortices. In particular, it indicates that the amplitude of
the bump, associated with a vortex, increases (i) linearly with
the Rossby number (or vorticity) and (ii) quadratically with the
radial extent χr. The amplitude also changes as a function of
the azimuthal aspect ratio, very weakly for χθ > 7 but more
significantly for χθ < 7, with variations that can modulate by
more than 30% the estimation ofH0.

In summary, starting from a triplet of parameters (Ro, χr, χθ),
it is possible to derive an approximate vortex solution of the
steady Euler equations. First, the Gaussian enthalpy H is de-
termined from the triplet using Eqs. (33) and (36); second, the
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Fig. 5. Comparison of the velocity field issued from the numerical sim-
ulation (solid line) and from the model, when usingHnum (dashed line)
and when using HGauss (dashed-dot line) (see text for details). Top: for
the radial component of the velocity. Bottom: for the azimuthal compo-
nent of the velocity, V − V0(r).

velocity field is deduced from Eq. (34); and, finally, the den-
sity and pressure are derived thanks to equations Eqs. (31), (30),
and (29).

To test relevance and accuracy of our model, we have com-
pared the theoretical vortex solution with the test vortices di-
rectly issued from the numerical integration of Euler’s equations.
To this end, we used the same method as in Sect. 4.1: (i) a test
vortex is produced by a RWI; (ii) its enthalpy Hnum is calcu-
lated and its characteristic parameters (Ro, χr, χθ) are measured
to provideHGauss, the Gaussian approximation ofH ; and (iii) the
theoretical vortex solution and its Gaussian approximation are
compared with the numerical vortex solution.

The results we have found for the velocity field in the case
of the last vortex obtained from the RWI are presented in Fig. 5.
The following values are plotted simultaneously: the numerical
values of the test vortex (solid line), the theoretical values ob-
tained with Hnum (dashed line), and the theoretical values ob-
tained with the Gaussian approximation (dot-dashed line). We
note that these are the velocity differences to the background
flow.

We clearly see that both the radial velocity (top panel) and
the azimuthal velocity (bottom panel) are accurately fitted by the
Gaussian model in the inner part of the vortex between the posi-
tion of the two extrema. It gives the correct values of the veloc-
ities and of the gradients inside the vortex core. The model also
makes a smooth connection with the background flow, but the
intermediate values deviate from the numerical solution. In fact,
the Gaussian approximation tends to underestimate the extreme
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values of the two velocity components and also the sharpness
of the connection between the vortex and the background flow.
However, the estimated values derived fromHnum (dashed lines)
fit the numerical data with a good accuracy.

Despite these small discrepancies, our Gaussian model is the
first to provide a consistent and continuous description of quasi-
steady vortices in Keplerian flows. It can be considered as an
analytical tool for vortex studies and provides excellent initial
conditions and test vortices for numerical simulations. In partic-
ular, it permits the vortex shape to be controlled, avoiding the
use of discontinuous models like the GNG model that strongly
disturb the disk evolution during the first rotations.

4.3. A library of Gaussian vortices

In this section we use the Gaussian model to build up a large
sample of test vortices for studying vortex stability in a wide
range of the parameters (Ro, χr, χθ). Some authors have already
addressed the stability problem (Bodo et al. 2007; Godon &
Livio 1999; Davis et al. 2000), but their studies are limited (i)
by a lower performance of the vortex model based on the Kida
velocity field, such as the GNG model; (ii) by an inappropriate
choice of the control parameters; and (iii) by a poor sample of
the test vortices.

In contrast, we are able to produce a wide sample of vortices
by performing about 300 simulations from numerous triplets of
parameters and also for different values of the disk parameters.
Our choice of the disk parameters deviates from the standard
minimum mass solar nebula (MMSN) by assuming −2 < βσ <
0.5 for the density gradient and −2 < βT < 0.5 for the tempera-
ture gradient; we have also considered various values of the disk
scale height with H0(r0)/r0 = 0.042, 0.06, 0.073 or 0.085.

Figure 6 shows the distributions of the parameters for the
quasi-steady vortices of our sample. In the top panel the Rossby
number ranges from −0.07 to −0.33, but for most of the vor-
tices we have −0.17 < Ro < −0.11. In the middle panel the
radial extent ranges from χr = 0.02 to χr = 0.15, but for most
of the vortices 0.05 < χr < 0.08, consistently with the assumed
values of the scale height. Finally, in the bottom panel, the as-
pect ratio ranges from 2 to 18, but most of the vortices have
χθ ∼ 6. We must stress that these three distributions do not
reflect which vortex parameters are the most frequent in pro-
toplanetary disks since many simulations were performed with
the same Gaussian parameters but different choices for the disk
profile. This, of course, biases the morphological sorting of the
simulated vortices.

This sample of test vortices is large enough to check the an-
alytical results obtained with the Gaussian model, but also to
explore new classes of vortices. All the vortex parameters we
have tested are reported in the above sample, except in a number
of additional cases explicitly mentioned in the text.

