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Abstract: The estimation and compensation of quasi-static aberrations
is mandatory to reach the ultimate performance of high-contrast imaging
systems. COFFEE is a focal plane wave-front sensing method that consists
in the extension of phase diversity to high-contrast imaging systems. Based
on a Bayesian approach, it estimates the quasi-static aberrations from two
focal plane images recorded from the scientific camera itself. In this paper,
we present COFFEE’s extension which allows an estimation of low and
high order aberrations with nanometric precision for any coronagraphic
device. The performance is evaluated by realistic simulations, performed in
the SPHERE instrument framework. We develop a myopic estimation that
allows us to take into account an imperfect knowledge on the used diversity
phase. Lastly, we evaluate COFFEE’s performance in a compensation
process, to optimize the contrast on the detector, and show it allows one to
reach the 10−6 contrast required by SPHERE at a few resolution elements
from the star. Notably, we present a non-linear energy minimization method
which can be used to reach very high contrast levels (better than 107 in a
SPHERE-like context).

© 2013 Optical Society of America

OCIS codes: (010.7350) Wave-front sensing, (100.5070) Phase retrieval, (110.1080) Active or
adaptive optics , (100.3190) Inverse problems, (350.1260) Astronomical optics.
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1. Introduction

Exoplanet imaging is one of the most challenging areas in today’s astronomy. The observation
of an extremely faint object (the planet) very close to a bright source (the host star) requires
the use of an extreme adaptive optics (XAO) system coupled with a high-contrast imaging
technique such as coronagraphy. The current generation of instruments dedicated to exoplanets
direct imaging (SPHERE on the VLT [1], GPI on Gemini South [2], Subaru SCExAO [3] and
Palomar P1640 [4]) aim at detecting massive gaseous planets 10−6 to 10−7 times fainter than
their host star. In the future, high-contrast imaging instruments on ground based or space based
telescopes will perform observation of Earth-like planets, 10−9 to 10−10 times fainter than their
host star.

The ultimate limitation of a high-contrast imaging instrument lies in its quasi-static aberra-
tions, which originate in imperfections of the optical system such as misalignment or optical
surface polishing error. These aberrations, when unseen and thus uncorrected by the AO loop,
create long-lived speckles on the detector plane [5], limiting the achievable contrast. Besides,
unlike the signal which originates in the residual turbulence (averaged in a long exposure im-
age), these speckles can easily be mistaken for a planet. Thus, to reach the ultimate performance
of the imaging system, one must be able to compensate for these aberrations. To perform such a
compensation, SPHERE relies on phase diversity [6] to reach a contrast of 10−6, whereas GPI
relies on an interferometric approach [7] for an aimed contrast of 10−7 on the detector.

Several techniques dedicated to this compensation have been proposed. Closed loop methods,
which assume small aberrations ( [8–12]), estimate the electric field in the detector plane using
at least three images. The technique proposed by Baudozet al. [13] relies on a modification
of the imaging system, but requires only one image. We note that this approach, based on
the analysis of fringed speckles, requires a

√
2 oversampling of the coronagraphic images to

properly sample the interference fringes. These techniques aim at minimizing the energy in a
chosen area (“Dark Hole”), leading to a contrast optimization on the detector in a closed loop
process.

The focal plane wave-front sensor we have proposed [14], called COFFEE (for COrona-
graphic Focal-plane wave-Front Estimation for Exoplanet detection), requires only two focal-
plane images to estimate the aberrations both upstream and downstream of the coronagraph
without any modification of the coronagraphic imaging system or assuming small aberrations.
In a previous study [15], we presented COFFEE’s early performance and limitations, detailed
below, as well as its sensitivity to a realistic experimental environment. In this paper, we present
a high order extension of COFFEE and its performance evaluation in a compensation process,
in the framework of the quasi-static aberration calibration of a ground-based instrument such as
SPHERE. Section 2 presents the modifications that allows COFFEE to overcome its previous
limitations [15], allowing an estimation of high order aberrations with nanometric precision
for any coronagraphic device. Section 3 presents the noise sensitivity of this extended version
of COFFEE using realistic SPHERE-like simulations. The choice of a suitable diversity phase
to use is also discussed in this section. Knowing that in a real system, such a diversity phase
will not be perfectly introduced, we present, in Section 4, an original approach, hereafter called
”myopic”, which significantly improves COFFEE’s robustness to an imprecise knowledge of
the diversity phase. Finally, in Section 5, we describe the different compensation processes
which can be used with COFFEE. In particular, we present a method of energy minimization in
the detector plane that allows the creation of a Dark Hole without any small aberration assump-
tion. Unlike other energy minimization methods [8–12], the one we propose does not rely on
the calibration of an interaction matrix, which is sensitive to the position of the coronagraphic
image on the detector. This new dark hole method can thus be used on any high contrast instru-
ment without a repetitive dedicated calibration step.
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In the SPHERE baseline design, quasi-static aberrations are measured with conventional phase
diversity [6] (no coronagraph), which is unable to sense high-order aberrations to a nanomet-
ric level. As a result, this high contrast imaging instrument performance will be limited by
high-order phase aberrations and not by amplitude aberrations (amplitude variations in a pupil
plane). Consequently, the latter are not considered in the simulations presented herein and are
currently not estimated by COFFEE.

2. Aberrations estimation with COFFEE

COFFEE is based on an inverse problem approach: it estimates the aberrations both upstream
and downstream of the coronagraph using two focal-plane images that differ from a known
aberration. As described in [15], the two main error sources of the first version of COFFEE
have been shown both by simulations and experimentally to be aliasing and modelling error.
The former was due to the use of a Zernike basis and prevented COFFEE from estimating high
order aberrations. Moreover, the estimation of these high order aberrations is mandatory to
optimize the contrast in the detector far from the optical axis (between a fewλ/D and 20λ/D
in the case of the SPHERE instrument).

