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Abstract: The synthesis of polymers from renewable resources is a burning issue that is actively
investigated. Polyepoxide networks constitute a major class of thermosetting polymers and
are extensively used as coatings, electronic materials, adhesives. Owing to their outstanding
mechanical and electrical properties, chemical resistance, adhesion, and minimal shrinkage after
curing, they are used in structural applications as well. Most of these thermosets are industrially
manufactured from bisphenol A (BPA), a substance that was initially synthesized as a chemical
estrogen. The awareness on BPA toxicity combined with the limited availability and volatile cost
of fossil resources and the non-recyclability of thermosets implies necessary changes in the field
of epoxy networks. Thus, substitution of BPA has witnessed an increasing number of studies both
from the academic and industrial sides. This review proposes to give an overview of the reported
aromatic multifunctional epoxide building blocks synthesized from biomass or from molecules
that could be obtained from transformed biomass. After a reminder of the main glycidylation
routes and mechanisms and the recent knowledge on BPA toxicity and legal issues, this review
will provide a brief description of the main natural sources of aromatic molecules. The different
epoxy prepolymers will then be organized from simple, mono-aromatic di-epoxy, to mono-aromatic
poly-epoxy, to di-aromatic di-epoxy compounds, and finally to derivatives possessing numerous
aromatic rings and epoxy groups.

Keywords: epoxidation; aromatic; epichlorohydrin; tannin; lignin; cardanol

1. Introduction

Amidst materials widely used in plastic industry nowadays, thermosets (or thermosetting
polymers) represent about 20% of plastic production [1]. They are formed from a liquid or solid
mixture of various ingredients including at least one or more monomers. One of these monomers
at least exhibits a functionality equal or higher than three, thus enabling the creation of a solid
three-dimensional non-fusible network via an external action such as heating or UV irradiation [2].
Thermosets include a wide range of reactive systems such as phenolic and urea formaldehyde
resins, unsaturated polyesters, and polyepoxides, the latter accounting for nearly 70% of the market.
Polyepoxides are one of the most versatile class of compounds with diverse applications, especially
coatings, which dominate the market, but also water containers, automotive primer, printed circuit
boards, semiconductor capsules, adhesives, and aerospace composites. The global production of
epoxy prepolymers is estimated to reach 3 million tons by 2017 for a market of US$ 20 billion in
2015. This success arises from the excellent mechanical strength and toughness, outstanding chemical,
moisture, and corrosion resistance of the epoxy thermosets [3,4]. This list does not include various
interesting process-related characteristics such as: the absence of volatile products emitted during the
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polymerization reaction, the large choice of monomers available or the high adhesion properties to a
variety of surfaces.

Over 90% of these epoxy materials are based on bis(4-hydroxyphenylene)-2,2-propane, known
as bisphenol A (BPA), a petrol-based molecule first synthesized in the 1890s and used as a synthetic
oestrogen [5]. Aromatic compounds are widely used in organic materials for their stability, their
toughness, and above all their ability to structure the matter by π-stacking, thus allowing BPA to
confer good thermal and mechanical properties to the epoxy thermosets. Commercialized for more
than 50 years, BPA, mainly through its epoxy form DiGlycidylEther of Bisphenol A (DGEBA), is
nowadays spread in many coatings, adhesives, laminates and composites, but also many domestic
or even health related-products such as plastic bags, food containers and metal cans, dental sealants,
soaps and lotions [6,7].

However, epoxy thermosets are sensitive to hydrolysis, which may cause BPA to leach, leading to
widespread human exposure [6–9]. Unfortunately, it has been classified as carcinogen mutagen and
reprotoxic (CMR), and is recognized as an endocrine disruptor [10]. Consequently, many governments
have recently hardened the legislation regarding the production and use of BPA, especially in baby’s
bottles, food containers and medical supplies [11,12]. Moreover, BPA is synthesized from oil-based
phenol and the 3D chemically crosslinked networks of thermosets prevent them from being recycled
by heating. The awareness on BPA toxicity combined with the limited availability and volatile cost
of fossil resources, and the non-recyclability of thermosets implies necessary changes in the field of
epoxy networks. Thus, substitution of BPA has witnessed an increasing number of studies both from
the academic and industrial sides. Over the past decades, many bio-based resources have been tested
as potential candidates for replacing BPA in epoxy resins, but very few of them have reached the
commercialization step. Among these, epoxidized natural oils [13–15] and modified cardanol [16] are
the only two types of epoxy resins based on natural and non-toxic precursors, commercially available
in the market. However, the low reactivity of the epoxy groups along their aliphatic backbone [1]
and the low glass transition temperature caused by the alkyl chain prevent them from competing
with BPA-based materials with their high Tg values and glassy moduli [17]. For this reason, many
researches have been devoted to using glycidylated aromatic bio-based materials as substitutes for
BPA. Very interesting and exhaustive reviews have recently been published on bio-based precursors
for thermosets and their hardeners [1,18–21], but to our knowledge, none of them focuses especially
on aromatic epoxy monomers based on biomass resources. In fact, only aromatic poly-epoxides seem
to be able to compete with DGEBA in terms of thermo-mechanical properties, making them of primary
interest for renewability.