5. Morphology and classification of the vortices

5.1. Radial extent: from dwarf to giant vortices

The radial extent of vortices can be an important parameter for
disk evolution and planet formation scenarios. Indeed, the more
extended a vortex is, the larger its gas mass, the stronger the
disk/vortex interaction, and the higher the number of captured
particles. The local increase of the densities of gas and solid par-
ticles can make collisional growth and gravitational instabilities
easier. Setting realistic boundaries on this quantity is thus re-
quired in order to constrain such possibilities.
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Fig. 6. Distribution of the vortex parameters in our sample of simulated
vortices. From top to bottom: the Rossby number Ro, the radial extent
ratio χr, and the azimuthal aspect ratio χθ. In each case the number of
vortices we get for a given value of the parameter is plotted.

A vortex in a sheared flow is commonly characterized by its
radial extent ∆r, which roughly scales in Keplerian disks as the
vertical scale height at the vortex position, H0(r0). In our sam-
ple, ∆r ranges from 0.33H0 to 2.5H0, but additional simulations
have shown that vortices as small as ∆r = 0.1H0 can also sur-
vive many hundreds of rotations. These tiny vortices can form
by RWI if the initial bump is narrow enough, or by other insta-
bilities like the baroclinic instability.

In Fig. 7 are reported the vorticity and density associated
with very small vortices obtained by the numerical relaxation of
initially Gaussian vortices (of course numerical resolution has
been adapted to the vortex size). The vorticity, plotted in terms
of the Rossby Number (top panel), is as small as Ro = −0.05;
it spreads over a very small radial extent (∆r < H0/10) around
the core and nearly vanishes elsewhere. The density map (lower
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herent vorticity (Rossby number) of the flow inside the vortex. Bottom:
the density, relative to the disk, shows the nearly Gaussian vortex core
associated with spiral waves.

panel) displays differently to the vorticity with a bigger core and
two long spiral arms; the density perturbation is at a very low
level with only 3 × 10−3 the disk density.

It is striking that such small vortices, associated with such
weak density perturbations, can keep a coherent structure for
very long durations. Their lifetime is found longer than 500 ro-
tation periods and can reach the limits imposed by numerical
viscosity. Such properties were never pointed out for isolated
vortices and we have called them “dwarf vortices”. The exis-
tence of these vortices could also affect the evolution of small
scale turbulence as described by (Johnson & Gammie 2005;
Mamatsashvili & Chagelishvili 2007; Mamatsashvili & Rice
2009) with the possible formation of small scale persistent struc-
tures. Our model would be well suited to mimic such a situation.
Of course, we must keep in mind that the study of these tiny vor-
tices could be inappropriate in a 2D context, particularly if the
typical scales in the mid-plane are much smaller than the vertical
scales. In this case 3D studies are necessary, but this is out of the
scope of the present paper.

By contrast, larger values of ∆r are more frequently inves-
tigated. However, since a coherent vortex must keep a subsonic
structure, it is commonly thought that ∆r has to be less than H0
to avoid destruction by the background shear, e.g. Bodo et al.
(2007). At larger distances from the vortex centre, the gas parcels
no longer belong to a coherent pattern since sound waves can-
not cross the vortex in less than an orbital period. Actually, these
simple arguments do not account for the true vortex properties.

Here, our Gaussian model is used to revisit the problem since
it permits us to approximatively describe the connection between
inner regions of the vortex and background flow. First, the norm
of the gas velocity inside the vortex is required to be smaller
than the local sound speed. Then, we assume that the norm of the
velocity vector can be maximized by its azimuthal component,
which also contains the main dependance in the radial direction.
In the context of the Gaussian model, this velocity reads

v ∼ −

(
r
r0
− 1

)
H

r0Ω0χ2
r
, (37)

where we have neglected the additional term in 1/r (which is
zero in the case of an isentropic disk). From Eqs. (33) and (36),
we find that the maximum value of the velocity is reached for
|r − r0| = ∆r/

√
2 and is equal to

|vmax| ∼ r0Ω0(r0)χr |Ro|
√

2 exp(−1/2), (38)

where the exponential term comes from the Gaussian part ofH .
With the subsonic requirement, |vmax| < cs, we find the max-

imum value of the radial extent ratio

χr < χ
max
r =

H0(r0)
r0

1
|Ro|

exp(1/2)
√

2
∼

H0(r0)
r0

1
|Ro|

, (39)

which is a function of the Rossby number. In the limit of very
strong vortices (Ro ∼ −1), we find again that ∆max

r ∼ H0(r0). For
the typical vortices of our sample we obtain Ro ∼ −0.12, and
we get ∆max

r ∼ 8.3H0(r0), a much larger value than commonly
thought.