The latter was originating in the image formation model used by COFFEE. The estimations
were indeed performed using a perfect coronagraph model, and thus limited by a model error.
In practice, COFFEE’s use was limited to the apodized Roddier & Roddier coronagraph.

In this Section, we present COFFEE’s modifications that allows to get rid of these two lim-
itations. Section 2.1 describes the modification of the maximuma posteriori(MAP) approach
on which COFFEE is based, which includes a modification of the basis used for the aberration
estimation, now composed of pupil indicator functions (pixels). Such a basis, used with a ded-
icated regularization metric described in Section 2.2, allows COFFEE to estimate high-order
aberrations. Besides, thanks to the modification of the imaging model, described in Section 2.3,
COFFEE is now able to perform the estimation for any coronagraphic device.

2.1. Criterion expression

Most of the notations of this article are coherent with [14, 15]. We consider a coronagraphic
imaging system made of four successive planes denoted by A (circular entrance pupil of di-
ameterDu), B (coronagraphic focal plane), C (Lyot Stop), and D (detector plane). The optical
aberrations are considered as static and introduced in pupil planes A and C. The coronagraphic
device is composed of a focal plane mask located in plane B and a Lyot Stop in plane C. No
particular assumption is made on the pupil shape or intensity, which can be calibrated using
data recorded from the instrument. We note that this model does not consider out of plane aber-
rations and the corresponding amplitude aberrations (which originate in Fresnel effect), but
as said previously, we consider in this paper the case of a ground based instrument (such as
SPHERE) limited by phase aberrations.

COFFEE requires only two imagesifoc
c andidiv

c recorded on the detector (plane D) that, as in
phase diversity, differ from a known aberrationφdiv, to estimate aberrations both upstream (φu)
and downstream (φd) of the coronagraph.

In this paper, we consider the case of the instrument calibration, assumed to be performed
at high signal to noise ratio (SNR) value, with a monochromatic source, emitted from a single-
mode laser fiber. Since the impact of the source finite size on the estimation is not significant
on the aberrations estimation [15], we consider here that this calibration is performed with an
unresolved object, and use the following imaging model :

ifoc
c = αfochdet⋆hc(φu,φd)+nfoc+βfoc

idiv
c = αdivhdet⋆hc(φu+φdiv,φd)+ndiv+βdiv

(1)
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whereαp is the incoming flux (p is for “foc” or “div”), hc the coronagraphic on axis “point
spread function” (PSF) of the instrument (which is the response of a coronagraphic imaging
system to a point source),hdet the known detector PSF,nfoc and ndiv are the measurement
noises and comprise both detector and photon noises,βp is a unknown uniform background
(offset), and⋆ denotes the discrete convolution operation.

COFFEE is based on a maximuma posteriori (MAP) approach: it estimates the aberra-
tionsφu andφd as well as the fluxesα = [αfoc,αdiv], and the backgroundsβ = [βfoc,βdiv] that
maximize the posterior likelihoodp(α,β ,φu,φd|ifoc

c , idiv
c ) of the data. For practical issues, it is

more convenient (and equivalent) to minimize the opposite of the logarithm of the posterior
likelihood, or neg-log-likelihoodJ(α,β ,φu,φd) = −ln[p(α,β ,φu,φd|ifoc

c , idiv
c )] which includes

regularization termsR(φu) andR(φd) designed to enforce smoothness of the sought phases:

(α̂ , β̂ , φ̂u, φ̂d) = argmin
α ,β ,φu,φd

[J(α,β ,φu,φd)] (2)

where

J(α,β ,φu,φd) =
1
2

∥

∥

∥

∥

ifoc
c − (αfochdet⋆hc(φu,φd)+βfoc)

σ foc
n

∥

∥

∥

∥

2

+
1
2

∥

∥

∥

∥

idiv
c − (αdivhdet⋆hc(φu+φdiv,φd)+βdiv)

σdiv
n

∥

∥

∥

∥

2

+R(φu)+R(φd)

(3)

‖x‖2 denotes the sum of squared pixel values of mapx, σ foc
n , andσdiv

n are the noise standard
deviation maps of each image. The corresponding variances can be computed as a sum of the
photon and detector noise variances. The former can be estimated as the image itself thresh-
olded to positive values, and the latter can be calibrated prior to the estimation.

Any aberrationφ is expanded on a basis{bm}. In [15], we showed that the use of a truncated
Zernike basis for the reconstruction led to a strong aliasing error, let alone the inability to
estimate high frequency aberrations. In this paper, the phase is expanded on pixel indicator
functions in the pupil plane:φ = ∑mφmbm (with φm the value of them−th pixel in the pupil).
Such a basis, used with the proper regularization metrics, will allow COFFEE to estimate high
order aberrations and strongly reduce the aliasing error, as shown in the following.

The minimization of metricJ(α,β ,φu,φd) of Eq. (3) is performed by means of a limited
memory variable metric (BFGS) method ( [16, 17]), which is a fast quasi-Newton type mini-
mization method. It uses the analytical expression of gradients∂J

∂φu
, ∂J

∂φd
, ∂J

∂α and ∂J
∂β , which we

have calculated, to estimateφu, φd, α andβ (Implementation details can be found in Appendix
A).
Sauvageet al. [14] established that a suitable diversity phaseφdiv for COFFEE was a mix of
defocus and astigmatism:φdiv = adiv

4 Z4 + adiv
5 Z5 with adiv

4 = adiv
5 = 0.8 rad RMS, introduced

upstream of the coronagraph. In this paper, such a diversity phase will be used for a start; the
optimal phase diversity to be used with COFFEE will be discussed later.