Thus, the present review proposes to give an overview of the reported aromatic multifunctional
epoxide building blocks synthesized from biomass or from molecules that could be obtained from
transformed biomass. After a reminder of the main glycidylation routes and mechanisms and the recent
knowledge on BPA toxicity and legal issues, this review will provide a brief description of the main
natural sources of aromatic molecules. The different epoxy prepolymers will then be organized from
simple, mono-aromatic di-epoxy, to mono-aromatic poly-epoxy, to di-aromatic di-epoxy compounds,
and finally to derivatives possessing numerous aromatic rings and epoxy groups. For each one, the
curing agent used and the thermal properties (especially Tg and thermal degradation) of the crosslinked
material will be given along with their DGEBA-based counterparts if available. The potential toxicity
of the epoxy precursors will also be mentioned. Tables gathering all these results will be given at the
end of each part for comparative purposes.

2. Epoxidation Methods and Processes

Poly-functional epoxy compounds are very reactive building blocks and can lead to materials
by chain-growth polymerization or crosslinking with anhydrides, phenols and amines. They are
generally prepared by direct glycidylation, as showed in Scheme 1 [1,22,23]. It consists in reacting
an alcohol or amine derivative with epichlorohydrin (ECH) in the presence of an alkylammonium
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halide as a phase transfer catalyst, such as benzyltriethylammonium chloride, tetrabutylammonium
bromide or cetyltrimethyl ammonium chloride. Sometimes, epibromohydrin is used instead of its
chloride analogue [24]. A sodium or potassium hydroxide post-treatment is usually applied in same
pot to increase the number of epoxy rings. In fact, the phenolic oxygen may displace the chlorine
atom to directly yield the desired product via a SN2 mechanism, or open the epoxy ring causing the
formation of a chlorinated derivative that can be closed by a strong base through a SNi mechanism
(Scheme 2) [25,26]. SNi stands for Substitution Nucleophilic internal and is a nucleophilic substitution
mechanism that implies a retention of configuration.

Molecules 2017, 22, 149 3 of 47 

 

desired product via a SN2 mechanism, or open the epoxy ring causing the formation of a chlorinated 
derivative that can be closed by a strong base through a SNi mechanism (Scheme 2) [25,26]. SNi stands for 
Substitution Nucleophilic internal and is a nucleophilic substitution mechanism that implies a retention 
of configuration. 

 
Scheme 1. Synthesis of epoxy derivatives from phenol or aniline by direct glycidylation with epichlorohydrin. 

 
Scheme 2. Mechanism of coupling between phenolic compounds and epichlorohydrin (ECH) in the 
presence of a phase transfer catalyst (QX) [1,27]. 

The direct glycidylation of phenol has proven to yield several possible side products [28–32] 
including chlorinated and diol derivatives (Figure 1). Furthermore, the higher reactivity of benzoic acid 
may lead to an opening of the epoxy via both carbon atoms, leading to new chlorinated (B2), diol (B3) 
and oxetane ring (B1) side-products [33–37]. Another important side-product observed during the 
glycidylation step with epichlorohydrin is a benzodioxan derivative obtained by an intra cyclization 
occurring with two phenolic groups in ortho position (Scheme 3). 

 
Figure 1. Common side-products of the direct glycidylation of phenol (A1–A3) and benzoic acid (B1–B3). 

Scheme 1. Synthesis of epoxy derivatives from phenol or aniline by direct glycidylation
with epichlorohydrin.

Molecules 2017, 22, 149 3 of 47 

 

desired product via a SN2 mechanism, or open the epoxy ring causing the formation of a chlorinated 
derivative that can be closed by a strong base through a SNi mechanism (Scheme 2) [25,26]. SNi stands for 
Substitution Nucleophilic internal and is a nucleophilic substitution mechanism that implies a retention 
of configuration. 

 
Scheme 1. Synthesis of epoxy derivatives from phenol or aniline by direct glycidylation with epichlorohydrin. 

 
Scheme 2. Mechanism of coupling between phenolic compounds and epichlorohydrin (ECH) in the 
presence of a phase transfer catalyst (QX) [1,27]. 

The direct glycidylation of phenol has proven to yield several possible side products [28–32] 
including chlorinated and diol derivatives (Figure 1). Furthermore, the higher reactivity of benzoic acid 
may lead to an opening of the epoxy via both carbon atoms, leading to new chlorinated (B2), diol (B3) 
and oxetane ring (B1) side-products [33–37]. Another important side-product observed during the 
glycidylation step with epichlorohydrin is a benzodioxan derivative obtained by an intra cyclization 
occurring with two phenolic groups in ortho position (Scheme 3). 

 
Figure 1. Common side-products of the direct glycidylation of phenol (A1–A3) and benzoic acid (B1–B3). 

Scheme 2. Mechanism of coupling between phenolic compounds and epichlorohydrin (ECH) in the
presence of a phase transfer catalyst (QX) [1,27].

