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Abstract

During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a
massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in
Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL)
on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on
locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding
UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never
recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in
either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture
during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized
before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming
and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to
metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young
adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is
normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle
contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in
descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal
locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the
vestibular imbalance and the restoration of functionally-effective behavior.
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Introduction

Rhythmic movements of animals arise from coordinated

assemblies of local neuronal networks, so-called ‘‘central pattern

generators’’ (CPGs), which produce rhythmically-recurring pat-

terns of motor output [1,2] that are continuously adjusted by

sensory information [3]. Amongst such sensory cues in vertebrates,

vestibular information is particularly involved in the control of

locomotor and postural behavior [4] as well as corrective eye

movements [5].

Vestibular lesioning results in dramatic impairments of motor

functions that are progressively restored in various animal species

as well as in humans. For example, an acute ablation of vestibular

endorgans or vestibular nerve transection on one side (unilateral

labyrinthectomy, UL) causes deficits in both postural and

oculomotor reflexes (for a review, see [6]) that recover after

several weeks. Vestibular compensation, which has been proposed

to account for such functional restorations in terrestrial species (see

[7]), consists of a gradual re-equilibration of activity in the

brainstem vestibular nuclei of the two sides and implicates the use

of body proprioceptive information ascending from the spinal cord

(see [8]). However, although such compensatory plasticity has

been extensively studied in brainstem nuclei, surprisingly very little

is known about the long-term effects of a vestibular lesion on

downstream locomotor networks in the spinal cord.

During metamorphosis, Xenopus laevis undergoes a complete

restructuring of its biomechanical apparatus that is paralleled by

the progressive emergence of adult patterns of neural commands

for limb-based locomotion [9,10] through a profound reorganiza-

tion of the spinal circuitry responsible for both propulsive and

postural functions [11]. In contrast, the vestibular sensory system,

including the otic organs [12], vestibular secondary neurons and

their ipsi- and contra-lateral spinal projections, is already

established both anatomically and physiologically by the time of

metamorphosis onset [13,14]. This differential timetable therefore

provides a unique developmental situation in which motor

circuitry is undergoing de novo remodeling while one of its major

sources of sensory input remains basically unaltered.

Here, by taking advantage of the secondary, and complete,

phase of spinal development that occurs during Xenopus metamor-
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phosis [11], we investigated the impact of a UL-induced imbalance

in vestibular sensory information on the subsequent development

and functional organization of the adult locomotor networks. To

this end, both free swimming behavior and the underlying spinal

motor programs were compared in two groups of young adult

frogs subjected to UL: (i) juveniles previously lesioned in the pre-

metamorphic tadpole (at stage 54; [15]) and whose adult spinal

circuitry had therefore emerged under conditions of unbalanced

vestibular influences, and (ii) juveniles with UL performed

immediately after metamorphosis (at stage 66) and thus with

locomotor spinal circuitry that had already been established in the

presence of normal, bilaterally-symmetrical vestibular inputs. We

report that, although UL induced similar acute behavioral deficits

in the two lesioned groups, the former recovered near-normal

locomotor performance by the time metamorphosis was complet-

ed, whereas swimming in the latter remained permanently

impaired. Simulations using a 3D biomechanical model of a

labyrinthectomized animal supported by a combination of in vivo

and in vitro electrophysiology indicated that the locomotor

recovery specific to UL54 juveniles could be attributable to

asymmetric compensatory changes during metamorphic develop-

ment in the spinal lumbo-thoracic circuitry responsible for

propulsion/posture coupling. Our results thus highlight both the

capacity for effective behavioral adaptability in metamorphosing

Xenopus and the precision with which associated developmental

plasticity occurs within the underlying spinal networks.

Methods

Experiments were performed on the South African clawed toad

Xenopus laevis of either sex, bred from an in-house laboratory

colony raised at room temperature. All procedures complied with

the National Charter on Ethics of Animal Experiments of the

CNRS, and the protocol was approved by the Animal Care and

Use Committee of the University of Bordeaux (Permit number

3301100012-A). All surgery was performed under tricaine

methanesulfonate anesthesia, and attention was paid to minimiz-

ing the number of animals used in the experiments.

Animal Surgery: Unilateral Labyrinthectomy (UL)
Vestibular endorgans on the right side were surgically ablated in

both stage-54 tadpoles (UL54) just prior to the onset of the

metamorphic period and stage-66 juvenile adults (UL66) imme-

diately at the end of metamorphosis [15]. For this operation,

animals were anesthetized with tricaine methanesulfonate (0.1%

MS-222, Sigma-Aldrich) and the lesion was performed under

visual control (magnification x16) in frog artificial cerebrospinal

fluid (ACSF; in mM: 95 NaCl, 3 KCl, 30 NaHCO3, 2.5 CaCl2,

0.75 MgCl2, 0.5 NaH2PO4 and 11 C6H12O6, pH adjusted to 7.4)

at 6uC. To access the vestibular endorgans, a 2-mm rostrocaudal

incision was made in the skin over the right otic capsule and

through the underlying capsule itself with fine ophthalmic scissors

(Moria) under microscope control. All the vestibular endorgans

(utricle, saccule, semicircular canals, and ganglion of Scarpa) of

that side were carefully removed with fine forceps (see also Fig. 1A

of Lambert et al., 2013), and 2 mL of ACSF were injected into the

remaining capsule to remove residual tissue and calcium

precipitate. After recovery from anesthesia, operated animals were

placed in separate aquaria for 4 weeks to continue their

development: ,45% of lesioned stage-54 tadpoles metamor-

phosed successfully, while ,75% of the lesioned stage-66 juvenile

frogs survived and continued to mature into adulthood. The

completeness of UL conducted on stage 66 animals and the

absence of vestibular endorgan regeneration during metamorpho-

sis in UL54 juveniles was verified during the subsequent dissection

of the central nervous system for in vitro experimentation (see

below), and only animals with an unequivocally complete lesion

were kept for analysis in this study. A further group of juvenile

adults which were not subjected to the vestibular lesion served as

intact controls. The results reported in this study were collected

from 18 intact, 16 UL54 and 15 UL66 juvenile frogs (see Table 1).

Locomotion and Posture Analysis
Animals (10 intact, 10 UL54 and 10 UL66 juveniles) were

video-recorded separately for 15 min using a high speed CCD

camera (Dragonfly Express) with Fly Capture software (Point Grey

Research Inc.) at 50 frames?s21, while behaving freely in a

Plexiglas aquarium (23640 cm with 5 cm depth) containing

approximately 5 L of water. In these conditions, animals could

swim without touching any part of the tank (e.g., Figure 1A).