2.2. Regularization metric

The use of a pixel basis for the phase reconstruction is required for COFFEE to estimate high
order aberrations. However, this leads to a large number of unknowns, which in turn calls for a
regularization metric in order to reduce the noise sensitivity. We chose a regularization metric
that is based on the availablea priori knowledge on the quasi-static aberrations. Indeed, they
can be reasonably assumed to be Gaussian, homogeneous and thus endowed with a power spec-
tral density (PSD)Sφk (where k stands foru (upstream) ord (downstream)), which is usually
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assumed to follow a power law:
{

Sφk ∝ 1
νn

〈φk〉= 0
(4)

with ν the spatial frequency and〈φk〉 the mean ofφk. The regularization termR(φk) can thus
be written as:

R(φk) =
1
2 ∑

ν

|F [φk](ν)|2
Sφk(ν)

, (5)

whereF represent the Fourier transform operation. In order to be able to cope with any pupil
shape, we implement this metric in direct space rather than Fourier space as follows; for n=2 in
Eq. (4), we obtain:

R(φk) =
µk

2
‖∇φk(r)‖2 . (6)

And for n=4 in Eq. (4),

R(φk) =
µk

2
‖∆φk(r)‖2 . (7)

Here,r denotes the pupil plane position which will be omitted in the following for the sake of
simplicity.∇ and∆ represent the gradient and the Laplacian operators, respectively. The balance
parameterµk will be called “hyperparameter” hereafter. For both cases, derivatives∇φk and∆φk

are computed as finite differences between neighboring points, and summations are limited to
points whose computation requires only pixels inside the pupil. In this paper, we consider a
PSD decrease as 1/ν2 (n= 1 in Eq. (4)), which corresponds to a classical assumption for optical
surface polishing errors, according to K. Dohlenet al. [18], who measured and characterized
the PSD of the SPHERE optical system. Additionally, identification between Eqs. (5) and (6)
yields the analytic value of the hyperparameterµk:

µk =
1

σ2
∇φk

, (8)

whereσ2
∇φk

is defined asσ2
∇φk

= σ2
∇xφk

+σ2
∇yφk

, with σ2
∇xφk

andσ2
∇yφk

the variances of∇(φk)

in directionsx andy, respectively. The fact that the hyperparameter is given by Eq. (8) stems
from the assumption that the phaseφk is statistically homogeneous, and is whitened by the
differentiation in Eq. (6) [19, 20]. One can notice thatσ2

∇φk
can be analytically computed from

Sφk and the phase varianceσ2
φk

. Thus, this regularization does not require any manual tuning.

2.3. Coronagraphic image formation model

To perform the minimization of criterionJ in Eq. (3), the image formation model used by
COFFEE (Eq. (1)) requires the expression of a coronagraphic PSFhc. Let r be the pupil plane
position vector andγ the focal plane position vector. the entrance pupil functionPu is such that:

Pu(r) = Π
(

2r
Du

)

Φ(r), (9)

with Π the disk of unit radius,Du the entrance pupil diameter, andΦ a known apodization
function. The electric field in the entrance pupil can be written as:

ΨA(r) = Pu(r)e
jφu(r). (10)

The electric field in the detector planeΨD is obtained by propagatingΨA through each plane
of the coronagraphic imaging system: the signal is first focused on the coronagraphic focal
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plane maskM ; then, the electric field is propagated trough the Lyot Stop pupilPd(r) (Pd(r) =
Π(2r/Dd) with Dd the Lyot Stop pupil diameter). The electric field in the detector planeΨD

can thus be written as:

Ψd(γ) = F
−1

{

F
[

F
−1 (ΨA(r))M

]

Pd(r)e
jφd(r)

}

, (11)

whereF−1 is the inverse Fourier transform operation. For the sake of simplicity, spatial vari-
ablesr andγ will be omitted in the following.

The coronagraphic PSFhc is the square modulus ofΨD:

hc =
∣

∣F
−1{

F
[

F
−1 (ΨA)M

]

Pdejφd
}∣

∣

2
(12)

In Eq. (12),M can easily be adapted to represent any coronagraphic device, allowing COF-
FEE to be used with a broad class of high contrast imaging instruments.

3. Performance evaluation

This Section presents the performance of the new extension of COFFEE presented in Section
2. Section 3.1 gathers the different parameters used for these simulations. In Section 3.2, the
impact of the noise on COFFEE’s estimation is quantified, while the optimal phase diversityφdiv

to be used with COFFEE is studied in Section 3.3. Section 3.4 presents COFFEE’s sensitivity
to a difference between the prior assumed in the phase reconstruction and the true phase.

3.1. Parameters and criteria

Table 1 gathers the parameters used for the simulations presented in this section:

image size 64× 64 λ
D (128× 128 pixels, Shannon-

sampled)
Light spectrum Monochromatic, wavelengthλ = 1589 nm
Entrance pupil Du = 64 pixels
Lyot stop pupil Dd = Du

Aberration upstream of the coronagraph (φu) WFEu = 50 nm RMS
Aberration downstream of the coronagraph (φd) WFEd = 20 nm RMS

Coronagraph
Apodized Lyot Coronagraph (ALC), focal
plane mask angular diameterd = 4.52λ/D

Table 1. COFFEE: simulation parameters

These parameters have been chosen so that the following simulations are representative of
the SPHERE instrument. The chosen coronagraph (ALC) is the one designed for the consid-
ered wavelength on SPHERE, and the apodization function used in the image formation model
(Figure 1) is the one designed for this coronagraph. In this paper, we consider the case of a high-
contrast imaging instrument calibration prior to the scientific observation, so a monochromatic
source is considered. It is worth mentioning that COFFEE could easily be adapted to polychro-
matic images, although such a study is beyond the scope of this paper. Such an adaptation would
require a modification of the image formation model (Eq. (1)), in which a polychromatic coron-
agraphic PSF would be computed from several monochromatic PSF for different wavelengths.
In order to properly model the ALC coronagraph, the coronagraphic PSFhc (Eq. (12)) is com-
puted using the method developed by R. Soummeret al.[21]. This approach allows an accurate
numerical representation of Lyot-style coronagraphs by accurately sampling the coronagraphic
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Fig. 1. Apodized Lyot coronagraph: apodization function used in this paper, computed from
an experimental image recorded on SPHERE

focal plane mask, which can hardly be done using the common Fast Fourier Transform (FFT)
algorithm. Such an operation would indeed require the manipulation of very large arrays.