The direct glycidylation of phenol has proven to yield several possible side products [28–32]
including chlorinated and diol derivatives (Figure 1). Furthermore, the higher reactivity of benzoic
acid may lead to an opening of the epoxy via both carbon atoms, leading to new chlorinated (B2), diol
(B3) and oxetane ring (B1) side-products [33–37]. Another important side-product observed during the
glycidylation step with epichlorohydrin is a benzodioxan derivative obtained by an intra cyclization
occurring with two phenolic groups in ortho position (Scheme 3).
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To avoid these drawbacks, Meurs et al. [39] developed a process to obtain glycidyl derivatives
from phenol, glycidol and propylene carbonate but it requires the use of high temperatures in autoclave
and relatively harsh conditions. A two-step synthesis can also be used to form epoxy compounds:
it involves the O- or N-allylation of the corresponding alcohol or amine derivatives using an allyl
halide, followed by the oxidation of the resulting double bond (Scheme 4). Unfortunately, allyl chloride
and allyl bromide are both toxic derivatives. Moreover, hydrogen peroxide exhibitis low reactivity
toward allyl ether oxidation except at high concentrations or in the presence of metal transition
catalysts [40]. The use of stronger, more toxic peracids such as m-chloroperbenzoic acid (mCPBA)
is sometimes considered, but Aouf et al. [22] found that an excess of peracid is also required and
the m-chlorobenzoic acid formed during the oxidation of allylated gallic acid is difficult to eliminate.
The epoxidation of allyl groups by potassium peroxymonosulfate (also known as Oxone) can be
considered a sustainable pathway. It is based on the Shi epoxidation, which uses a fructose-derived
organocatalyst with Oxone and ketones to generate in situ dioxiranes [41], which are strong epoxidation
agents. However, the epoxidation of electron-deficient alkenes such as allyl groups by dioxiranes can
be very slow [42–44]. The reaction may require the use of ketones bearing highly electroattractive
groups such as 1,1,1-trifluoroacetone to increase the overall yield [22,45]. Enzymatic catalysts have
also been developed as greener alternatives for the oxidation of carbon-carbon double-bonds. First
developed to replace the Prileshajev reaction applied at an industrial scale to produce epoxy vegetable
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oils [46], one of these catalyst (immobilized lipase B from Candida antarctica (Novozym 435)) has also
been used by Aouf et al. [40] to obtain epoxy gallic acid and vanillic acid from their allylated precursors
in high yields.
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Overall, the direct glycidylation remains the main synthetic pathway used for the industrial
synthesis of Diglycidyl Ether of Bisphenol A, as it allows the recovery of both monomers and oligomers
for tunable properties [23,47]. By reacting bisphenol A with a controlled excess of epichlorohydrin, the
“taffy” process yields either monomers or short oligomers of DGEBA (Scheme 5). To increase the chain
length of the oligomers, “advancement” (with solvent) or “fusion” (without solvent) processes can
be chosen. They both consist in reacting BPA with an excess of a pre-synthesized DGEBA monomer
to extend the chain. “Fusion” process is generally preferred for the industrial production of DGEBA
oligomers as the purification steps are easier and the chlorine content of the final product is lower than
in the case of the “taffy” process, which requires an excess of epichlorohydrin.
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ether of vanillyl alcohol (DGEBA): (i) the taffy process with a controlled excess of epichlorohydrin and
(ii) the advancement/fusion process using an excess of a pre-synthesized DGEBA monomer.

In terms of sustainability, both bisphenol A and epichlorohydrin used for the synthesis of DGEBA
are mostly oil-based. BPA is obtained from reaction of acetone and phenol and epichlorohydrin
is synthesized in two steps by reacting hypochlorous acid on allyl chloride and then treating the
alcohol mixture obtained with a strong base [48]. In 2007, Solvay designed the EPICEROLTM process
to produce epichlorohydrin from bio-based glycerol, thus allowing to reduce the content of fossil
resources used for DGEBA production [49–53]. However, the percentage of carbon atoms in the
oligomers coming from ECH is low, thus making the impact limited. Furthermore, whatever synthetic
pathway or process is chosen, reagents (e.g., epichlorohydrin and allyl halides) are all carcinogen
agents (H350). Allyl bromide is also very toxic for the environment. The toxicity of these reactions
is a true issue, and alternatives have to be found over time. Although the production of epoxides is
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generally well-controlled by the manufacturer and the resulting resins and materials do not exhibit the
toxicity of these reactants, the intrinsic toxicity of BPA remains.

3. Toxicity of Bisphenol A and Regulations

Bisphenols (BPs) are part of the common class of endocrine disruptors because of their significant
hormonal activity, with Bisphenol A being the most famous of them. In fact, BPA exhibits one of
the highest production volume of chemicals worldwide [7], with a manufacture of approximately
3.8 million tons per year in 2006 [54]. About 80% of the global production of BPA is used for the
synthesis of polycarbonate, 18% for epoxy resins and the remainder for other applications, such
as food containers, paper products (e.g., thermal receipts), water pipes, toys, medical equipment,
and electronics [6,7]. As a consequence, human beings and environment are constantly exposed to
BPA: it has been detected in 95% of human urine samples, which indicates that this compound may
leach into food or water [7–9,55]. Furthermore, several studies found that BPA is present in high
prevalence in fetuses and infants [7,8,56] and has undeniably an impact on human health leading
to precocious puberty, cancer, diabetes, obesity, neurological disorders, and so on. Theoretical and
experimental studies can be carried out to forecast the potential toxicity of a compound or to determine
the different types of interactions between this compound and estrogen receptors. For example, the
“read-across” method, based on analogies between substances is currently developing. It first consists
in gathering data on the physical and biological properties of chemicals exhibiting a structure similar
to the target molecule. Then, by taking into account previously observed trends, it is considered
possible to extrapolate on the target molecule’s behavior [57]. QSAR (Quantitative Structure Activity
Relationship) models enable a qualitative and quantitative determination of the endocrine activity
in terms of affinity, and give some information about the underlying mechanism [58]. Recently,
Delfosse et al. [59] described for the first time the mode of action of BPA at the molecular scale and
developed a bio-informatics tool to predict the interactions between bisphenols and the target receptors
(estrogen receptors (ERs) or other members of the nuclear hormone receptor family). Numerous
studies demonstrated that bisphenol A has two major modes of actions: steroid related mode and
epigenetic mode. Concerning the latter, Dolinoy et al. [60] have shown the ability of BPA to alter
DNA methylation. Regarding the steroid related mode, BPA can act as an estrogen agonist when
it binds to nuclear estrogen receptors (ERα and ERβ) [61–64]. More recently, Takayanagi et al. [65]
demonstrated that BPA also binds to the estrogen-related receptor-γ (ERRγ) with high constitutive
activity. Furthermore, BPA also behaves as an androgen receptor antagonist (AR) which affects the
activation and function of the AR [66,67]. According to many lines of evidence, BPA acts as an
endocrine disruptor even at low doses. A review, based on hundreds of studies, concluded that there
is sufficient evidence for low dose effects of BPA. Indeed, for these studies, authors used doses below
those used for traditional toxicological studies, and found nonmonotonic dose-response curves [68].