A large vortex also corresponds to a strong enhancement
of the surface density, which can be estimated with Eqs. (36)
and (31) of the Gaussian model; this over-density writes in the
form

σ∗ =

2(γ − 1)
r2

0 |Ro| χ2
r

H2
0(r0)

1 +
1

χ2
θ(Ro + 1 + βΩ/2)

−11/(γ−1)

.

(40)

We have tested numerically the existence of such vortices start-
ing from a vortex solution with (Ro, χr, χθ) = (−0.2, 0.19, 4.5)
in a disk with H0(r0)/r0 = 0.06. This initial approximate so-
lution rapidly stabilizes into a giant vortex whose radial size is
3 H0(r0), in agreement with the maximum value χmax

r ∼ 0.3 asso-
ciated with this Rossby number. Figure 8 presents the simulated
vortex after 65 rotations around the star; the upper panel shows
the density map relative to the background, σ/σ0(r) − 1. This
vortex corresponds to a strong density bump, with a maximum
of about 4.5 that can survive many hundreds of rotation periods.

Thus, we have found a new class of very large vortices as-
sociated with very strong perturbations of the density and the
pressure. They survive as stable structures in the disk and stay
in a quasi-steady equilibrium for a large number of rotation pe-
riods. This is a new result that deserves a more detailed study.

It is interesting to note that, inputing the above vortex pa-
rameters, Eq. (40) provides a density enhancement σ∗ − 1 = 4.4
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Fig. 8. Structure of a giant vortex obtained with the parameters
(Ro, χr, χθ) = (−0.2, 0.19, 4.5). Top: density inside the vortex; the max-
imum value in the vortex centre is more than 4 times higher than in the
disk. Bottom: mach number inside the vortex (see text). Ma < 0.5 in
the core, but is of the order of ∼0.8 near the shocked region of the right
spiral arm. The streamlines show the anticyclonic motion.

very similar to the one measured in the simulation. This indi-
cates that the Gaussian model can provide a suitable vortex so-
lution of the non-linear quasi-steady equations, even in the case
of very strong perturbations. This was not possible with Kida
and GNG models.

The lower part of Fig. 8 shows the magnitude of the velocity
relative to the background flow and compared to the local sound
speed. We have plotted this Mach number defined as

Ma =
√

u2 + v2/cs, (41)

with the local adiabatic sound speed cs =
√
γP/σ. It is impor-

tant to use the local sound speed here and not the background
value cs0.

The results confirm the subsonic property of the vortex
since Ma has a typical value ∼0.5 and is everywhere under unity.
The grey streamlines indicate the vortical motion of the gas.
Owing to the compressional effects, they are not exactly closed
ellipses but rather lines spiraling outward from the vortex centre.

In the south-east direction, they tend to converge to a disconti-
nuity that characterizes a spiral shock-wave, clearly visible on
the density map. In this region, the Mach number increases to a
maximum of 0.8 near the vortex boundary.

One can observe that the Mach number already reaches the
sonic limit Ma ∼ 1, even if the radial extent of the vortex
(χr = 0.19) is significantly smaller than the limit (χmax

r = 0.3).
Indeed, the radial velocity is strongly perturbed in the spiral arms
and, particularly, close to the vortex border; this contributes to
locally increase the Mach number. Nevertheless, the criterion
defined in Eq. (39), which is only based on azimuthal velocity
perturbations, empirically provides a satisfying condition for the
existence and survival of giant vortices in protoplanetary disks.

5.2. Vorticity and aspect ratio: from weak to strong vortices

The function Ro(r, θ) defined in Eq. (27) quantifies the rotating
strength of a vortex. From the Gaussian structure of the velocity
field, we can expect Ro to be a bump function. However, in this
paper, we will avoid too complex developments and Ro will be
approximated by a negative top-hat function centred on the vor-
tex core and with an amplitude chosen as the minimum value of
Ro(r, θ). We will refer to this constant as the Rossby number of
the vortex.

In the vortex library, this Rossby number reaches values that
range from −0.33 for the strongest vortex to −0.07 for the weak-
est. In terms of vorticity, this corresponds to the background
vorticity scaled by a factor of −1.3 to −0.3, respectively. As a
consequence, we find that the total vorticity at the vortex cen-
tre, 2Ω0(r0) (Ro + 1 + βΩ/2), may reach inappropriate negative
values. This occurs for Ro ≤ −0.25 and results from the as-
sumptions made while constructing the Gaussian model, particu-
larly when neglecting u∂θu in front of the other terms. Thus, this
Gaussian model provides suitable vortex solutions for the weak
vorticities (i.e. −0.2 < Ro < 0) for which 2Ω0Ro ∼ r−1∂r(rv).

On the other hand, for stronger vorticities (Ro ≤ −0.25),
the model discards from the exact vortex solution, but still pro-
vides appropriate initial conditions for numerical simulations.
The quasi-steady vortices resulting from these simulations have
strong vorticities and also other quantities that slightly differ
from the initial values; only the radial velocity is found to change
a lot from the initial condition. In the library, a number of vor-
tices were produced with −0.75 < Ro < −0.25.