For each simulation, coronagraphic images are computed from randomly generated aberra-
tionsφu andφd using the imaging model presented in Eqs (1) and (12). Using these two images,
COFFEE performs the phase estimation by minimizing criterionJ of Eq. (3).

In order to quantify the reconstruction accuracy, we define the reconstruction errorεk as the
RMS value ofφk − φ̂k, wherek is eitheru (upstream) ord (downstream),φk is the simulated
aberration and̂φk its estimation made by COFFEE. In this Section, every reconstruction er-
ror value is an average value, computed from ten independent randomly generated phases to
make sure that the result obtained is independent of the phase realization. The PSDSφ of each
generated phase is such thatSφ ∝ 1/ν2.

3.2. Noise propagation

The ultimate limitation of the estimation performed by COFFEE lies in the propagation of
noise present in the images. As mentioned in Section 2.2, the use of a suitable regularization
metric ensures the smoothness of the phase, limiting the propagation of the noise from the
images to the estimated aberrations. In this Section, we first demonstrate that the analytic value
of the regularization metric hyperparameter (see Section 2.2) is the one that gives the smallest
reconstruction error. We consider here an incoming fluxα = 107 photons and a read-out noise
(RON) of standard deviationσdet = 5 e−. This value, slightly higher than the expected RON
on a SPHERE-like system, is chosen to strengthen the impact of the hyperparameter value.
Besides, photon noise is added in the simulated coronagraphic images. The hyperparameter is
here such asµk = χ/σ2

∇φk
, with χ ∈ [10−3;103]. A reconstruction error value is computed for

each value ofχ .
Figure 2 shows that the analytic value of the hyperparameter (χ = 1) is the one that gives

the smallest reconstruction error for both upstream and downstream aberrations. When the reg-
ularization metrics are under balanced (χ < 1), the prior information is not “strong” enough
in the minimization to prevent noise propagation in the estimated aberrations. One can notice
here that without a regularization metric (χ = 0), the reconstruction error would have been un-
acceptable. On the other hand, when the regularization metrics are over balanced (χ > 1), their
impact is too strong, and prevents the estimation of the high frequency components ofφu and
φd. In the following, considering the result of this simulation, all the estimations performed by
COFFEE will be done using the analytic value of the hyperparameter (χ = 1).

In Fig. 3, we present the evolution of the reconstruction errors with respect to the total in-
coming flux. As previously, photon noise and detector noise (σdet = 1 e−) are added in the
simulated images used by COFFEE to perform the estimation.

In Fig. 3, one can see that in a low flux regime, both reconstruction errors upstream and
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Fig. 2. Regularization metrics : reconstruction error upstream (red line) and downstream
(blue line) of the coronagraph as functions of the hyperparameter value

Fig. 3. Reconstruction error (solid red line) upstream (left) and downstream (right) as a
function of the incoming fluxα. For comparison, 1/

√
α (magenta dashed line) theoretical

behaviour is plotted for photon noise only. The dotted-dashed black line represent the WFE
value upstream and downstream of the coronagraph.
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downstream reach a saturation level, which correspond to the WFE value, rather than becom-
ing arbitrarily large. Such a behaviour originates in the regularization metric: in a low flux
regime, the speckles that originate in aberrations upstream of the coronagraph, which are used
by COFFEE to estimate the aberrations, can hardly be distinguished from the noise. The less
these speckles are visible in the images, the less the corresponding aberrations can be estimated
using COFFEE. The limit is reached when no speckles are visible : in such a case, the estimated
phase tend to zero and the reconstruction error is equal to the WFE value. Notice that without
regularization metric, the reconstruction errors would have been much stronger in a low flux
regime, due to noise propagation (as presented in Figure 2, in the case of an under-balanced
hyperparameter).

When the flux increases, the reconstruction error evolution is proportional to 1/α, which
correspond to a photon noise limited regime. For very high flux values (α > 109 photons), the
upstream reconstruction error seems to reach another saturation level. We have shown that this
saturation, slightly above 1 nm RMS can be attributed to numerical difficulties in the mini-
mization due to the very high dynamic range of the noise variance in the criterion. If it were of
practical interest, these difficulties could be solved to reach even better accuracies.

In this paper, we consider the case of a high-contrast imaging instrument calibration, per-
formed off-line prior to the observation with a high SNR value. Thus, considering the noise
propagation behaviour presented above, the following simulations will be performed with
an incoming flux valueα = 109 photons and a read-out noise (RON) of standard deviation
σdet= 1 e−.

3.3. Choice of a diversity phase

This section aims at studying the sensitivity of COFFEE to the diversity phaseφdiv, which was
until now a mix of defocus and astigmatism:φdiv = adiv(Z4 + Z5) with adiv = 0.8 rad RMS
(202 nm RMS atλ = 1589 nm), introduced upstream of the coronagraph. This choice has been
made following Sauvageet al. [14], who demonstrated that for a perfect coronagraph model
and low order aberrations, such a diversity phase allowed a suitable criterion shape for the
minimization. Indeed, the use of this diversity phase instead of defocus alone enlarges the global
minimum, leading to an easier criterion minimization. In this Section, we study the influence of
the diversity phase on the reconstruction accuracy more thoroughly and for realistic high order
aberrations and coronagraph.