Bisphenols are composed of two phenols linked by a central carbon atom, which in the case of
BPA bears two additional methyl groups (Figure 2B). These structural features make BPA able to mimic
the natural estrogen 17β-estradiol (Figure 3), in terms of binding ability to estrogen receptors [69,70].
In fact, the main characteristics of the natural ligands required for the steroid activity are the presence
of phenol groups on a hydrophobic backbone [71,72]. A recent paper has demonstrated that all
the structural elements of BPA are prerequisite for binding the estrogen-related receptor-γ (ERRγ),
especially the two phenolic and methyl groups [10]. Firstly, the authors demonstrated that the phenol
structure of BPA is an essential element to bind ERRγ and only one of the two phenolic hydroxy groups
is required for the full binding. Nevertheless, the presence of a second oxygen-based group increases
the steroid activity [73].
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By analogy with 17β-estradiol, these two hydroxyl groups are essential to establish interactions
with the hydrophobic pocket created by the receptor [74,75]. This pocket consists of several combining
sites where estrogen or other ligands can bind. The size of the pocket is 440 Å [74–76], which is bigger
than the natural estrogen molecule size (245 Å) allowing hydrogen binding interactions (Figure 4).
Liu et al. [77] also showed that the substitution of one of the two aromatic rings by a methyl or ethyl
group led to a decrease of the interaction with the hydrophobic part of the receptor, whereas the
presence of chlorine substituents on the 3–5 positions of the first aromatic ring strengthens affinity
with the receptor.

The presence and the distance between the two hydroxyl groups are not the only critical factors.
Okada et al. [10] clearly demonstrated that the alkyl groups on the central carbon atom of bisphenol
play a key role in selection of the human estrogen receptors: ERRγ or ERα. ERα prefers the bulkier
and more electrophilic alkyl groups, whereas ERRγ prefers the less bulky and less electrophilic alkyl
groups. A bulky group on the central carbon atom is obviously disadvantageous in terms of binding
BPA to ERRγ’s binding pocket and reduces its activity. Furthermore, it was shown that one of the
two methyl groups on the central carbon atom of BPA is involved in the hydrophobic intermolecular
interaction with the receptor residue, such as CH3-alkyl and CH/π interactions.

The increasing concerns about the detrimental effects of BPA has led governments to enforce
regulations mostly in the European Union and North America in order to limit the exposition of their
citizens to this substance. For example, in 2014, in line with the opinion adopted by the RAC (Risk
Assessment Committee), Bisphenol A has been classified in the hazard class reproductive toxicity
category 1B “may damage fertility”. In the frame of the REACH regulation, the French proposition of
the restriction of BPA in thermal papers was approved on the 6 July 2016 by the REACH Committee.
The BPA European legislation involves different elements such as the restriction of the contact of
infants and young people with this substance, through toys, feeding bottles, etc. [11,78–80]. BPA is
authorized as additive or monomer in the manufacture of plastic materials and articles in contact with
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food and water but a specific migration limit value of 0.6 mg/kg of food has been set [12]. Regarding
cosmetic products, Bisphenol A is recorded in the list of the prohibited substances [81]. All the products
made of BPA can’t be eligible for a positive Eco-Label [82] and the indicative limit of occupational
exposure [83] to BPA particles is 10 mg/m3. Some countries such as France have established even
more strict legislations towards BPA [84], and this country proposed BPA as a REACH Regulation
candidate substance of very high concern (SVHC) [85] and confirmed its advert on the 30 August 2016.
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Following the public concern and the stringent regulations on the production and use of BPA,
several bisphenol analogues have been produced as alternative substances. These following analogues,
BPF (4,4′-methylenediphenol) and BPS (4-hydroxyphenyl sulfone) (Figure 2C,D), are frequently
found in most scientific and environmental studies because they are among the main substitutes
of BPA in polycarbonate-based plastics and epoxy resins. Available studies have reported a variety of
detrimental effects of these bisphenol analogues [86] and showed that the toxicity of these analogs
is similar to or even greater than that of BPA [87,88]. The toxic effects include endocrine disruption,
cytotoxicity, genotoxicity, reproductive toxicity, neurotoxicity, etc. A recent article by Rochester
and Bolden [89], focusing on the hormonal activities of BPF and BPS demonstrated that these two
analogues have a hormonal action similar to BPA in vitro and in vivo. Hexafluorobisphenol A (BPAF)
and 4,4′-(1-methylpropylidene) bisphenol (BPB), two others substituents of BPA, have also shown
estrogenic and anti-androgenic activities [88]. Therefore, a harmless let alone renewable epoxy building
block is still required [90]. For this reason, bio-mass has been considered a cheap source of potentially
functionalizable monomers or oligomers. As previously stated, the already commercialized bio-based
epoxy monomers cannot compete with DGEBA-based materials in terms of thermo-mechanical
properties, because of their characteristic structure and low aromatic content. Thus, the next part will
briefly present the natural sources of renewable aromatic compounds potentially capable of standing
up for BPA replacement.