However, swim episode cycles were not analyzed when such

contacts eventually occurred. Video images were recorded from a

vertical view above the water tank and subsequently visualized and

Figure 1. A unilateral labyrinthectomy at pre- or post-
metamorphosis leads to distinct degrees of locomotor impair-
ment in freely-behaving juvenile frogs. A. Images of the hindlimb
extension phase (near its termination) during three consecutive cycles
of normal swimming (top) and rolling behavior (bottom) expressed by
control and unilateral labyrinthectomy (UL; red dot)-lesioned stage 66
Xenopus. Each cycle consisted of alternate limb flexions (F) and
extensions (E). UL-induced rolling behavior consisted of a semi-
complete rotation of the animal around its longitudinal body axis
during each hindlimb extension. B–D. Swimming behavior of intact
control animals (n = 6) before and after metamorphosis (B), and acute
and chronic effects of a right-side UL performed at stage 54 before
(n = 9, UL54, C) or at stage 66 after (n = 12, UL66, D) metamorphosis.
Histograms show the percentage of swim cycles in which normal
rectilinear (unfilled), circling (light grey) or rolling (dark grey) trajectories
were expressed in each animal group. Error bars indicate SEM.
doi:10.1371/journal.pone.0071013.g001
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analyzed on a computer with free Image J software (W.S. Rasband,

US National Institutes of Health, http://rsb.info.nih.gov/ij/). In a

first step, an animal’s locomotor behavior was classified globally as

‘normal’, ‘circling’ or ‘rolling’ according to its manner of

displacement during swimming (Figure 1). In ‘normal’ swimming,

an animal maintained its dorsal side upward with a stable body

orientation, whereas ‘rolling’ was characterized by continuous

body rotations around the longitudinal axis toward the lesioned

side, due to the animal’s inability to maintain horizontal

equilibrium. In ‘circling’ behavior, the frog also turned continu-

ously in an ipsilesional direction, but now in the horizontal plane.

The number of locomotor cycles contributing to each of these

three trajectory types was then counted. In a second step

(Figure 2B–D), using a manual tracking plug-in supplied by F.P.

Cordelières (Institut Curie, France), the x and y coordinates of the

hindlimb joints were determined visually by mouse-clicking on

individual video frames. Joint angles were calculated with Excel

(Microsoft) in both static (stationary) and dynamic (spontaneous

displacement; e.g., Figure 2B,C) behavioral conditions. Static

posture was assessed by measuring the angles of each of the three

main joints (hip, knee, ankle) of both hindlimbs, as well as the body

axis angle taken from three points located respectively at the

midpoint between the eyes, at mid-trunk, and at the sacrum (for

example, intact animals present a back angle of ,180u,
corresponding to a near linear body axis). In addition, frontal

images were used to determine the degree of body twist in static

UL animals, measured as the angle between a first line passing

through the two eyes and a second line adjoining the knees (for

example, see angle d in Figure 2A). Unfortunately, it was

technically impossible to track this angle during actual swimming.

In order to facilitate comparisons between animals, locomotor

kinematic analyses were performed exclusively on episodes of

straight-forward (rectilinear) swimming in normal (intact) and

rolling animals, which thereby minimized the variability associated

with any intentional turning behavior, as noted previously for

intact juvenile frogs [11]. Episodes of circling behavior were

excluded from the analysis since it was virtually impossible to

distinguish between self- and lesion-induced movements. For

rectilinear swimming kinematics, the delay to maximal joint

opening for the two hindlimbs was measured from the rectified

joint angular variations (e.g., Figure 2C for the left leg) and plotted

against the time to maximal ankle angular variation, which usually

occurred near mid-cycle (Figure 2C,D). Mean values calculated

from the different animal groups (Table 2) were compared with

one-way ANOVA and Tukey post-test using SigmaPlot 11 software

(Systat Software Inc.) and mean values were considered signifi-

cantly different at p,0.05.

Electromyographic Recordings from Freely Behaving
Juvenile Xenopus

Electromyographic (EMG) activity of dorsal trunk and hind leg

muscles was recorded using pairs of 50 mm insulated wire

electrodes, implanted under light anesthesia after a small incision

had been made in the overlying skin. Simultaneous EMG

recordings were made bilaterally from the third myomere of the

postural back muscle dorsalis trunci [16] and the ankle extensor

plantaris longus [17,18] in 6 intact, 4 UL54 and 3 UL66 animals

during free swimming. The electrodes were connected through a

grounded cable to a differential ‘Model 1700’ AC amplifier (AM-

System Inc.) and signals were digitized at 5 kHz through a CED

Micro 1401 interface (Cambridge Electronic Design) and stored

on computer for later analysis. As for the kinematic analyses, only

EMG signals recorded during forward rectilinear swimming were

analyzed [11].

Isolated Brainstem/Spinal Cord Preparation for
Extracellular Recordings

Dissection and electrophysiological recording procedures were

similar to those described previously [11]. Briefly, at the end of

metamorphosis (8 UL54 and 12 intact juveniles) or at week four

thereafter (8 UL66 frogs), the dorsal cranial skin and cartilage was

opened under deep anesthesia with tricaine methanesulfonate

(MS-222) and the forebrain rapidly removed above the rhomb-

encephalon. The spinal cord and brainstem were then dissected

out together with the thoracic ventral roots and identified nerve

branches that innervate the flexor tibialis anterioris and the extensor

plantaris longus muscles of both hindlimbs (e.g., Figure 3). It is

noteworthy here that the presence of the brainstem in juvenile frog

in vitro preparations is necessary for the spontaneous production of

locomotor-related output from the spinal cord [9,11]. Presumably,

the brainstem of the isolated Xenopus CNS is able to provide

sufficient tonic signals for spinal motor network activation that in

other classical vertebrate preparations usually require supplement-

ing by exogenous pharmacological stimulation (for a review, [19]).

The isolated brainstem/spinal cord preparation was then

transferred into a recording chamber and submerged in oxygen-

ated frog ACSF at 18–20uC. Extracellular suction electrodes were

used to record motor activity from the left and right thoracic

ventral roots, while Vaseline-insulated wire electrodes were used to

record en passant from the distal ends of the bilateral hindlimb

extensor and flexor motor nerve branches. Ventral root and nerve

signals were amplified with differential AC amplifiers Model 1700

(AM-System), then were directed at 7 kHz to a computer through

a CED Micro 1401 interface for storage and later analysis using

Spike2 software (CED). All spinal motor output patterns, including

those related to swimming, occurred spontaneously without

additional mechanical, chemical or electrical stimulation.

Electrophysiological Data Analysis and Statistics
All analyses of electrophysiological recordings were performed

with homemade scripts running under Spike2 software (script

language, CED). Only rectilinear real or fictive swimming

episodes, defined by the synchronous onsets of hindlimb extensor

activity alternating with synchronous flexor muscle or motor nerve

bursts [11], were analyzed. Motor burst onsets were detected on

the raw traces, and data were then transferred to Oriana software

(Kovach Computing Services) for circular phase analysis of the

temporal relationship between activities in selected pairs of

muscles (for in vivo recordings) or ventral roots and limb nerves

(in vitro recordings). This analysis gave the mean vector m in

degrees (u) and its length r. Two uniformity tests were used to

Table 1. Numbers of juvenile frogs analyzed in different
experiments.

Kin EMG ENG Multi Total

Intact 4 2 4 8 18

UL54 7 0 5 4 16

UL66 6 0 5 4 15

Distribution of experimental animals. Kin: kinematic analysis during free
swimming; EMG: electromyographic recordings during free swimming; ENG:
electroneurographic recordings during in vitro fictive swimming; Multi:
combination of tests.
doi:10.1371/journal.pone.0071013.t001
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examine the distribution of phase values: the Rayleigh’s test (Z),

which tested the null hypothesis that the data were uniform, i.e.,

randomly distributed throughout 360u, and the V-test (u), which

tested the null hypothesis of uniformity against the alternative of a

non-uniform distribution with a specified mean direction (0u or

180u corresponding to strict synchrony or alternation, respectively,

and denoted by u(0u) or u(180u) in the data analysis). Phase values

were plotted as the grand mean of the individual means of relative

burst onsets per animal. Hindlimb locomotor burst periods and

durations were also measured during ‘rectilinear’ fictive swimming

in all three groups of animals and compared with one-way

ANOVA and Tukey’s post-test. The results of all statistical tests

are collated in Tables 3, 4, 5.