In classical phase diversity (no coronagraph), the optimal diversity phase depends on several
parameters such as the signal to noise ratio (SNR), the level of the aberrations and their PSD
[22]. A theoretical work, based on the computation of the Cramer-Rao lower bound (following
Leeet al. [23]) could be performed to determine an optimal diversity phase; however, such a
study would assume that there are no local minima in the criterion. Since we know that such
minima appears in the criterion when the diversity phase amplitude is small, we adopt, in this
section, a more practical approach to determine a suitable diversity phase for an aberration
estimation with nanometric precision.

We will consider different diversity phases: a diversity phase composed of defocus alone,
φdiv = adivZ4, and a diversity phase composed of a mix of defocus and astigmatism,φdiv =
adiv(Z4+Z5). For each diversity phase, the evolution of the reconstruction errors with the di-
versity phase amplitudeadiv value will be plotted for 3 different WFEu value upstream of the
coronagraph.The parameters used in this simulation are gathered in Table 1.

Figure 4 shows the evolution of both reconstruction errors upstream and downstream of the
coronagraph with respect to the amplitudeadiv. Here, the reconstruction error is due to noise and
to local minima, which are gradually removed when the diversity phase amplitude increases,
leading to an improvement of the estimation accuracy. When the diversity phase amplitude
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Fig. 4. Reconstruction errors upstream (left) and downstream (right) of the coronagraph as
functions of the amplitudeadiv of a diversity phase composed of defocus only (Z4, dashed
lines), or composed of a mix of defocus and astigmatism (Z4+Z5, solid lines).

adiv is high enough, all local minima are removed. Then, the reconstruction error reaches a
saturation level which correspond to the level of noise in the images.

One can notice that with a diversity composed of defocus and astigmatism, the reconstruction
error decreases faster than in the case of a diversity composed of a defocus alone. In order to
haveεu < 5 nm RMS,adiv must be greater than 2×WFEu when the diversity is composed of
defocus and astigmatism, and greater than 2.5×WFEu when it is composed of defocus alone.

This result confirms what has been shown in a simple case with a perfect coronagraph model
[14]: a diversity phase composed of a mix of defocus and astigmatism enlarges the global
minimum and pushes away local minima, making criterionJ (Eq. (3)) easier to minimize, and
thus allowing a more accurate estimation of the aberrations both upstream and downstream of
the coronagraph.

3.4. Sensitivity to the a priori assumption accuracy

As mentioned in Section 2.2, thea priori assumption about the aberration PSD considered by
COFFEE is derived from [18]. However, this assumption will not be exact for all optical surface;
for instance, the PSD that correspond to the polishing error of the Very Large Telescope primary
mirrors follow a 1/ν3 power law, as demonstrated by Bordé and Traub [8].

In this section, the sensitivity of COFFEE to the validity of the assumed PSD is evaluated:
using parameters listed in Table 1, coronagraphic images are computed with aberrations gener-
ated with three different power laws: 1/ν, 1/ν2 and 1/ν3. Then, using these simulated images,
COFFEE perform the aberration estimation assuming a PSD following a 1/ν2 power law (as
described in Section 2.2).

Aberration’s PSD εu εd

Sφk ∝ 1/ν 3.08 nm RMS 5.85 nm RMS
Sφk ∝ 1/ν2 2.28 nm RMS 4.09 nm RMS
Sφk ∝ 1/ν3 1.54 nm RMS 3.40 nm RMS

Table 2. Comparison of COFFEE’s estimation accuracy when thea priori knowledge on
the aberration’s PSD is not perfectly accurate. As previously,k stands foru (upstream) or
d (downstream).
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Table 2 shows the results of this evaluation. One can see that COFFEE is not very sensitive
to thea priori accuracy, since the reconstruction errors remain indeed small when the PSD
assumed by COFFEE does not perfectly match the actual PSD.

WhenSφk follows a 1/ν power law, we note a slight increase in the reconstruction error. We
have checked that, as expected, this increase is due to very high frequencies in the phase which
are over-regularized and thus not reconstructed. In the conditions of our simulations, these very
high frequencies are actually beyond the spatial frequencies that the DM is able to control, so
that in closed loop this HF error on the reconstructed phase would have no impact.

We note that whenSφk follow a 1/ν3 power law, reconstruction errors are lower than when
the correct 1/ν2 power law is considered. Again, the reconstruction errors originate mostly
in the estimation of the high frequency aberrations, which give birth to lower energy speckle
than the low frequency aberrations. When the PSD follows a 1/ν3 power law, the quantity of
high frequencies decreases in the aberrations to estimate, leading to an improved reconstruction
error.

4. Circumventing calibration errors of the diversity phase: the myopic approach

The value of the diversity phaseφdiv is one of the few inputs COFFEE needs to perform the
phase estimation. Thus, an imprecise calibration ofφdiv will lead to an error on the estimated
aberration. In the case of classical phase diversity, this error is the one that drives the total error
budget [24]. In [15], we demonstrated that an errorεdiv on the knowledge ofφdiv was leading to
a reconstruction error of aboutεdiv/2 on both upstream and downstream estimated aberrations.
Now that both aliasing and model errors have been tackled in COFFEE, the diversity calibration
error would be the most important one in the error budget.