Now, since the actual dependance of Ro could have conse-
quences on the structure and evolution of the vortices, it is im-
portant to examine the limitations of the top-hat approximation.
Figure 9 shows the comparison of two radial profiles taken at the
vortex centre, obtained for a same radial extent χr = 0.09, but
for different values of the Rossby number, namely Ro = −0.1
(solid line) and Ro = −0.29 (dashed line). In this figure, the ra-
dial extent, between r = 7 AU and r = 8AU, is consistent with
the total Gaussian width of the vortices, 2r0χr/

√
2 ∼ 1 AU. It is

also striking that the two radial profiles have the same slopes at
the vortex border.

The differences between the two cases appear in the inner
regions, near the vortex centre. A top-hat is a good fit on 80%
of the vortex surface for Ro = −0.1, whereas it is a poor fit
for the case with Ro = −0.29. As a general trend, we also find
that the radial profile of Ro(r, θ) can be approximated by a top-
hat when the value at the vortex centre Ro >∼ −0.12, but this is
hardly possible for more negative values. The Gaussian shape
of the vorticity resulting from our model is thus a better fit to
the data than the top-hat profile produced by the GNG model.
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Fig. 9. Comparison of the radial dependance of Ro for two vortices with
χr = 0.09. The vortex with Ro = −0.1 (solid line) can easily be approx-
imated with a top-hat whereas the strongest vortex with Ro = −0.29
(dashed line) cannot be approximated in the same way.

One can expect limitations of elliptic streamline models, when
Ro <∼ −0.12.

This effect is even stronger for smaller radial extent since the
vorticity profile inside the vortex is, then, steeper (for a constant
value of Ro at the centre). In the limit of χr → 0, we get the so-
called point vortex, with a Dirac vorticity profile, of the 2D tur-
bulence (see Adams & Watkins 1995). This is consistent with the
Gaussian profiles we found in our simulations and which were
placed at the core of our model. Indeed, a Dirac profile can be
expressed as a limit of Gaussian functions

δ(x) = lim
χr→0

1
χr
√
π

exp
(
−

x2

χ2
r

)
, (42)

so for standard values of χr we retrieve the Gaussian profiles of
our model. However, further analytical developments would be
necessary to go from a useful Gaussian approximation to true
Gaussian vortex solutions. Finally, this model does not exhibit
any dependence between the radial extent χr and the Rossby
number Ro, except in the case of giant vortices, where χr is
limited by an additional subsonic condition, as discussed in
Sect. 5.1.

On the other hand, the azimuthal aspect ratio χθ is known
to decrease for increasing absolute values of the Rossby num-
ber. This was pointed out in previous models (Kida and GNG)
and was also observed in our vortex library. This property comes
out from the linearized continuity equation, after assuming that
the density (or the enthalpy) is steady at the lowest order. As
the velocity field has a linear behaviour in the vortex centre (cf.
Eq. (34)), the second order terms in r/r0 − 1 and θ − θ0 left in
the conservation of enthalpy must cancel. We have respected this
condition in the case of the GNG model, and obtained the fol-
lowing equation relating Ro to χθ, in accordance with Chavanis
(2000):

RoGNG = −
1
2
χ2
θ + 1
χθ

(χ2
θ − 1)−1/2

√
−2βΩ −

βΩ

2
· (43)

In the case of an isentropic and homogeneous background, we
also derived a similar relation between Ro and the aspect ratio χθ
for Gaussian vortices:

RoGauss =
1
2
χ2
θ + 1

χ2
θ − 1

(βΩ −
√
−2βΩ) − βΩ. (44)

The two models lead to different equations; however, they
both confirm that elongated vortices have a small vortic-
ity. When χθ → ∞, the Rossby number tends toward
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Fig. 10. Rossby number at the vortex centre, as a function of the aspect
ratio χθ for the vortices used in our sample (black circles). Different ex-
pressions relating these two quantities are shown: the GNG model (solid
line) which underestimates Ro as soon as χθ < 7, and the Gaussian
model (dashed line) which better fits the data for 2 < χθ < 20. We note
the logarithmic scale for χθ.

−
(
βΩ +

√
−2βΩ

)
/2 which is approximately −0.1 for βΩ = −3/2.

Interestingly, both models converge to the same asymptotic
value corresponding to the smallest vorticity required for the ex-
istence of elongated vortices. This conclusion appears consistent
with the building up of the vortex library, since we were not able
to obtain stable numerical solutions for Ro > −0.07. In this case,
vortices are sheared away in a nearly axisymmetric ring. This nu-
merical value is also in rough agreement, within 30%, with the
∼−0.1 analytical value.