Biomechanical Simulations of Lesioned Animals and
Swimming Behavior

Two simulations using a simple model of a UL juvenile frog

were developed to evaluate the influence of postural back muscle

activation on the animal’s posture and during swimming behavior

(Figures 4 and 5). The first simulation used a 3D finite element

(FE) model (see [20] for another application of the FE method in

frog swimming) to investigate the influence of a symmetrical versus

asymmetrical back muscle activation on the general body shape of

a juvenile frog displaying the trunk twisting typically associated

with UL-induced skeletal deformation [21]. The values of the final

longitudinal body torsion obtained from this first simulation were

then implemented into a second simulation, based on rigid body

Figure 2. Unilateral labyrinthectomy does not affect hindlimb intersegmental coordination during swimming. A. Both UL54 and UL66
juvenile frogs showed a strong caudo-rostral body twisting towards the lesioned side, which was measured as the angle d (black arc) between the
eye (pink line) and knee (orange line) axes. B. Colored markers placed on the three main joints of both hindlimbs and on the back along the axis
(upper schematic) enabled bilateral angular variations of the hip, knee and ankle to be measured (lower schematic). Each angular variation was then
rectified and plotted against time (traces at extreme right) to allow delay measurements. Color code: blue, left hindlimb, purple, right hindlimb. C:
Detail of ankle, knee and hip angular variations on the left side over two consecutive cycles. The knee-ankle delay (d) and hip-ankle delay (d’) were
then calculated between maximal angular values (corresponding to the maximal joint aperture) for each cycle, and for both hindlimbs. o: open joint;
c: closed joint. D. Knee and hip movement delays relative to maximal ankle excursion expressed as a percentage of cycle duration. No significant
differences were found between control (unfilled) and UL54 (shaded) or UL66 (filled) juveniles. Error bars indicate SEM.
doi:10.1371/journal.pone.0071013.g002

Table 2. Unilateral labyrinthectomy-induced alterations in static posture of juvenile Xenopus.

angles (6) Back R hip L hip R knee L knee R ankle L ankle

Group intact [6] 18461 9862 9762 7662 7962 8363 8062

UL54 [5] 14862 73620 10364 5969 69612 7066 72617

UL66 [6] 17364 8664 10268 8469 83613 83610 87614

ANOVA: p value (power) ,0.001 ,0.05 0.63 (0.05) 0.12 (0.27) 0.5 (0.05) 0.27 (0.11) 0.29 (0.01)

Tukey’s intact vs UL54 *** * – – – – –

post-test intact vs UL66 ns ns – – – – –

UL54 vs UL66 ** ns – – – – –

Back and limb joint angles on the left (L) and right (R) sides were measured in stationary intact and lesioned juveniles. The number of animals in each group is indicated
in parentheses. A unilateral labyrinthectomy performed before metamorphosis caused larger subsequent alterations in static posture than a post-metamorphic UL. Note
that large individual variations among the UL54 group for the R hip angle (indicated by high SEM value compared to the two other groups) were responsible for the low
ANOVA power (given in parentheses for non-significant ANOVA tests). The number of animals in each group is indicated in brackets. ns: non-significant;
***p,0.001;
**p,0.01;
*p,0.05.
doi:10.1371/journal.pone.0071013.t002
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equations of motion, in order to test the effects of body shape on

swimming kinematics.

Using Simulia Abaqus 6.10 software (Dassault), a simplified

representation of a posturally-twisted UL juvenile frog was created

as a geometrical shape comprising 14800 tetraedric elements

(based on average Xenopus trunk dimensions at ,2 months post-

metamorphosis: length = 15 mm, width = 10 mm and

height = 7 mm; see Figure 4). The 3D model (Figure 4B–D)

consisted of two rigid components, representing the animal’s

relatively non-deformable shoulder and hip bony regions, embed-

ded within the simplified representation of the twisted body format

resulting from UL. The actual angle formed by 2 lines transecting

the eyes and in turn the two knees was measured to estimate the

mean twisting deformation along the body axis caused by UL in

both UL54 and UL66 juvenile groups. Based on these physiolog-

ical measures (e.g., Figure 2A), a 37u longitudinal torsion was

applied between the model’s front and rear components in such a

way that the global shape corresponded to the average postural

bending towards the lesioned side observed in UL animals

(Figure 4B). The internal interconnection between the two rigid

components was modeled as isotropic linear elastic material, the

stiffness of which was arbitrarily set to 0.04 GPa (corresponding to

a flexible rubber with a compliance that is classically used to

approximate that of animal tissue). Postural back muscles were

incorporated into the model as two linear force-producing

actuators traversing the length of the animal. As a realistic

anatomical representation [16], these actuators were inserted on

each side of the midline and attached to the anterior and posterior

rigid components (see Figure 4C). Consistent with in vivo

electromyographic swimming data, the force profile consisted of

a 0.25 s linear ramp from 0 to 10 N followed by a further 0.25 s at

a constant 10 N. Different patterns of postural muscle activation

Figure 3. Neither pre- nor post-metamorphic UL alters hindlimb motor burst coordination in vitro. Sample recordings from left (L) and
right (R) hindlimb extensor (ext) and flexor (flex) motor nerves during fictive rectilinear swimming in isolated brainstem/spinal cord preparations from
intact (A), UL54 (B) and UL66 (C) juveniles. Schematic at left indicates recording electrode positions. The circular plots below each raw recording
panel illustrate the corresponding phase relationships of locomotor-related activity in bilateral flexor (LR flex), extensor (LR ext) and ipsilateral left and
right flexor/extensor activity (L flex/ext and R flex/ext, respectively). Measurements were pooled for each group. Individual dots represent the mean
activity phase value for one animal, while the direction and length of each vector indicate respectively that population’s grand mean phase value and
the concentration of individual phase values around that mean. An upward (vertical) projecting vector (0u) indicates burst synchrony, whereas a
downward pointing vector (180u) indicates burst alternation. Note the preservation of a similar coordination in all three groups, consisting of bilateral
synchrony between homologous extensor or flexor motor bursts, and ipsilateral alternation between antagonistic flexor/extensor bursts. Scale bars:
1s.
doi:10.1371/journal.pone.0071013.g003

Table 3. Circular statistical analysis of the phase relations between lumbar and thoracic ventral root motor bursts in vitro.