The most convenient way to introduce the diversity phaseφdiv on the instrument is to modify
the reference slopes of the AO loop to introduce a calibrated aberration, as described in [15].
The accuracy of such a process is thus limited by the DM’s ability to achieve a given shape,
leading to an errorεDM

div on the phase diversityφDM
div actually introduced. As this error will

always be present on an AO system (thermal evolution of the DM, ageing of influence functions,
inability to re-calibrate them regularly), we have adapted COFFEE to make it able to perform a
joint estimation of an error onφdiv. This approach, called hereafter “myopic estimation”, consist
in a slight modification of the criterionJ to be minimized (Eq. (3)), in which an additional
unknown parameterφε (called hereafter diversity error phase) is introduced:

J(α,β ,φu,φd,φε ) =
1
2

∥

∥

∥

∥

ifoc
c − (αfochdet⋆hc(φu,φd)+βfoc)

σ foc
n

∥
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∥

∥

2

+
1
2

∥
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∥

idiv
c − (αdivhdet⋆hc(φu+φcal

div +φε ,φd)+βdiv)

σdiv
n

∥

∥

∥

∥

2

+R(φu)+R(φd)+R(φε),

(13)

whereφcal
div is the calibrated diversity phase:φdiv = φcal

div + φε . R(φε) is an optional regulariza-
tion metric designed to enforce our knowledge thatφε should be small and smooth. Using the
gradient ∂J

∂φε
(whose computation is trivial knowing∂J

∂φu
), COFFEE is able to perform a joint

estimation ofφε along with the previously estimated parametersα,β ,φu andφd.
In this paper, the estimated phasesφu andφd are expanded on a pixel basis, which allows

the estimation of high-order aberrations. However, since the diversity phase is composed of
low order aberration, one can expect that the errorφε will be mainly composed of low order
aberrations. Thus, in order to optimize COFFEE’s performance, the estimation ofφε has been
implemented in two different ways:
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⋄ φε can be expanded on a pixel basis if high-order patterns (such as dead actuators) are
expected in the diversity error phase. In this case, the regularization metricR(φε) used
will have the same expression asR(φu), presented in Section 2.2.

⋄ If only low order aberrations are expected inφε , it can be expanded on a truncated Zernike
basis, composed of a few Zernike modes (typically up to 5 ifφdiv is composed of defocus
(Z4) and astigmatism (Z5)). With this basis, which reduces the number of parameters to
be estimated, no regularization metric dedicated toφε is needed.

We validate this myopic approach by a realistic simulation: using parameters gathered in
Table 1, we simulate coronagraphic images, and consider that the diversity phase used for the
simulation is not perfectly known in the estimation stage. The coronagraphic simulated diversity
image is computed with a diversityφdiv = φcal

div +φε , whereφε = aε(Z4+Z5), considering that
the amplitude of the phase diversity is not perfectly known. In this simulation,aε = 0.04 rad
RMS (10 nm RMS).

COFFEE’s phase reconstruction is then performed using both simulated images considering
that the diversity phase is equal toφcal

div , first without the myopic estimation, then with an
estimation ofφε expanded on pixel basis and on a truncated Zernike basis composed of 4
modes: tip, tilt (which allows an estimation of a differential tip-tilt between the two images),
defocus and astigmatism.

εu εd

φε : no estimation 6.92 nm RMS 8.51 nm RMS
φε : estimation on a pixel-wise map 2.55 nm RMS 5.45 nm RMS
φε : estimation on 4 Zernike modes2.64 nm RMS 4.16 nm RMS

Table 3. Comparison of COFFEE estimation accuracy with and without myopic estimation
of φε when the diversity phase is not perfectly known.

The reconstruction errors corresponding to each reconstruction are gathered in Table 3. One
can clearly see here that the myopic estimation approach significantly improves the recon-
struction accuracy, roughly by a factor 2, allowing an optimal use of COFFEE even when the
diversity phaseφdiv is not perfectly known.

The usefulness of this myopic approach will be further illustrated in Section 5.2, where we
show that the estimation of an error on the diversity phase allows us to improve the contrast on
the detector plane in a compensation process.

5. Closed loop quasi-static aberration compensation using COFFEE

In this Section, we present COFFEE’s performance in a closed loop compensation process.
We consider here the case of the calibration of a SPHERE-like instrument. Two coronagraphic
images are simulated using randomly generated aberrations, whose PSD follows a 1/ν2 law.
Then, using these two simulated coronagraphic images, the aberrations upstreamφu andφd are
estimated using COFFEE.

Once the phase reconstruction is performed, we modify the DM actuator voltages to com-
pensate for the estimated aberrations and thus optimize the contrast in the detector plane. This
compensation is performed using two different techniques: in Section 5.1, we use the conven-
tional phase conjugation. In Section 5.2, we minimize the energy in a chosen area in order to
optimize the contrast in the selected region of the detector plane. To perform such a compen-
sation, we have developed a method dedicated to high-contrast imaging instruments that does
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not rely on any small aberration approximation. These simulations are performed using the
parameters gathered in Tables 1 and 4.

Lyot stop pupil Dd = 0.96Du

Incoming flux 109 photons
Detector noise σdet= 1 e−

Deformable mirror (DM)
41× 41 actuators, Gaussian-shaped influ-
ence functions

Table 4. COFFEE: parameters used for the compensation simulations of Section 5

In order to perform a realistic simulation, we consider here that an errorφε is made on the
diversity phase: the coronagraphic diversity image is computed with a diversity phaseφsim

div =
φdiv +φε . In this section, we consider thatφε = aε(Z4+Z5), with aε = 0.04 rad RMS (10 nm
RMS).
COFFEE estimates the aberrations considering that the calibrated diversity phase is equal to
φdiv, and jointly searches for the diversity phase errorφε , as described in Section 4.