In Fig. 10, we compared the correlation bewteen the Rossby
number Ro (measured at the vortex centre) and χθ of the vortex
library, with the relations derived from the GNG model RoGNG,
and from the Gaussian model RoGauss. We note, however, that
we have included a shift of 10% in the values of χθ, to better fit
the data. This shift is probably due to errors in the measurement
of the aspect ratios on the numerical data. The best agreement
between the analytical relations and the numerical data is in the
case of elongated vortices (χθ > 7), as expected. For smaller
aspect ratios, however, the Gaussian model is the most accurate
since the deviation in the determination of the Rossby number
can reach 50% when χθ < 4 for the GNG model. This discrep-
ancy arises from the failure of the top-hat approximation in the
GNG model.

Surprisingly, the relation derived from the Gaussian model
quite nicely fits the numerical data even for χθ as small as 2.5
and for Ro < −0.25, which is beyond the limit of validity of our
model. This suggests that some analytical improvements of the
Gaussian model could be possible providing a larger accessible
domain for the parameters.

5.3. Two parameters to initiate numerical vortex solutions

Following the above model, three parameters (Ro, χr, χθ) are
necessary to define a Gaussian vortex and start the numerical
simulations. However, as the Rossby number also depends on
the azimuthal aspect ratio (see Eq. (43) or (44)), only two pa-
rameters are sufficient. In practice, we have chosen the radial
extent χr and the Rossby number Ro, while the azimuthal aspect
ratio is derived by inverting Eq. (44):

χθ =

Ro + βΩ +
(
βΩ −

√
−2βΩ

)
/2

Ro + βΩ −
(
βΩ −

√
−2βΩ

)
/2


1/2

· (45)
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From the vortex library we observed that χθ approximately
scales as

√
χr, an empirical relation that enables us (i) to ad-

just relation Eq. (45); (ii) to get a better fit of the data, and (iii)
to provide more appropriate initial conditions for the numerical
simulations. This property is likely due to the contribution of
higher order terms in the present model, which could be justified
in a future more elaborate model.

5.4. Identifing two families of vortices

The study of the correlation between the Rossby number and
the aspect ratio (see Sect. 5.2), has shown that the GNG model,
based on closed streamlines and constant vorticity, can be a
suitable model for elongated vortices with χθ >∼ 7. On the
other hand, for less elongated vortices (χθ <∼ 7) the Gaussian
model is more accurate and produces better predictions than the
GNG model.

This can be raised as a criterion on the space of the param-
eters and help to identify two families of vortices following the
importance of compressibility:

– incompressible vortices, for which Ro > −0.15 and χθ > 7
(closed streamlines with elliptical shape) ,

– compressible vortices, for which Ro < −0.15 and χθ < 7
(open streamlines spiraling outward from the core).

They have been identified in the vortex library by checking that
∇ · V is increasing for decreasing χθ. The transition between
the two families is also smooth since Ro and χθ are continuous
parameters.

Figure 11 illustrates the two classes of vortices: the
top panel shows the relative density and streamlines of
a vortex of the incompressible family with parameters
(Ro, χr, χθ) = (−0.10, 0.10, 12); the bottom panel shows a vor-
tex of the compressible family with parameters (Ro, χr, χθ) =
(−0.33, 0.08, 3.2). Incompressible vortices have elongated struc-
tures with an amplitude of the density and pressure much larger
than for compressible ones. At the vortex centre, they show a
nearly axial symmetry with respect to the azimuthal and radial
axes. On the contrary, compressible vortices are characterized by
a peanut-shaped density structure, with some central symmetry
to the vortex centre.

In the incompressible family the streamlines are closed with
an anticyclonic motion of the gas around the vortex centre.
Such vortices gently bend the background flow, which is sig-
nificantly perturbed up to 4 scale heights from the centre (here
H0(Ro) ∼ 0.45 AU). In the compressible case, the streamlines do
not loop but rather spiral out from the vortex centre. The global
flow around the vortex is broken, and spiral waves as well as
shock waves are excited directly from the vortex core. This is
the reason for the peanut shape of the vortex, with two outgoing
waves on the north-east and the south-west, and two incoming
shock waves on the south-east and the north-west.

In Fig. 12, shadowing plots highlight the structure of these
vortices and their associated spiral waves. In the incompressible
case (top), the vortex is embedded in an annular bump centred
on the corotation region (a residual of the initial conditions) and
is also associated with tiny spiral waves whose amplitude is less
than 5% of the vortex one. In the compressible case (bottom), the
vortex core splits in a cross-like feature and connects with spi-
ral waves. This 3D visualization of the density map more clearly
shows that the amplitude of these density waves can reach up to
20% that of the vortex. To the south, we can see a secondary vor-
tex which is much smaller than the primary one and associated

Radius [AU]

A
zi
m
u
th

 

 

5 6 7 8 9 10
0

1

2

3

4

5

6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Incompressible family

Radius [AU]

A
zi
m
u
th

 

 

5 6 7 8 9 10
3

3.5

4

4.5

5

5.5

6

−0.2

0

0.2

0.4

0.6

Compressible family

Fig. 11. The two vortex families. Top: relative density and streamlines
of a vortex of the incompressible family. We note the closed structure
of the streamlines in the vortex. Bottom: relative density and stream-
lines of a vortex of the compressible family. The streamlines are now
open curves spiraling from the vortex centre. In the core, the density
shows a peculiar structure, with a peanut shape. Such vortices are also
characterized by exciting strong spiral waves and possibly shocks. The
compressible vortex has a Rossby number ∼3 larger than the incom-
pressible while its amplitude is smaller by a factor of ∼2/3.

with spiral waves of the same amplitude as the core. However,
this is a transient situation since, after ten rotations, this sec-
ondary vortex will merge with the primary.