Control (9) UL54 (8) UL66 (8)

L-R Flex Z = 5.80;p,0.001 u(0)u= 4.34; p,0.001 Z = 4.34;p,0.01 u(0)u= 2.95; p,0.001 Z = 4.38;p,0.01 u(0)u= 2.96; p,0.001

L-R Ext Z = 8.56;p,0.001 u(0)u= 4.13; p,0.001 Z = 6.39;p,0.001 u(0)u= 3.57; p,0.001 Z = 5.91;p,0.001 u(0)u= 3.37; p,0.001

L Flex-Ext Z = 5.56;p,0.001 u(180)u= 3.30; p,0.001 Z = 3.18;p,0.05 u(180)u= 2.43; p,0.01 Z = 4.16;p,0.01 u(180)u= 2.85; p,0.001

R Flex-Ext Z = 5.07;p,0.01 u(180)u= 3.10; p,0.001 Z = 3.20;p,0.05 u(180)u= 2.50; p,0.01 Z = 4.14;p,0.01 u(180)u= 2.65; p,0.01

L-R Th2 Z = 4.38; p,0.01 u(0)u= 2.87; p,0.001 Z = 4.52; p,0.01 u(0)u= 3.01; p,0.001 Z = 3.74; p,0.05 u(0)u= 2.68; p,0.001

R Th2-Ext Z = 5.83;p,0.001 u(0)u= 2.42; p,0.001 Z = 1.34; p = 0.29 u(0)6 = 1.29; p = 0.11 Z = 3.80;p,0.01 u(0)u= 2.58; p,0.01

L Th2-Ext Z = 6.96; p,0.001 u(0)u= 3.59; p,0.001 Z = 4.27; p,0.01 u(0)u= 2.55; p,0.01 Z = 3.64; p,0.05 u(0)u= 2.67; p,0.01

Coordination patterns between left (L) and right (R)-side flexor and extensor fictive locomotor activities, and with bilateral thoracic (Th2) motor bursts. The Rayleigh (Z)
test was used to verify non-uniformity of the circular distributions, and the V-test was used to compare distributions with a selected direction (either 0u, u(0u), for
synchrony or 180u, u(180u), for alternation). Bold characters highlight statistically random distribution.
doi:10.1371/journal.pone.0071013.t003
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were simulated by differently-applied forces to the two linear

actuators, and the effects of a symmetrical versus non-symmetrical

activation were compared (Figure 5). In the asymmetrical

configuration only one actuator was active, either on the

‘contralesional’ or ‘ipsilesional’ side (i.e., with respect to the side

of bending), whereas in the symmetrical configuration, both

actuators were simultaneously and equally activated. The resulting

deformation in each case was analyzed at the end of the FE

simulation by measuring the longitudinal torsion between the front

and rear regions of the body model (taken as the angle �dd between

front and rear rigid components; see dashed lines in Figure 4C).

This information was subsequently used in a dynamic simula-

tion to estimate the changes in the animal’s body orientation in the

frontal plane during swimming. Based on the approximation that

only the hydrodynamic lift force plays a significant role in this

plane, regular equations of motion were solved using the ODE45

function in Matlab (Mathworks Inc.), with a 0.01 s time-step, to

estimate the animal’s overall displacement in the water. Equation

1 indicates that body orientation is directly related to the animal’s

inertia and the hydrodynamic lift forces:

M~I :€aa ð1Þ

where M is the torque generated by the hydrodynamic lift force, I

the animal’s moment of inertia around the antero-posterior axis,

and €aa the angular acceleration of the body around this axis. The

value of M, the moment due to the hydrodynamic lift force, was

calculated with Equation 2:

M~l
1

2
rACLv2 ð2Þ

where l represents the moment arm of the hydrodynamic force, r
the fluid density, A the planform area, CL the lift coefficient, and v

the animal’s speed. Because the dynamic simulation of swimming

was only a validation of concept, certain assumptions were made:

(i) the moment arm l of the hydrodynamic force was kept constant

at 3.4 mm (i.e., 2/3rd of the animal half width); (ii) the moment of

inertia I was set at 5.1028 kg.m2, corresponding to the animal

representing an ellipsoidal cylinder with known dimensions and

Table 5. Circular statistical analysis of the phase relations between hindlimb extensor and dorsal muscle activities in vivo.

Control (9) UL54 (8) UL66 (8)

L-R dt Z = 21.32; p,0.001 u(0)u= 6.50; p,0.001 Z = 4.05; p,0.05 u(0)6 = 1.25; p = 0.11 Z = 12.58; p,0.001 u(0)u= 5.01; p,0.001

L-R pl Z = 23.96; p,0.001 u(0)u= 6.92; p,0.001 Z = 19.01; p,0.001 u(0)u= 6.10; p,0.001 Z = 12.62; p,0.001 u(0)u= 5.01; p,0.001

L dt-pl Z = 22.68; p,0.001 u(0)u= 6.73; p,0.001 Z = 15.98; p,0.001 u(0)u= 5.48; p,0.001 Z = 12.46; p,0.001 u(0)u= 4.93; p,0.001

R dt-pl Z = 18.34; p,0.001 u(0)u= 6.06; p,0.001 Z = 2.61; p = 0.07 u(0)6 = 1.35; p = 0.09 Z = 12.50; p,0.001 u(0)u= 4.97; p,0.001

Coordination patterns between left (L)- and right (R)-side plantaris longus (pl) and dorsalis trunci (dt) muscle activity recorded by EMG. Non-uniformity of circular
distributions was verified by the Rayleigh (Z) test, and the V-test (u(0u)) was used to assess burst synchrony. Bold characters highlight statistically random distributions.
doi:10.1371/journal.pone.0071013.t005

Figure 4. 3D model of a UL juvenile with twisted body trunk. Geometrical model of a lesioned animal’s trunk using the 3D finite element (FE)
method, based on anatomical characteristics and the assumption that the main body/water interactive forces occur at the level of the trunk (A). Once
the initial FE model body was built, a 37u torsion (�dd) was applied in the antero-posterior axis (B right) in order to simulate the mean body twist
towards the lesioned side observed in UL juveniles (B left). Red markers n (nose), r (right hip) and l (left hip) indicate model orientation and together
with the two dashed lines (see C), illustrate the model’s torsion. C: The two artificial front and rear rigid body components, respectively simulating
the scapula and pelvis belts, were linked by an elastic portion to which the torsion was applied. The pink and orange dashed lines indicate the medial
plans of the front and rear rigid body components (green plans), respectively, while the l and r red markers correspond to the linear left and right
limits of the rear medial plan, and the n marker indicates the front of the anterior plan. Dorsalis muscles were simulated by two actuators (blue
dashed lines) placed on both sides of the antero-posterior axis between the two rigid components. D: Lateral (right) view of the twisted FE model
corresponding to UL-induced distortion in juvenile frogs. Arrowhead indicates that the left hip marker (l) is on the non-visible side of the model.
doi:10.1371/journal.pone.0071013.g004