4. Main Natural Sources of Aromatic Moieties

The present part will briefly summarize the main sources of aromatic moieties bearing reactive
groups suitable for the introduction of epoxy moieties. This summary will include resources
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naturally containing small, phenolic compound such as eugenol extractible from plant natural oils,
or polyphenolic crosslinked polymers such as tannins and lignin that can be directly functionalized
or depolymerized into smaller molecules prior to epoxidation steps. Some information on their
availability or worldwide production will be given as well as the main known characteristics of their
structure. The reader may refer to the vastly documented review from Lochab et al. [91] and book
from Belgacem and Gandini [92] on renewable resources and naturally occurring phenolic derivatives
to obtain more detailed data.

4.1. Lignin

Lignin is the widest distributed aromatic biopolymer and the second most abundant naturally
occurring macromolecule after cellulose, constituting from 1% to 43% by weight of the dry
lignocellulosic biomass, with a potential availability exceeding 300 billion tons [17,93–95]. It is a
cell-wall component bonding cells together in the woody stems, providing them with their well-known
rigidity and impact resistance. Although its absolute structure remains unknown and varies according
to the plant it originates from and its environment, lignin is an amorphous three-dimensional polymer
network of three main methoxylated phenyl propane units (Figure 5) with seven major linkages: β-O-4
(aryl ether), α-O-4, β-β (pinoresinol), β-5 (phenylcoumaran), β-1 (diphenylmethane), 5,5 and 4-O-5
(diphenyl ether) linkages. It exhibits various functional groups such as aliphatic and phenolic hydroxyl,
carboxylic, carbonyl and methoxy moieties.
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Usually, lignin is viewed as a waste material derived from the wood pulp in the paper industry
and available in large quantity (50–70 million of tons estimated) [96]. Unfortunately, only 1% to 2% of
overall lignin is used for more specific applications, the remaining primarily serving as a (bio)fuel for
the cellulose extraction [97]. Lignin is extracted from lignocellulosic biomass by two main categories
of processes: (i) sulfur processes yielding lignosulfate and Kraft lignin and (ii) sulfur-free processes
yielding organosolv and soda lignin. These extraction methods greatly influence the already complex
structure of the polymer, sometimes making it difficult to directly use it as a chemical precursor.
For this reason, works have been carried out to depolymerize lignin into smaller, simpler aromatic
molecules suitable for chemical modification and/or polymerization. For example, when lignin is
depolymerized, compounds such as vanillin, phenols derivatives, cresols, ferulic and coumaric acids
are released (Figure 6). All these molecules are already oil-based but this pathway offers an interesting
solution for their renewability, thus increasing thermosets renewability.
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4.2. Tannins

Tannins are the second bio-based source of natural phenolic moieties and the third most abundant
compounds extracted from wood biomass, with 160,000 tons bio-synthesized each year [98,99]. They
can be found mainly in the soft tissues such as wood, bark, leaves or needles of all vascular and some
non-vascular plants, in which they play a protective role against outside aggressions and in plant
growth regulation [100]. Tannins are polyphenol derivatives with low molecular weights and can be
divided into three main categories: hydrolysable tannins, condensed tannins and complex tannins, the
latter being a combination of the first two.

Hydrolysable tannins are a mixture of phenolic esters of sugars (Figure 7A) readily hydrolyzed
by acids, alkalis or enzymes, and present a low availability (less than 10% of the world’s commercial
production) [101]. They are mainly used in the tanning industry. The condensed tannins may represent
the most interesting derivatives with 90% of global production. They are based on four types of
repeating flavonoid units: profisetinidin, procyanidin, prorobinetidin, and prodelphinidin linked
by C4–C6 or C4–C8 bonds (Figure 7B). Thanks to their availability, aromatic moieties and rigid
structure, their numerous functionalizable hydroxyl functions and nucleophilic sites, condensed
tannins may represent an interesting candidate for BPA substitution. Similarly to lignin, some studies
are conducted on the depolymerization of tannins to obtain phenolic monomers as building units
for thermosets [98,102,103]. For example, Roumeas et al. [102] successively used thiol and furan
derivatives as nucleophiles for the acid-assisted depolymerization of condensed tannins into catechin
and thioether or furan derivatives of catechin.