The emission of compressional waves that brakes the flow
around the vortex is thus the turning point between the families,
and is closely related to the Rossby number. The amplitude of
these waves can reach a significant fraction of the amplitude of
the central bump (of density or velocity). Thus, the most relevant
way to sort vortices is not the amplitude of the central density
bump, but rather the vorticity or Rossby number which quantifies
the strength of vortices.

Finally, the global evolution of the vortices in the disk
and particularly their migration will be different depending on
whether the vortices are compressible or not. This is in relation
with the strength of the waves emitted by the vortices and will
be studied in the second paper.

A100, page 12 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424663&pdf_id=11


C. Surville and P. Barge: Quasi-steady vortices in protoplanetary disks. I.

6

8

10

0
2

4
6

0

0.5

1

D
en
si
ty

Azimuth
R
ad
iu
s
[A
U
]

−0.2

0

0.2

0.4

0.6

0.8

6

8

10

0
2

4
6

0

0.5

1

D
en
si
ty

Azimutuu h
R
ad
i

aa
us

[A
U
]

U

−0.2

0

0.2

0.4

0.6

0.8

Incompressible family

6

8

10

0
2

4
6

0

0.5

1

D
en
si
ty

Azimuth

R
ad
iu
s
[A
U
]

−0.2

0

0.2

0.4

0.6

6

8

10

0
2

4
6

0

0.5

1

D
en
si
ty

Azimutuu h

R
ad
i

aa
us

[A
U
]

U

−0.2

0

0.2

0.4

0.6

Compressible family

Fig. 12. Density map of the two vortex families in a shadowing depic-
tion that brings out the small scale structures. Top: incompressible vor-
tex with an amplitude 90% larger than the background density; some
weak spiral waves are excited by the vortex. Bottom: compressible vor-
tex with an amplitude about 60% larger than the background value; two
spiral waves are excited, with a density perturbation nearly equal to half
the amplitude of the vortex.

6. Discussion and conclusions

A detailed study of the role of vortices in the evolution of solid
particles (see Chavanis 2000; Chang & Oishi 2010) or in the
transport of angular momentum in disks (Paardekooper et al.
2010; Johnson & Gammie 2005) requires a better understanding
of their structure and evolution. This paper addresses the prob-
lem by studying the possible shape and strength of the vortices.
Two-dimensional vortices can be produced by various instabil-
ities like RWI and most of them can reach a quasi-steady state
in the disk flow. However, numerically produced Rossby vor-
tices only cover a limited domain of the vortex-solution space.
Indeed, the accessible range of the parameters is often biased
by the choice of unstable initial conditions. This is the reason
for using vortex models since they permit a broader space of the
parameters to explored.

The linear vortex model derived by GNG is widely used
in analytical studies of the stability and evolution of vortices.
However, it is not well adapted to the comparisons with simu-
lated vortices, mainly owing to the discontinuities produced in
the velocity field and the density map. On the other hand, our
model derived from a Gaussian pseudo-enthalpy H function, is
more general and accurate than the GNG model; it more closely
fits the numerical vortex solutions than the GNG model and of-
fers the possibility of exploring new vortex solutions of Euler’s
equations.

6.1. A convenient model for numerical studies

The Gaussian model developed in this paper can provide suit-
able initial conditions for the numerical simulation of vortices in
Keplerian disks. Choosing a triplet of parameters (Ro, χr, χθ),
in agreement with the prescriptions given in Sect. 5.3, one is
able to derive continuous maps for velocity, density, and pres-
sure. The numerical readjustment of this approximate vortex so-
lution takes place gently and disk perturbations relax in a few
rotation periods; finally, the readjusted vortex have parameters
quite similar to the initial triplet. On the other hand, starting
from a GNG vortex a soft evolution is impossible because of
the discontinuities of the variables inherent to the incomplete-
ness of the model; moreover, in practice, the numerical scheme
of the code used might not be sufficiently accurate to manage
such discontinuities.

The new model we developed makes possible the creation of
libraries of vortex solutions for a larger number of parameters
than in previous studies and also the identification of two pos-
sible families. Further, it can help to plan statistical studies for
dust capture or to mimic the end result of a turbulent disk evo-
lution. Thus it can be a very useful tool for numerical studies in
this context.