Developmental Plasticity in Xenopus Motor Networks

PLOS ONE | www.plosone.org 7 August 2013 | Volume 8 | Issue 8 | e71013



mass; and (iii) due to its global shape, with a nearly flat ventral

surface and a convex dorsal surface, the juvenile body corresponds

to a plane wing (NACAA 12 airfoil-type) and, therefore,

aerodynamic formulae were used to estimate the remaining

parameters: the amount of deformation at the end of FE

simulation was used to determine both the planform area A and

the angle of incidence of the model through water, which in turn

was used to estimate the lift coefficient CL [22]. Based on actual

recordings from freely-behaving juvenile frogs, the swim velocity

was maintained at 15 cm/s throughout the simulation. The

solution to Equation 1 provided a time series of the FE model

angular acceleration around the antero-posterior axis during

swimming. Values for the angular velocity (in u.s21) and the angle

formed with the horizontal axis (�aa) were obtained by simple

mathematical integrations, The latter parameter in turn provided

direct information about the mode of displacement (i.e., rolling or

not) in water (note that an angular velocity of 0u.s21 corresponds

Figure 5. Different patterns of actuator activation induce different body distortions and resultant changes in aquatic displacement.
A–L: Frontal (A, D, G, J), lateral right (B, E, H, K) and exploded view (C, F, I, L) of the FE model at initial resting state (A–C) and at the end of either a left
side (‘‘contralesional’’; D–F), symmetrical (Bilateral; G–I) or right side (‘‘ipsilesional’’; J–L) activation of the longitudinal actuators. The �dd angle at the end
of each simulation and the resulting angular displacement during propulsion (�aa; obtained from the subsequent dynamic simulation) are indicated in
panels D, G and J. Arrowhead in B indicates that the left hip marker (l) is on the non-visible side of the model. M: Theoretical explanation of lesioned
animal movement according to simulation results. A high angular velocity associated with the strong body torsion of animals with symmetrically-
activated postural back muscles (top) induces a complete disequilibrium of the body (red arrow; �aa value taken from panel G) during each hindlimb
extension, as observed experimentally in UL66 juvenile frogs. In contrast and in correspondence with UL54 juvenile behavior, a lower angular velocity
associated with the much reduced body torsion of animals with an asymmetrical propulsion/posture coupling (bottom) causes only a slight
disequilibrium (green arrow; �aa taken from panel D) that is subsequently compensated for by passive water reaction forces (black arrows) during the
remainder of the kick cycle. Color code: black, dorsal, white, ventral, and grey, lateral sides of the body.
doi:10.1371/journal.pone.0071013.g005
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to swimming where the animal maintains constant upward

orientation of its back throughout displacement).

Results

Pre- and Post-metamorphic UL have Distinct Long-term
Effects on Juvenile Frog Posture and Locomotion

The spontaneous swimming and postural behavior of UL54 and

UL66 animal groups were video-recorded immediately following a

right-side vestibular endorgan ablation, then in each case four

weeks later, in correspondence with the average duration of

metamorphosis [15]. As already described in Xenopus [23] and

other vertebrate species [7,24], an acute UL immediately induced

a characteristic impairment of locomotor and postural behavior

that was never observed in normal animals at either developmen-

tal stage (Figure 1A top and B). This locomotor deficit, which was

manifested as so-called ‘‘rolling’’ behavior (Figure 1A bottom), was

similarly expressed after lesioning in both stage 54 tadpoles and

stage 66 juvenile frogs (Figure 1C–D, ‘acute’ panels).

However, four weeks post-UL, striking differences were

apparent in the locomotor performance of UL54 and UL66

animals (Figure 1C–D, ‘chronic’ panels). After reaching the

juvenile adult stage at the end of metamorphosis, UL54 animals

with their newly developed limbs expressed a largely restored

locomotor capability: again, like intact control juveniles, they

could maintain body equilibrium and remain dorsal-side upwards

during swimming, with .70% of individual kick cycles contrib-

uting to a normal forward rectilinear trajectory (Figure 1C,

‘chronic’ panel). Although a significant proportion (27.269.2%) of

apparently symmetrical, bilaterally-synchronous hindlimb exten-

sions resulted in so-called ‘‘circling’’ behavior, UL54 animals

rarely (2.661.8% of all kick cycles) expressed rolling behavior, and

only when in a highly elevated state of arousal.

In contrast, the locomotor performance of animals in the UL66

group remained impaired 4 weeks after lesioning (Figure 1D,

‘chronic’ panel). These frogs very rarely expressed normal

rectilinear swimming in the horizontal plane, and the large

majority of propulsive hindlimb extensions continued to produce

rolling (.85%) or horizontal circling behavior (,10%; Figure 1D;

dark and light shaded bars, respectively). Similar proportions of

defective locomotor behavior in UL66 animals were observable up

to 18 months after vestibular lesioning (data not shown). This lack

of behavioral restoration in UL66 as compared to UL54 frogs

therefore indicated that the latter’s’ locomotor network had been

subjected to adaptive processes that were specific to the period of

metamorphic development.

An analysis of bilateral hindlimb joint and body angles during

static posture failed to explain the striking behavioral differences

between the UL54 and UL66 juvenile groups at 4 weeks post-

lesion. In both cases, animals showed a marked body distortion

along their vertebral axis, with the anterior half of the trunk being

twisted to an angle of 36.663.5u towards the lesioned side (e.g.,

Figure 2A). There was no observable difference in this torsional

deformation between the UL54 and UL66 groups. However,

solely UL54 juveniles exhibited a marked scoliotic vertebral

curvature essentially in the horizontal plane towards the lesioned

side (p,0.001; Table 2). This type of UL-induced deformation has

been recently shown to derive from a persistent bilateral

asymmetry in the activity of brainstem descending pathways to

the spinal cord during metamorphosis [21]. In the present study,

the occurrence of scoliotic skeletal alterations in UL54 but not

UL66 animals was verified during subsequent dissection (see

below), as was the occurrence of longitudinal vertebral twisting in

both lesioned groups.

In addition, no significant bilateral variations were observed at

rest in most hindlimb joint positions of UL54 compared to both

intact and UL66 animals (Table 2), although a reduction (p,0.05)

was found in hip angle on the ipsilesional side. Although a

tendency for reduced ipsilesional knee and bilateral ankle angles

was also observed in UL54 animals, the large variability within this

group did not allow any significant differences to be detected (note

the low power values of the ANOVA tests; Table 2). In direct

contrast, however, although the swimming performance of UL66

juvenile frogs remained strongly impaired (see Figure 1D), no

postural differences were found between these long-term lesioned

animals and intact controls (Table 2).

During free forward swimming in intact frogs, propulsion is

generated by repetitive cycles of bilaterally-synchronous hindlimb

extensions (Figure 1A upper; see also [11]), with each cycle

comprising coordinated sequences of knee, ankle and hip

displacement on the two sides. Analyses of the knee-ankle-hip

joint movement sequences in the three animal groups showed that

both UL54 and UL66 animals behaved very similarly to intact

frogs (Figure 2D), with no ipsi- or bilateral differences observable

between groups. Thus, the kinematics of actual hindlimb

movements provided no correlative explanation for the restoration

of normal swimming in juvenile frogs subjected to pre-metamor-

phic UL, as compared to the permanent locomotor impairment in

animals that had carried UL for a similar period, but subsequent

to metamorphosis. Rather, these findings suggested that the

locomotor propulsive mechanism itself was not implicated in the

compensatory process that enabled UL54 swimming recovery.

Neither a Pre- Nor Post-metamorphic UL Produced
Significant Modification in Spinal Motor Output for
Propulsion

In order to further test the hypothesis that none of the unilateral

lesions significantly affected actual propulsive function, we

recorded bilateral hindlimb flexor and extensor motor nerves in

isolated brainstem/spinal cord preparations (Figure 3), which in

the case of juvenile Xenopus are able spontaneously to generate the

rhythmic motor patterns that normally drive swimming behavior

in vivo [9,11]. As is evident in the circular phase analysis of Fig. 3,

such in vitro locomotor-related activity, which in control prepara-

tions (Fig. 3A) is known to be associated with rectilinear forward

displacement in the intact animal [11], was not significantly

different from the fictive limb-kick patterns expressed by the

isolated brainstem/spinal cords of either UL54 (Fig. 3B) or UL66

(Fig. 3C) animals. In all three groups, rhythmic bursting in

homologous left-right flexor and extensor motor nerves occurred

in strict synchrony (Table 3: u(0u) significant for all three groups;

see Methods), with ipsilateral flexor and extensor motor bursts

occurring in antiphase (Table 3: u(180u) significant for all three

groups).