5.1. Phase conjugation

Conventional phase conjugation aims at compensating for the aberrations upstream of the coro-
nagraphφu in an iterative process. After its criterion minimization, COFFEE gives an estimation
φ̂u. The aberrations upstream of the coronagraph at the iterationi +1 are thus given by:

φ i+1
u = φ i

u−gφ̂DM
u , (14)

whereg is the gain of the iterative process (g= 0.5 in this simulation) and̂φDM
u is the aberration

introduced by the DM in the entrance pupil plane. Such an aberration corresponds to the best
representation of̂φu achievable by the deformable mirror. LetF be the DM’s influence matrix
andT its generalized inverse. The aberration introduced by the DM can be computed as follow:

φ̂DM
u = FTφ̂u. (15)

Figure 5 presents the result of the simulation of a compensation performed by phase conju-
gation after 5 iterations of the loop (the average computation time for one loop iteration is 2
minutes). On this figure, one can see that the aberration compensation performed using COF-
FEE estimation allows a significant improvement in the coronagraphic images (figure 5, left).
In particular, the average contrast plot (figure 5, right) shows that after compensation, the per-
formance in the area controlled by the DM (±20λ/D) is very close to the one that would be
obtained from a coronagraphic image computed without aberrations.

We note that the level of contrast reached after compensation presented in Fig. 5 exceeds the
SPHERE instrument specification for off-line calibration, which relies on a phase estimation
based on classical phase diversity (no coronagraph). In particular, classical phase diversity is
not able to estimate high-order frequencies, and thus will not compensate for speckles located
beyond 8λ/D. The use of COFFEE, which allows a compensation in the whole area controlled
by the DM in the detector plane (as showed in Fig. 5), could thus improve the SPHERE instru-
ment performance.

5.2. Creation of a Dark Hole on the detector

Speckle nulling iterative techniques aim at minimizing the energy in a chosen area of the de-
tector in order to facilitate exoplanet detection in this area, called a “Dark Hole” (DH). To
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Fig. 5. COFFEE : simulation of aberration compensation using classical phase conjugation.
Left : coronagraphic images before (top) and after five iterations of the closed loop process
(bottom, logarithmic scale for both images). Right: normalized average raw contrast com-
puted from the images without coronagraph (solid red line), with coronagraph before (solid
green line) and after compensation (solid blue line). For comparison, the contrast computed
from a coronagraphic image computed without any aberrations is plotted as well (dashed
black line).

create this DH, the methods developed until now, which rely on a small aberration approxi-
mation, minimize the energy during an iterative process [8, 9]. This process requires several
iterations and is based on the knowledge of an interaction matrix between the detector plane
and the DM pupil plane to create the Dark Hole on the detector.

Here, we propose a new method to minimize the energy that does not rely on any small aber-
ration assumption, allowing us to deal with high amplitude phase aberrations such as the ones
created by the DM dead actuators (which are currently part of the SPHERE instrument’s limita-
tions). Besides, this method takes into account both upstream and downstream aberrations. This
compensation method, coupled with COFFEE would be particularly adapted to the calibration
of a high-contrast imaging instrument.

Let us define the energy in the focal planeEDH in the DH as:

EDH = α ∑
m,n∈DH

|ΨDH(m,n)|2 (16)

With m,n the pixel position in the DH (for the sake of simplicity, these variables will be omitted
in the following).α is the incoming flux andΨDH the electric field in the DH area which, using
notations of Section 2.3, is given by:

ΨDH(v) = F
−1

{

F

[

F
−1

(

Puej(φu+ψ(v))
)

M

]

Pdejφd

}

. (17)

ψ represents the aberration introduced by the DM:ψ(v) =Fv, with v the set of voltages applied
to the DM actuators. Thus, creating a DH on the detector means finding the set of voltages vDH

that minimize the energyEDH(v), knowing the relation between the entrance pupil plane and
the detector plane of the high contrast imaging system.

Here, we minimizeEDH(v) by means of the same optimization method as the one which was
used by COFFEE to perform its estimation, which is a limited memory variable metric (BFGS)
method [16,17]. Such an operation gives us the voltage vDH, and thus the aberrationψ(vDH) to
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introduce using the DM to create the DH. Unlike others energy minimization methods, the one
we propose here does not require an interaction matrix calibration between the detector plane
and the DM pupil plane. In particular, using COFFEE, we are able to estimate the aberrations
downstream of the coronagraph, and among them the coronagraphic PSF position on the de-
tector, i.e. downstream tip-tilt. This estimation is then taken into account in our compensation
method (Eqs (16) and (17)). Thus, variation in the aberrations downstream of the coronagraph
will not require any particular action during the compensation process, since these variations
will be estimated by COFFEE along with the aberrations upstream of the coronagraph.

As mentioned previously, COFFEE does not estimate amplitude aberrations. However, the
compensation method described in this section can easily be adapted to take into account am-
plitude aberrations upstream of the coronagraphξ , by modifying Eq. (17):

ΨDH(v) = F
−1

{

F

[

F
−1

(

Puej(φu+ψ(v))+ξ
)

M

]

Pdejφd

}

(18)

With ξ the amplitude aberrations. Thus, provided these aberrations are known, amplitude
aberrations does not limit the performance of the compensation method presented in this
Section.

We now validate this new energy minimization method by simulation. It requires the knowl-
edge of the aberrations upstreamφu and downstreamφd of the coronagraph, and of the incoming
flux α. In this section, we use COFFEE to perform the estimation of these parameters, and then
minimize the energy in order to create a DH in the detector plane. The energyEDH is minimized
between 5λD and 20λ

D to create the Dark Hole in the right part of the focal plane. As in the phase
conjugation case (Section 5.1), such a compensation is performed in an iterative process, where
the aberrations upstream of the coronagraph at the iterationi +1 are given by:

φ i+1
u = φ i

u+gFvDH. (19)

As previously, we considerg= 0,5 in this simulation.
The result of this compensation after 5 iterations of the loop is presented in Fig. 6 (the

average computation time for one loop iteration is 3 minutes). In the targeted area (between 5λ
D

and 20λ
D ), this method allows a significant improvement: when the compensation is performed

by conventional phase conjugation (Figure 5), the average contrast in the same area is 7.2 10−7.
The use of our new compensation method allow a contrast improvement by a factor 10 after
compensation (Figure 6, bottom left). Besides, the interest of the myopic approach is illustrated
in Fig. 6 : when the closed loop process is performed without estimation of an error on the
diversity phase, the performance decreases by a factor 2 (solid cyan line).