6.2. A vorticity threshold

Another advantage of the Gaussian model is to make analyti-
cal approaches of the problem easier. For example, in Sect. 4
we used a quasi-linear approximation that sheds light on the re-
lations between the various vortex parameters and particularly
between the elongation χθ and the vorticity of the core (Ro). A
similar relation was found by GNG but in a less general context.
This approach is important to clarify the link between the mor-
phology of quasi-steady vortices and their stability in Keplerian
flows. Vortices issued from the analytical model and from the
numerical library clearly show strong similarities, mainly when
their aspect ratio is larger than 7.

From the models we also deduce that a minimum vorticity
(Ro <∼ −0.1) is required to get stable vortices. This limitation is
consistent with the existence of a threshold for the development
of the RWI, as was suggested by Lovelace et al. (1999). Indeed,
if the initial axisymmetric condition of the RWI does not have
enough vorticity, i.e. Ro >∼ −0.1, it will not be possible for vor-
tices with Ro < −0.1 to form. However, a more detailed study is
necessary to confirm this point, which is beyond the scope of the
present paper.

6.3. Giant vortices

The other main result discussed in Sect. 5.1 is the possible ex-
istence of giant vortices whose radial size is significantly larger
than the mean scale height of the disk. With a simple subsonic
condition we derived a maximum value for the vortex radial ex-
tent and found that it depends on the relative Rossby number Ro.
Here, we quickly explore the main properties of giant vortices
produced with our numerical method and discuss their possible
impact on disk evolution and planetary formation.

6.3.1. Main properties

We have formed giant vortices through the numerical re-
adjustment of Gaussian vortex-solutions initially located at r0 =
7.5 AU from the star and in a disk with σ0(r0) = 83 g cm−2.
These vortices have a radial size that ranges from 1 to 3 H0;
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Table 1. Main properties of the giant vortices produced in our nu-
merical simulations and their associated Toomre parameters (values are
compared to the background values).

(Ro, χr, χθ) TMax/T0 σMax/σ0 Vortex mass Q/Q0

(−0.13, 0.061, 6.2) 1.04 1.25 1.70 M⊕ 0.84
(−0.15, 0.123, 6.8) 1.17 2.26 27.7 M⊕ 0.52
(−0.15, 0.150, 6.9) 1.26 3.16 64.5 M⊕ 0.39
(−0.15, 0.190, 6.7) 1.39 5.15 170 M⊕ 0.27

Notes. The vortex mass is the mass of gas contained at half maximum.

their main properties (shape, temperature, and density at the cen-
tre, total-mass estimate) are presented in Table 1. It is noticeable
that each quantity reported in the table increases with the radial
extent of the vortices. For the largest of them, the density at the
centre can reach 415% of the background density (at the vortex
orbit).

Of course, this rises the problem of their possible existence
in actual disks. It is, however, striking to see that such strong per-
turbations of the disk can keep a coherent structure and rapidly
stabilize without drastically changing the basic flow. This robust-
ness of vortex solutions in Keplerian flows must be emphasized,
even if the formation and persistence of giant vortices in proto-
planetary disks remains to be clarified. Successive merging of
vortices (in a 2D flow) or baroclinic amplification (see Raettig
et al. 2013) could be invoked as a possible formation mech-
anism; however, this question has to be addressed in a deeper
study. We want to stress that the increase of the temperature in
the core of these vortices is observed in adiabatic disks but not
in locally isothermal disks; this is in agreement with Eq. (30).

These vortices are also big mass reservoirs which contain
from 1 to 200 Earth masses, a mass range that also depends on
the surface density of the disk and on the vortex position with re-
spect to the star. Because of the local density enhancement, these
vortices are favorable places for the gravitational instability and
for planet growth. A simple way to quantify the occurrence of
the gravitational instability is to use the Toomre parameter,

Q =
cs0(r)Ω0(r)
πGσ0(r)

√
P∗

σ∗
= Q0

√
P∗

σ∗
, (46)

where P = P0(r)P∗ and σ = σ0(r)σ∗ like in the Gaussian model.
As an example, at the vortex orbit and for an unperturbed disk,
we get Q0 = Q(r0) ∼ 40, which obviously depends on r0, on the
disk scale height, and on the disk-to-star mass ratio. The values
of the Toomre parameter at the centre of the vortex and for vari-
ous giant vortices are reported in the last column of Table 1. We
found that the larger the vortex, the smaller the Toomre parame-
ter; however, the collapse condition (i.e. Q . 2) can be reached
only for very large vortices (with a reduction factor Q/Q0 ∼ 1/4)
orbiting in regions of the disk where Q0 . 8.