These in vitro results therefore corresponded closely to our above

in vivo observation that the synchronous propulsive kicking

movements of the hindlimbs were similarly expressed in the three

groups of juvenile frogs. Nevertheless, although the coordination

of fictive limb kicking and actual movement was similar in the

three groups, comparisons of cycle periods and burst durations

indicated that a post-metamorphic UL affected other temporal

aspects of the lumbar locomotor program produced in vitro. While

cycle periods were not significantly different between groups, an

increase in the durations of bilateral extensor bursts (p,0.001) and

ipsilesional flexor bursts (p,0.01) was evident in isolated UL66

compared to intact and UL54 preparations (Table 4). In the

former, however, since fictive rhythmic extensions and flexions,

like the actual joint angle excursions in vivo, were still occurring in
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close bilateral synchrony and with symmetrical left-right durations,

the observed differences did not comply with the persistence of

rolling behavior in UL66 animals. Together, therefore, these

findings further support the conclusion that the behavioral

adaptation observed in post-metamorphic UL54 animals did not

arise from significant modifications to the neural system respon-

sible for generating propulsive limb movement.

Relationship between Dynamic Propulsion/Posture
Coupling and Locomotor Recovery in UL54 Juvenile
Frogs: Evidence from Biomechanical Simulations

In addition to producing momentum, effective locomotor

behavior depends on postural stability that requires dynamic

adjustment during body displacement [25]. Thus, any inappro-

priate coordination between the postural and propulsive motor

systems might result in incorrect locomotor movements. On this

basis, therefore, we asked whether such an abnormal propulsion/

posture coupling could be responsible for the permanent

locomotor impairment found in UL66 juvenile frogs. Conversely,

a specific compensatory adaptation of this functional interaction

during metamorphosis of UL54 animals could have enabled their

swimming recovery as young adults. We therefore sought to

establish that an altered propulsion/posture coupling can indeed

impact directly on juvenile Xenopus swimming behavior, and

especially, whether appropriate modifications of dynamic postural

control during swimming in animals with a UL-induced twist

distortion could improve their locomotor performance. However,

since it is impossible to access and manipulate specifically the

central networks involved in the dynamic control of posture in a

living animal, we turned to simplified simulations of frog

swimming using a 3D model constructed from actual morpholog-

ical data (see Methods for description and Figure 4).

In a first step, a finite element (FE) model of a UL-twisted

juvenile frog was developed as shown in Figure 4, and initial tests

were conducted to validate the effect of such a body distortion on

swimming in the absence of any postural system involvement (data

not shown). Then, we tested whether different patterns of

activation of the two linear actuators (which simulated the bilateral

longitudinal dorsal muscles of the trunk, see Methods) could have

variable effects on FE model torsion and consequently lead to

distinct kinematics during swimming. Because UL in Xenopus

generates a permanent disequilibrium between left and right

descending brainstem commands to the spinal cord [21], we

compared the influence of a bilaterally-symmetric versus non-

symmetric activation of the postural system on static body shape

(Figure 5A–L). The simulations showed that a symmetrical

activation of the ‘postural’ actuators caused a minor decrease of

the torsion angle from 37u to 24u (�dd; Figure 5G–I), which

corresponded to a ,35% reduction in the initial body bending

(Figure 5A–C). Strikingly, however, a unilateral (asymmetric)

activation applied solely to the actuator on the bent side of the

model (‘‘ipsilesional’’ configuration) generated a negligible torsion

change from 37u to 34u (Figure 5J–L). In direct contrast, an

activation of the longitudinal postural system on the opposite

(‘‘contralesional’’) side only; (Figure 5D–F) induced a significantly

greater change (.84%) in the shape of the virtual animal, leading

to a final body torsion of ,6u. These simulations thus suggested

that the degree of distortion of the lesioned animal’s body might be

significantly reduced when postural muscles solely on the

ipsilesional side were activated concomitantly with each propulsive

hindlimb extension, thereby resulting in a substantial ameliorating

influence on the kinematics of the animal’s swimming.

To further test this idea, we incorporated the values of body

torsion obtained from the above three FE model configurations

into a dynamic simulation of real animal movement. The results

demonstrated that the angular velocity generated around the

antero-posterior axis by the symmetrical model was 572u.s21,

whereas the velocities generated by the non-symmetrical models

were 913u.s21 and 99u.s21 for the ‘‘ipsilesional’’ and ‘‘contrale-

sional’’ configurations, respectively. In vivo EMG recordings had

previously shown that the dorsalis muscles were active for slightly

less than 0.2 s during each locomotor cycle, corresponding to

,33% of the total cycle duration [11]. From our dynamic

simulation, either a symmetrical activation or an asymmetric

ipsilesional activation during the 0.2 s of each hindlimb extension

generate a dramatic balance deficit: calculated �aa values were

respectively 112.3u and 182.7u and thus were largely higher than

the 90u body tilt towards the lesioned side required to induce full

body disequilibrium. Consequently, this would result in a 180u
rotation of the animal around its antero-posterior body axis due to

body-water interactions (Figure 5M top), which in turn corre-

sponds to the rolling behavior expressed by UL66 Xenopus (see

Figure 1A bottom and 1D). In contrast, an asymmetric activation

of the contralesional dorsalis muscle for 0.2 s only produced ,20u
tilting of the model frame during swimming (�aa = 19.7u). This

deviation was therefore considerably lower than the complete

disequilibrium that is required to make the animal roll (Figure 5M

bottom). Here again, these latter simulation findings were in close

correspondence with our behavioral observations on UL54

animals (Figure 1C).

UL54 Frogs Express Asymmetric Coordination between
Hindlimb and Dorsal Muscle Activity During Free
Swimming

Our simulation data thus suggested that the expression of

permanently altered swimming in UL66 animals in contrast to the

restoration of close-to-normal locomotor behavior in UL54

animals could have arisen from differences in the dynamic

coordination between dorsal trunk muscle contractions involved

in postural control and propulsive hindlimb extensions during

swimming. In order to test this theoretical prediction in the

animal, bilateral EMG recordings were made from a back muscle

(dorsalis trunci) component of the longitudinal posture system and an

ankle extensor muscle (plantaris longus) involved in cyclic limb

extensions in normal intact and UL juvenile frogs during free

swimming. We previously reported [11] that after metamorphosis,

the dorsal trunk muscles of intact Xenopus are driven directly by the

lumbar CPG for hindlimb kicking during rectilinear swimming,

resulting in limb extensor and back muscle contractions occurring

in strict bilateral and caudo-rostral synchrony in each cycle (see

also Figure 6A). Here, we found that a UL performed after

metamorphosis had no effect on this pattern of muscle coordina-

tion. As evident in the raw recordings and circular analyses of

Figure 6C, the phase relationships between limb extensor and

back muscle EMG activity in UL66 juvenile frogs were similar to

those of intact animals (cf. Figure 6A), with all mean vectors

indicating phase synchrony (see also Table 5). In contrast, in UL54

juveniles a cyclic co-activation of dorsalis trunci and the ankle

extensor muscles was virtually absent on the right, ipsilesional side

of these animals during swimming (Figure 6B). As indicated by the

corresponding circular plots, the phase values for right plantaris vs

dorsalis muscle activity were randomly distributed (see also Table 5),

resulting in a mean vector length that was below the random

threshold (r = 0.35). Correspondingly, the coupling between

bilateral dorsalis trunci was also significantly diminished (m = 64u,
r = 0.44), whereas the coordination between left and right plantaris
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and between contralesional (left side) plantaris and dorsalis was

unaffected, with the two muscles remaining synchronously active

per cycle (m = 8u, r = 0.95 and m = 346u, r = 0.87, respectively;