If a very high contrast level is required, this compensation technique can thus be used instead
of conventional phase conjugation to calibrate the instrument. Besides, in order to push down
the dark hole floor, it is possible to narrow the energy minimization area, as mentioned by Bordé
et al. [8].

6. Conclusion

In this paper, an extended version of our coronagraphic phase diversity, nicknamed COFFEE,
has been presented. The use of a regularized pixel basis in the estimation allows COFFEE
to estimate high order aberrations with nanometric precision (Section 2). Besides, thanks
to a modification of the coronagraphic PSF used in the imaging model, COFFEE is no
longer limited to a particular coronagraphic device. COFFEE’s performance has been studied
and discussed in Section 3, while Section 4 has described a so-called myopic extension of
COFFEE, which consists in a joint estimation of an error on the diversity phase in order

#194710 - $15.00 USD Received 26 Jul 2013; revised 10 Oct 2013; accepted 15 Oct 2013; published 16 Dec 2013
(C) 2013 OSA 30 December 2013 | Vol. 21,  No. 26 | DOI:10.1364/OE.21.031751 | OPTICS EXPRESS  31766



Fig. 6. COFFEE : simulation of aberration compensation by minimizing the energy in a
chosen area (between 5λ

D and 20λ
D in the right part of the focal plane). Left : coronagraphic

images before (top) and after five iterations of the closed loop process (bottom, logarithmic
scale for both images). Right: normalized average raw contrast computed in the dark hole
area from the images without coronagraph (solid red line), with coronagraph before (solid
green line) and after compensation. After minimization, the average contrast in the Dark
Hole is 3.1 10−8 when the myopic approach is used (solid blue line), and 6.6 10−8 other-
wise (solid cyan line). For comparison, the contrast computed from a coronagraphic image
computed without any aberrations is plotted as well (dashed black line).

to improve COFFEE’s accuracy in a real system, where the diversity phase is not perfectly
known. Lastly, in Section 5, the achievable contrast optimization on a SPHERE-like system
using COFFEE in a compensation process has been studied using realistic simulations. In the
latter section, we have presented a new compensation method which minimizes the energy in a
chosen area of the detector through a non-linear minimization, in order to reach higher level of
contrast than those that can be obtained using phase conjugation.

The experimental validation of this high-order and myopic version of COFFEE is ongoing,
and aims at demonstrating the ability of COFFEE to estimate both low and high order
aberrations, and to compensate for them. Several perspectives are currently considered for this
work. With an adaptation of the coronagraphic imaging model, COFFEE can be extended to
work on ground-based, long exposure images with residual turbulence induced aberrations.
Another perspective lies in optimization of the computation time required for the aberration
estimation, possibly following I. Mocœuret al. [25]. These two improvements will allow
COFFEE to work on-line, in closed loop during the scientific exposure. A further perspective
is to extend COFFEE to the estimation of amplitude aberrations, mandatory to reach the very
high levels of contrast required for exo-earth imaging, in order to create a dark hole area on the
detector using the method presented in this paper.
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A. Gradients expression

The numerical minimization of criterionJ (Eq. (3)) requires the analytic expression of gradi-
ents ∂J

∂φu
, ∂J

∂φd
, ∂J

∂α and ∂J
∂β to estimate the aberrations upstreamφu and downstreamφd of the

coronagraph, as well as the incoming fluxα and the residual backgroundβ . Let us rewrite here
the expression of criterionJ:

J(α,β ,φu,φd) =
1
2

∥

∥

∥

∥

ifoc
c − (αfochdet⋆hfoc

c +βfoc)

σ foc
n

∥

∥

∥

∥

2

+
1
2

∥

∥

∥

∥

idiv
c − (αdivhdet⋆hdiv

c +βdiv)

σdiv
n

∥

∥

∥

∥

2

+R(φu)+R(φd)

= Jfoc+ Jdiv+R(φu)+R(φd)
(20)

The expressions of∂J
∂α and ∂J

∂β can be found in [15]. The calculation of gradients∂J
∂φu

and
∂J

∂φd
is performed following what have been done in [15]: we deriveJfoc, and then deduce the

gradients’ expressions ofJdiv using a trivial substitution. The notations used here are the ones
introduced in Section 2:

∂Jfoc

∂φd
= 2ℑ

{

ψ∗
0 − εψdF

[

MF
−1 (ψu)

]∗×F

[

∂Jfoc

∂hfoc
c

(Ψ0− εΨc)

]}

∂Jfoc

∂φu
= 2ℑ

{

ψ∗
0F

[

∂Jfoc

∂hfoc
c

(Ψ0− εΨc)

]}

− εψ∗
uF

[

M
∗
F

−1
(

Ψ∗
dF

{

∂Jfoc

∂hfoc
c

[Ψ0− εΨc]

})]

(21)

with:
∂Jfoc

∂hfoc
c

=
1

σ foc
n

2 [αhdet(αhdet⋆hfoc
c − ifoc

c )] (22)

and:
ψu = Puejφu

ψd = Pdejφd Ψd = F
−1(ψd)

ψ0 = Puej(φu+φd) Ψ0 = F
−1(ψ0)

Ψc = F
−1{ψdF [MF

−1(ψu)]}

(23)

The regularization metric expressionR(φk) (k is for u (upstream) ord (downstream )) is given
by Eq. (6). Its gradient∂R

∂φk
can be written as:

∂R

∂φk
= µk‖∆φk(r)‖ . (24)

where∆ represent the Laplacian operator.
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