Finally, a last class of tannins, phlorotannins, can be found in non-vascular plants such as algae and
are based on polymerized phloroglucinol (1,3,5-trihydroxybenzene) with a large range of molecular
weights [98]. They play a role similar to condensed tannins in vascular plant and can as well be
divided into categories according to the link between phloroglucinol units e.g., ether, phenyl bonds,
a combination of both, or a dibenzo-p-dioxin bond (Figure 8).
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4.3. Cardanol

Cashew nut shell liquid (CNSL) is a reddish-brown liquid that can be extracted from the soft
honeycomb structure located inside the cashew nut shell and constitutes from 30 to 35 wt % of
it [16,91,104]. With approximately 2.1 millions of tons of cashew nuts produced every year, mainly
from countries in Asia (India, Vietnam) and Africa (Nigeria, Ivory Coast), CNSL represents an abundant
non-edible by-product that has already found various applications in coatings, laminates and adhesives
to name a few. However, it also represents an interesting source of aromatic chemical building blocks.
In fact, CNSL is mainly composed of four major phenolic derivatives: anacardic acid, cardanol,
cardol and 2-methyl cardol (Figure 9), the percentage of which depends on the extraction method.
Among these, cardanol is often regarded as the most interesting compound, as its percentage can
reach 60% in some CNSL grades. Its structure is defined as a mono-aromatic phenol substituted in
meta-position by a C15 alkyl chain, on which none to three unsaturations in C8, C11 and C14 are
possible [105–107]. Thanks to its hydroxyl function and carbon-carbon double bond(s), cardanol can
offer various functionalization opportunities, although its long aliphatic chain may severely impact
materials in terms of thermo-mechanical properties.
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The other main component of lignocellulosic biomass, namely hemi-cellulose, is an amorphous
polysaccharide with short chains of 500 to 3000 monomer units with acidic groups. Similarly to
cellulose, it can be depolymerized into pentose that can further be transformed into 2-furfural,
2-furanmethanol and 2-furancarboxylic acid. However, these derivatives are mono-functional, thus
making them unsuitable for the synthesis of di-epoxy monomers, only fit for reactive diluents. Finally,
it is also worth noting that cellulose can also be degraded into other interesting, although non aromatic,
building blocks: levulinic and lactic acid.

4.5. Other Natural Sources of Aromatic Moieties

Some other abundant biomasses are potential candidate to extract or synthesize phenolic
derivatives. For example, terpenes and terpenoids can be obtained from various plants’ essential
oils or as by-products of industrial processes and are largely available at reasonable prices [116–118].
For example, 700 millions of kg of limonene are produced annually as a side-product of orange juice
production [117]. Terpenes form a large and diverse class of molecules based on repeating isoprene
units that can be linked head to tail or form cycloaliphatic or aromatic rings such as in α-pinene found
in pines, limonene from citrus fruits or p-cymene extracted from thyme, only to name a few. Some of
them may represent interesting candidates for the synthesis of epoxy monomers such as carvacrol,
which exhibits a phenol moiety and a carbon-carbon double bond (Scheme 7) and can be isolated
from oregano and thyme essential oils. However, not all terpenoids contain aromatic and/or phenolic
moieties, but these requirements can be reached via different synthesis steps. For example, carvacrol
can be obtained from other turpentine components such as limonene via an oxidation followed by an
isomerization with sulfated zirconia or from p-cymene by the action of concentrated sulfuric acid and
sodium hydroxide [117].Molecules 2017, 22, 149 13 of 47 
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Other phenolic compounds can be extracted from various plant essential oils such as
4-allyl-2-methoxyphenol, commonly known as eugenol (Figure 10), obtained from clove oil where
it accounts for 80% [119–122], Jamaican chili, cinnamon and bay leaves from California. It is a
renewable resource, but it is also considered safe, non-carcinogenic and non-mutagenic by the U.S.
Food and Drug Administration and used as a food flavoring agent. Furthermore, it exhibits several
pharmacological properties such as anesthetic, antioxidant, and antimicrobial activities. Apart from
extraction, eugenol can be synthesized by allylation of guaiacol, another bio-based phenolic derivative.
The main advantage of eugenol is that it exhibits a carbon-carbon double bond with fair reactivity and
a phenolic group, thus allowing various functionalizations.
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Lignocellulosic biomass may also contain p-coumaryl, coniferyl and sinapyl acids, depending
on the plant species, that act as crosslinkers between lignin and polysaccharides (cellulose and
hemi-cellulose) to increase the rigidity of the materials. Among these, 3-methoxy-4-hydroxycinnamic
acid (Figure 10), also known as ferulic acid, is an abundant derivative that can be extracted in good
yields from various non-food resources such as bagasse, rice, wheat and sugar beet roots [123–126] and
has both a hydroxyl group and an aliphatic carboxylic acid, thus enabling functionalization. It also
exhibits antioxidative, anti-tumor, photoprotective and anti-hypertensive activities.

5. Bio-Based Aromatic Epoxy Compounds

5.1. Mono-Aromatic Epoxy Compounds

Mono-aromatic glycidyl compounds are defined by having strictly one aromatic ring per molecule
and by having two or more epoxy groups per molecule. As previously stated, the characteristic
structure of BPA, e.g., its length, its two aromatic rings and alcohols functions greatly influence its
endocrine disruptor activity. Thus, mono-aromatic molecules with reduced hydrophobic skeleton may
potentially be less likely to bind with estrogen receptor, making their epoxy monomers interesting
candidates for BPA substitution, however, specific studies would be necessary before these compounds
can be proposed as BPA substitutes.