Table 5). These in vivo EMG data therefore revealed that the

characteristic bilaterally-symmetrical, in-phase coupling between

propulsive hindlimb and postural dorsal trunk muscle activity

found in unlesioned control animals, also persisted in UL66 frogs.

In contrast, in UL54 animals this coupling pattern had become

altered to an asymmetric relationship in which ipsilesional dorsal

muscle activation with each propulsive limb extension had

disappeared. Therefore, in correspondence with the persistent

rolling versus restored straight-line swimming of UL66 and UL54

animals, respectively, these biological EMG data are in close

agreement with the prognosis of our dynamic simulations (see

above).

Pre-metamorphosis UL-induced Alterations in Lumbo-
thoracic Coordination are Intrinsic to the Spinal Cord

The de novo establishment of lumbo-thoracic propriospinal

interactions during metamorphosis has been found to underlie

the tight coupling of thoracic dorsalis motor output with each

lumbar CPG-driven hindlimb extension during young adult

swimming [11]. We therefore investigated in isolated brainstem/

spinal cords of labyrinthectomized juveniles whether the loss of

ipsilesional plantaris-dorsalis coordination in post-metamorphic

UL54 animals resulted from an abnormal network construction

involving this propriospinal pathway. Propulsion-related activity

was recorded from hindlimb flexor and extensor nerves on both

sides (as in Figure 3) and postural activity from the bilateral

thoracic ventral roots that innervate the dorsalis muscles [11].

During episodes of spontaneous fictive rectilinear swimming, the

thoracic motor nerves expressed bursting activity that was phase-

coupled with ipsilateral extensor bursts in both intact and UL66

juvenile frogs (Figure 7A,C; Table 3). In contrast, in UL54

preparations this functional coupling was absent on the right

(ipsilesional) side of the spinal cord (Figure 7B; Table 3). Here,

thoracic nerve discharge when present was dispersed throughout

the ongoing locomotor cycle (Table 3), as indicated by the mean

vector length that was below the random threshold (r = 0.41).

These in vitro data were therefore consistent with our in vivo

observations suggesting that the changes in dorsal/hindlimb

muscle coordination during swimming were specific to UL54

animals. Together with our previous finding of the crucial role

played by lumbo-thoracic propriospinal interactions in propul-

sion/posture coordination in the swimming Xenopus frog [11],

these in vitro results further suggested that in animals that had

carried a vestibular sensory imbalance through metamorphic

development, an adaptive functional reorganization occurred

directly within the spinal locomotor networks themselves.

Discussion

The results reported here provide evidence that a unilateral

removal of labyrinthine sensory inputs in larval Xenopus induces

adaptive developmental processes in the spinal pathways respon-

sible for dynamic propulsion/posture coupling, the result of which

is the expression of a largely restored swimming behavior in the

post-metamorphic young adult. Specifically, by taking advantage

of the profound remodeling of spinal locomotor circuitry that

occurs during metamorphosis ([11]; Figure 8A), we have found

that following UL in late pre-metamorphosis, the distributed spinal

networks controlling adult hindlimb propulsive movements and

body orientation have become asymmetrically coordinated,

suggesting the involvement of compensatory processes in the

construction of the underlying connectivity during metamorphosis

(Figure 8C). In contrast, the same vestibular lesion made in

juvenile frogs after metamorphosis had terminated did not lead to

an adaptive network response during subsequent maturation to

adulthood, and consequently, swimming in these animals

remained permanently impaired (Figure 8B).

The processing of labyrinthine, visual and proprioceptive

information in the vestibular nuclei plays an important role in

the control of both static posture and locomotion [3,26,27]. The

unilateral loss of vestibular signaling, regardless of age, results in a

left-right imbalance in the descending commands to spinal

circuitry, in turn leading to specific postural and locomotor

impairments that have been characterized in a number of

vertebrates [7,24,28,29], including humans [6]. In Xenopus also,

an acute UL dramatically affects the resting posture and swimming

performance of both tadpole and juvenile animals (Figure 1C–D;

see also [23]). However, in contrast to terrestrial species [7,30,31],

including the frog Rana temporaria [32], we find that a UL

performed in juvenile Xenopus is never followed by behavioral

recovery, but rather posture and swimming in these lesioned

animals remains permanently impaired. In terrestrial animals,

recovery of behavioral performance has been attributed to so-

called ‘‘vestibular compensation’’ [7,14] which relies, at least in

part, on adaptive plasticity occurring both within brainstem

vestibular nuclei [31,33] and segmental sensorimotor pathways for

proprioceptive signaling in the cervical spinal cord [32]. Although

we observed modifications in motor output cycle period and burst

duration during fictive locomotor episodes in UL66 animals

(Table 4), indicating that a unilateral labyrinthectomy may also

lead to post-lesional changes in the spinal motor function of post-

metamorphic Xenopus, other parameters such as resting posture,

hindlimb kinematics and muscle coordination, both within and

between hindlimbs and between the hindlimbs and dorsal muscles,

remained unaltered (Table 2, Figures 2C–D, 3C, 6C and 7C).

This in turn suggested that the changes in adult Xenopus following a

post-metamorphosis UL did not arise from classical vestibular

Figure 6. Solely a pre-metamorphic UL alters dorsal muscle/
limb extensor muscle coordination in the post-metamorphic
frog. Sample left (L) and right (R) electromyographic (EMG) recordings
from dorsal back muscle dorsalis trunci (dt) and ankle extensor muscle
plantaris longus (pl) in intact (A), UL54 (B) and UL66 (C) juveniles. The
sites of the vestibular lesion (UL) and EMG electrode placements are
shown at left. The corresponding circular plots (layout equivalent to
Figure 3 except that each dot represents the mean for a single forward
rectilinear swim episode) indicate the lack of bilateral dorsalis and right
side (ipsilesional) dorsalis/plantaris coordination in the UL54 group only.
Scale bars: 1s.
doi:10.1371/journal.pone.0071013.g006
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compensation (e.g., [7]) or that, if the latter had occurred, it was

insufficient to enable a functional recovery of posture and

locomotion (see also [21]).