An analytical estimate of the Toomre parameter can be ob-
tained with the Gaussian model and the vortex over-density in
Eq. (40). It is plotted as a function of the radial extent of the vor-
tices in Fig. 13 in which are also considered the vortex strength
(Ro) and the gas properties (adiabatic or isothermal). For typ-
ical vortices with χr ∼ χmax

r /4, the Toomre parameter is only
reduced by a factor of 1/3. This is not a sufficient reduction to
reach the collapse condition when Q0 ∼ 40. Stronger reductions
are possible either for fast cooling disks (nearly isothermal case)
or extremely large vortices (χr ∼ χmax

r ). One can remark that
smaller Ro values lead to higher reduction, since the maximum
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Fig. 13. Reduction factor N of the Toomre parameter as Q = Q0/N, as
a function of the radial extent of the vortex, for different values of the
Rossby number and in the case of an isothermal disk, α = 1 (red curves)
or an adiabatic disk, α = γ (black curves). The radial extent χr is scaled
to the maximal size χmax

r ∼ [H0(r0)/r0] /|Ro| .

radial extent χmax
r increases in these cases. As a conclusion, gi-

ant vortices could contribute to planet formation thanks to their
high mass, and their possible collapse when orbiting in a moder-
ate Q0 region. Deeper study of these questions is planned in an
upcoming publication.

6.3.2. Consequences on the disk structure

Our numerical simulations show that the presence of a giant vor-
tex in a Keplerian flow does not drastically change the global
evolution of the disk. However, the possible large density and
pressure perturbations associated with giant vortices may change
the local disk scale height. In Fig. 14 we plot the change of the
disk scale height relative to the background value H0(r) for three
examples of vortices presented in the above sections.

First, we confirm that inside the vortex, the modification of
the local H is only a small fraction of the background H0(r).
Even for the giant vortex shown in Fig. 8 (left), the scale height
at the centre is only 30% larger than H0. It is a small effect when
we consider the density and pressure at the vortex centre, which
are more than 400% larger than the disk background values. In
the other cases, the changes are less than 15%.

Following the Gaussian vortex model, one can write

H = H0(r)

√
P∗

σ∗
, (47)

and in the adiabatic case one has P∗ = σ∗γ. Thus, even if the
density in the centre is 4 times larger than the in background
(σ∗ = 5), one obtains H ∼ 1.38 H0 in agreement with the nu-
merical results. The effect of a giant vortex on the scale height
would be even smaller in a radiative disk, and in the limit of an
isothermal disk (P∗ = σ∗), no change at all would be noticed.

A second consequence is the formation of a ring outside the
vortex orbit in which the scale height H is approximately 40%
larger than the background value H0. This ring can be observed
in simulations performed in large enough computational disks
and is due to the heating of the gas by the periodic sweeping of
the matter by the spiral shock waves emitted from the vortex.
The stronger dissipation in the outer regions than in the inner
ones explains why the ring is mainly observed outside the vortex
orbit. We must again point out that this heating mechanism could
be weaker in a gas allowing thermal transfer than in an adiabatic
gas (as in the present simulation).
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Fig. 14. Effective scale height of the disk, relative to the local background value H0(r). a): case of the giant vortex of Fig. 8. The scale height
is 31% larger than H0(r) in the vortex centre but can reach 50% in the outer part of the spiral arm because of the shock wave. b): case of the
large incompressible vortex of Fig. 11 (top). In the centre of the vortex the scale height is 14% larger than the background value. c): case of the
compressible vortex of Fig. 11 (bottom). Even with a smaller density maximum, the scale height is about 10% larger than the background, owing
to a warmer temperature in this vortex; there is also a slight increase in the spiral waves.

Such a ring of warm gas could also be a pressure maximum
where the solid particles could be trapped, providing a signature
in the IR and millimetre wavelengths, possibly observable with
the new generation of high-resolution instruments. Indeed, the
possible existence of large scale vortices has been suggested in
a number of transitional disks to explain the observed asymmet-
rical dust features (van der Marel et al. 2013).

6.4. From two to three dimensions

Our 2D approach of the problem has permitted us to explore
possible properties of quasi-steady vortices in protoplanetary
disks. However, we wonder how these results stand in a 3D con-
text. Recent 3D numerical simulations of the RWI (Richard
et al. 2013) have shown that vortices can form and grow in
3D stratified disks. The aspect ratio of these Rossby vortices
is significantly larger than 4, so they are stable against the el-
liptical instability (Lesur & Papaloizou 2009) and can reach a
quasi-steady equilibrium. They keep a columnar structure in the
whole thickness of the disk and survive for a very large number
of rotation periods.

Thus, from the recent 3D studies we learned that the re-
sults obtained for 2D vortices are comparable only for vortices
with χθ & 4. Other results of our 2D study should be compared
to future more detailed 3D studies. For example, what are the
maximum and the minimum sizes of quasi-steady vortices? Are
they similar to what we have found in the present 2D approach?
Three-dimensional numerical simulations are certainly neces-
sary to answer these questions, but the possible generalization
of our 2D Gaussian model to a 3D model would certainly help
to explore the properties and role of vortices in 3D protoplane-
tary disks. This will be addressed in a future work.
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