5.1.1. Phenyl-Based Di-Functional Epoxy Monomers

Various mono-aromatic phenyl-based epoxy monomers have been considered as potential
candidates for the replacement of DGEBA (Figure 11). One of the simplest, diglycidyl ether of
resorcinol (1), is obtained from resorcinol, a meta-substituted di-phenol that can be obtained from
biomass by fermentation [127] of catechins or by fermentation of glucose into inositol, chemical
conversion of the latter into 1,3,5-benzenetriol (or phloroglucinol) and finally reduction. As a part of
catechin’s skeleton structure, it has been used as model molecule for catechin characterization [128].
It is commercially available or can be prepared by direct O-glycidylation of resorcinol with good
yield (87%) [38]. Because of the resonance and inductive effects of the meta-substituted aromatic ring,
diglycidyl ether of resorcinol should be more reactive than its para-substituted analogue, diglycidyl
ether of hydroquinone (3) [129]. Its high toxicity may explain why this epoxy has not been much used
as material component. Similarly, a substituted resorcinol, methyl-2,4-dihydroxybenzoate has been
glycidylated with epibromohydrin (2) with a 78% yield but no materials have been developed from this
compound [24]. On the contrary, diglycidyl ether of hydroquinone, the para isomer or resorcinol can
be obtained via the microbial synthesis of phloroglucinol or quinic acid from glucose, converted into
hydroquinone (or resorcinol) [130]. This epoxy was cured with diethyl toluene diamine (EPIKURE W)
and the obtained materials exhibited slightly higher glass transition temperature (Tg) than those based
on DGEBA (up to 8 ◦C) [131], being the greatest data obtained with a di-functional epoxy. However,
contrary to resorcinol, hydroquinone is carcinogen (H351) and mutagen (H341).
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The same research team prepared the diglycidyl ether of p-xylene alcohol (5) by direct
glycidylation of the non-toxic 1,4-benzenedimethanol with an overall yield of 90% and a purity
of 99% assessed by 1H NMR [131]. It has been cured with cycloaliphatic and aromatic diamines,
4,4′-methylene biscyclohexylamine (PACM) and diethyl toluene diamine (EPIKURE W), respectively
yielding materials with Tg values up to 67 ◦C lower than those of DGEBA-based equivalents, because
of the methylene linkages.

The ester form of the latter compound was prepared by direct glycidylation of the non-toxic
terephthalic acid [132], to form diglycidyl ester of terephthalic acid (6) with a yield of 80%. This epoxy
was cured with methylhexahydrophthalic anhydride and poly(propylene glycol) bis(2-aminopropyl
ether). The materials showed similar Tg values as those based on DGEBA with both curing agents.
Furthermore, terephthalic acid is synthesized from p-xylene that can be obtained from bio-mass by
various processes [133]. Due to the large amount of by-products using both direct glycidylation and
allylation methods, You et al. [134] prepared diglycidyl ester of terephthalic acid by esterification
of diacyl chloride by glycidol, with a 50% yield. Diglycidyl ester of terephthalic acid was cured
with carboxylic acid derivatives, and the corresponding materials were used as biocompatible,
biodegradable and functional polymers for biomedical applications. No thermal properties were
reported. However, the low hydrolytic stability of aromatic ester groups is expected to negatively
impact the potential materials [134].

The double functionalization of eugenol (7) requires a three-step route: (i) protection of the
hydroxy group via an acetylation using acetic anhydride; (ii) oxidation of the double bond using
mCPBA and (iii) glycidylation by deacetylation using epichlorohydrin. The resulting solid was
obtained with an overall yield of 53% [119]. The epoxy was cured with anhydrides and the obtained
materials showed similar thermal and mechanical properties than those of DGEBA equivalents.
For example, when diglycidyl ether of eugenol was cured with hexahydrophtalic anhydride, the
obtained Tg reached 114 ◦C, which was slightly higher than that of DGEBA counterparts (106 ◦C).

Eugenol can be used as a precursor for vanillin synthesis. The latter is an important bio-based
phenolic aldehyde, which is the main component of vanilla bean extract, widely used as flavouring
in food, beverages and pharmaceuticals [135]. It is also a bio-sourced chemical derived from
lignin currently produced by Borregaard [123] that easily allows to lead to diepoxy compounds,
the structures of which are showed in Figure 12. All diglycidyl ethers deriving from vanillin can
be prepared by direct O-glycidylation of the corresponding alcohol derivatives, with good yield
(85%–89%) [27]. It is interesting to note that the alcohol derivatives, e.g., 4-hydroxy-3-methoxybenzyl
alcohol, 2-methoxyhydroquinone and 4-hydroxy-3-methoxybenzoic acid are all commercially available,
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non-toxic and also used for food flavouring. The three diglycidyl ether compounds were cured with
isophorone diamine (IPDA) and showed Tg values lower than that of DGEBA by 69 (9), 34 (8) and
14 ◦C (10). The authors considered that the presence of a methylene spacer decreased Tg by 35 ◦C and
when carbonyl group was used as spacer, Tg increased by 20 ◦C. Additionally, when diglycidyl ether
of hydroquinone and diglycidyl ether of methoxyhydroquinone were compared, the presence of the
methoxy group involved a decrease of Tg by 25 ◦C. Similarly, when comparing (8) and diglycidyl ether
of eugenol (7), it seems that the loss of the (CH2-O-) group between the oxirane ring and the aromatic
ring allows to reach higher glass transition temperatures, closer to those of DGEBA-based materials.
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(9) diglycidyl ether of methoxyhydroquinone and (10) diglycidyl ether of vanillic acid [135].