In contrast, the UL-induced locomotor impairment in pre-

metamorphic tadpoles was substantially reduced by the comple-

tion of metamorphosis, to the extent that despite a persistent

asymmetric resting body posture (Table 2), the swimming

performance of these animals was similar to that of intact juvenile

frogs (Figure 1C). Neither a kinematic analysis of hindlimb

propulsion nor an in vitro study of the underlying lumbar motor

program provided an obvious explanation for this functional

restoration, although dorsal trunk and hindlimb muscle (Figure 6B)

and nerve (Figure 7B) recordings did indicate a bilateral

asymmetry in trunk-hindlimb coordination. Specifically, in con-

trast to UL66 frogs, UL54 juveniles displayed an ipsilesional loss of

the ascending spinal drive normally responsible for the in-phase

coupling between propulsive hindlimb extensions and the

contractions of dorsal trunk musculature that are engaged in

dynamic postural control during swimming. Significantly, more-

over, simulations using a simplified biomechanical model of a UL

juvenile indicated that despite its twisted body shape, the recovery

of effective locomotion could have indeed resulted from the

establishment of such a left-right asymmetry in the animal’s

dynamic postural control system (Figure 5). While a contribution

of supra-spinal plasticity to the recovery process cannot be fully

excluded, it is noteworthy that the posturo-locomotor asymmetry

observed in our in vitro experiments is expressed under conditions

where cerebrospinal pathways are themselves incapable of

rhythmogenic bursting (e.g., [34–36]; but see [37]), and therefore

are unlikely to be responsible for sustaining the functional

asymmetry.

It is also unlikely that a UL at larval stage 54 led to a

compensatory remodeling of the vestibular system itself since the

labyrinthine organs [12] and vestibulospinal projections in frogs

[13,14,30,38] are already in place at this stage of the animal’s

development. In addition, a UL performed as early as stage 38 in

Xenopus has been previously found to have no effect on the

remaining pre-metamorphic development of the vestibular nuclei

[39]. However, recent studies in the adult cat [40,41] have

reported that some neurogenesis, associated with behavioral

recovery, can occur in vestibular nuclei in response to a unilateral

vestibular neurectomy. Since neurogenesis is widespread in the

larval anuran CNS and only ceases after metamorphosis [42], it is

conceivable that such a latent developmental process occurring in

the brainstem vestibular nuclei during metamorphosis somehow

contributes to the locomotor recovery in post-metamorphic UL54

juveniles. Here again, however, the close correspondence of the

motor output patterns expressed by the isolated brainstem/spinal

cord preparation in vitro with our in vivo EMG recordings in UL54

animals further suggested that the modified propulsion/posture

coupling was not a consequence of compensatory alterations in

descending commands or sensory feedback. Rather, the coordi-

nation changes were more likely to have resulted from a specific

ipsilesional alteration in the ascending lumbo-thoracic coupling

pathways that are newly formed during metamorphosis to ensure

postural trunk-hindlimb coordination [11]. In contrast to terres-

trial quadrupeds, due to the absence of recalibrating limb

proprioceptive feedback arising from substrate contact, a UL to

larval stages of aquatic Xenopus produces a permanent left-right

imbalance in vestibulo-spinal influences whereby spinal circuitry

on the contralesional side of the cord receives considerably less

descending activation than the ipsilesional side [21]. Thus, a

diminished influence of ascending lumbar CPG excitation to the

ipsilesional thoracic segments could constitute a counter-balancing

reaction to the relative increase in brainstem descending drive to

the same side of the spinal cord during swimming. Otherwise, the

propulsive performance of UL54 juvenile frogs was similar to that

of unlesioned animals, both in terms of hindlimb kinematics

(Figure 2B–D) and flexor and extensor motor patterns in vitro

(Figure 3). Altogether, therefore, our findings support the

conclusion that, at least in terms of Xenopus locomotion, local

Figure 7. Thoraco-lumbar coordination in vitro is also exclusively affected by a pre-metamorphic UL. Sample simultaneous recordings
from left (L) and right (R) thoracic ventral roots (Th2) and lumbar nerve branches to the left and right ankle extensor muscles (ext) during fictive
rectilinear swimming in isolated brainstem/spinal cord preparations from intact (A), UL54 (B) and UL66 (C) juveniles. Schematic at left indicates
electrode placements for nerve recordings. The corresponding circular plots (same layout as Figure 3) show that the lumbo-thoracic coordination on
the right (ipsilesional) side was altered solely in isolated preparations from UL54 animals. Scale bars: 1s.
doi:10.1371/journal.pone.0071013.g007
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spinal circuit plasticity underlies the primary adaptation to

vestibular sensory deprivation during metamorphosis.

Although sensory information is critical for the formation of

sensory systems [43] and is fundamental to the rapid adjustment of

ongoing motor programs [3,27,44], relatively little is known about

the contribution of sensory signaling to the correct assembly of

motor circuitry during development [45,46]. Previous studies in

vertebrates [47] (see also for additional pioneering references) and

invertebrates [48] have reported near-normal motor behavior in

animals that had developed in a restricted sensory environment,

suggesting that afferent information plays a relatively minor role in

motor network ontogeny. Here also, a unilateral sensory

deprivation before and during metamorphosis did not prevent

the expression of near-normal swimming in post-metamorphic

Xenopus. However, our data also strongly suggest that ‘‘normality’’

in the motor behavior of sensory-deficient animals arises only

because their propriospinal circuitry had developed differently

from that of metamorphosing intact animals. Whereas in the

latter, the spinal motor networks develop symmetrically under the

influence of bilaterally-equivalent vestibular inputs (Figure 8A; and

see [11]), an imbalance in this afferent signaling during the

metamorphic period apparently leads to counteractive changes in

the assembly of downstream thoraco-lumbar motor circuitry

(Figure 8C). On this basis, therefore, our results not only highlight

the latent plasticity that can occur in motor network organization

during Xenopus metamorphosis, but they also point to a funda-

mental contribution of extrinsically-derived afferent information in

shaping this circuit plasticity. This in turn raises the novel and

exciting prospect that during development, the appropriate

construction of a motor network depends on a precise interplay

between an intrinsic ‘representation’ of its target function and the

nature of incoming feedback signals from the external environ-

ment.
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Figure 8. Summary of changes occurring in spinal locomotor-
related networks during metamorphosis and after a right-side
labyrinthectomy. A: Normal metamorphic modifications to spinal
motor networks responsible for propulsion and dynamic postural
adjustments during swimming (see Beyeler et al., 2008). Note the
symmetrical left-right organization in the post-metamorphic juvenile
frog. B: In already metamorphosed animals, UL causes asymmetry in
the activity of descending brainstem commands to the spinal motor
networks, producing an over-excitation on the lesioned side that leads

to the expression of rolling behavior. This persistent descending
imbalance during juvenile-to-adult maturation has no long-term
influence on spinal network organization and animals never recover
an effective locomotor capability. C: An acute UL in pre-metamorphic
tadpoles also produces an asymmetric descending influence that now
persists through metamorphosis (see Lambert et al. 2013). In such an
unbalanced developmental environment, however, the adult spinal
motor networks are built differently from normal through the
establishment of a local asymmetry in propriospinal interactions that
are somehow able to counterbalance the asymmetry in the descending
commands to allow the restoration of swimming in the post-
metamorphic frog. Red arrows: post-UL development; Black arrows:
normal development; Double arrow: metamorphic development;
Simple arrow: post-metamorphic maturation; Red cross: acute UL; Red
dot: persistent UL. The widths of vertical arrows, arrowheads and circuit
symbols are proportional to levels of activity.
doi:10.1371/journal.pone.0071013.g008
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