Recently, Hernandez et al. [17] continued the researches to determine the influence of the methoxy
group of diglycidyl ether of vanillyl alcohol (DGEVA) (9) by comparing it with diglycidyl ether of
gastrodigenin (DGEGD) (4). When cured with 4,4′-methylbiscyclohexylamine, the DGEVA-based
materials exhibited a lower Tg than the DGEGD ones due to the methoxy moiety, but it appears that it
enables to obtain a higher rigidity in the glassy state, as observed via the higher storage modulus.

Following its previous work on lignin depolymerisation using hydrogenation in the presence of
Zn/Pd catalysts [136,137] the team of Abu-Omar [138] synthesized di-epoxides from propylcatechol
(11) (Scheme 8). As previously explained, the presence of hydroxyl groups in ortho position will yield
benzodioxane derivatives during the glycidylation step, but the authors claimed to have improved
the synthesis conditions in terms of epoxy equivalent weight and mass ratio. The epoxy monomer
was then mixed with octadecylamine-modified nano-montmorillonite and cured with diethyl triamine.
The bio-based polymers were characterized in terms of thermal stability and mechanical properties but
no possible leaching of the benzodioxane derivatives non-integrated in the network was discussed.

Another abundant and natural product is rosin. With a production of approximately 1.2 million
of tons per year [19], this compound is obtained by heating fresh tree resin to remove the volatile
liquid terpenes. It thus contains a mixture of isomerized acid with large hydrogenated phenanthrene
ring structures providing them with high rigidity. Most of them do not contain aromatic structures,
but Liu et Zhang [139] recently synthesized a mono-aromatic di-glycidyl ester based on rosin acid
(12) (Figure 13), cured it with 1,2-cyclohexanedicarboxylic anhydride and compared the results with
DER332, an epoxy resin from Dow Chemical Company cured in the same conditions. The resulting
material exhibited a Tg of 154 ◦C slightly higher than its counterpart, and a good thermal stability with
a temperature of 5% weight loss of 311 ◦C.
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5.1.2. Phenyl-Based Poly-Functional Epoxy Monomers

Phloroglucinol is a bio-based tri-phenol and is used as an active ingredient in medicines
(SPASFON). The glycidylated compound (13) (Figure 14) was prepared by direct glycidylation with
a yield of 68%, leading to a mixture mainly containing triglycidyl ether of phloroglucinol [140].
Its symmetric tridimensional and tri-functional meta-substituted structure makes it the most reactive
epoxy [129]. The reached materials exhibited much higher Tg than those of DGEBA, up to 60 ◦C for
linear aliphatic [141] and 20 ◦C for cycloaliphatic diamines [142].

Another simple tri-functional glycidyl ether is based on pyrogallol (14), which is also a
bio-based molecule obtained from decarboxylation of gallic acid extracted from hydrolysable tannins.
Unfortunately, it is mutagen (H341) and its structure produces more bulkiness than its meta-substituted
analogue. Moreover, as previously described, the ortho position of the phenol groups yields a 50:50
mixture of triglycidyl ether of pyrogallol and benzodioxane derivatives, with an overall yield of
66% [38]. The low yield and by-products synthesis were likely the reason why no material has been
prepared from this epoxy.

Similarly, protocatechuic acid, which is a relatively toxic (H315, H319, H335) major metabolite of
antioxidant and anti-inflammatory bio-based polyol found in green tea, yields a mixture of 60% of the
triglycidyl ether (15) and 9% of the benzodioxane derivative [38]. The presence of the carboxyl group
in meta-position apparently limited the cyclization compared to pyrogallol. Despite the good yield,
no material has been reported.

Another triglycidylated compound was synthesized from trimellitic acid (16), which is a relatively
toxic triacid. The epoxy form was found at 25% in a mixture with 75% of diglycidyl terephthalate acid
ester, supplied by Vantico-Switzerland. This mixture was used as polyester curing agent for coating
applications. No thermal properties of the intrinsic materials have been reported [143,144], but a low
hydrolytic stability is expected similarly to the diglycidyl ester of terephthalic acid (6).
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Gallic acid is a bio-based, trihydroxybenzoic acid compound encountered in the plant
hydrolysable tannins, as gallic acid derivatives (esters, glycosides) or as the acyl group of some
polyols (glucose, quinic acid). It is as toxic as protocatechuic acid and is the only mono-aromatic
compound with four functions that can be glycidylated. Tetraglycidyl ether of gallic acid (17) can be
prepared by direct glycidylation or allylation [22,145]. The direct glycidylation of gallic acid allowed
to reach the targeted product with a yield of 68% [22,146,147], whereas, the allylation route led to a
better control of the functionalization, but a lower overall yield of tetraglycidyl derivative of 48%.
The materials cured using isophorone diamine reached Tg values of 73 ◦C higher than that of DGEBA,
which is the highest value obtained for mono-aromatic epoxy compounds [22].

Cardanol has also been considered as a BPA substitute for epoxy monomer synthesis.
The conversion of the C=C double bonds to epoxide groups can be almost complete by reaction
with hydrogen peroxide in the presence of formic acid and p-toluenesulfonic acid, with a yield of
82%. The resulting product is only glycidylated along the alkyl chain and is used for its antioxidative
activity in soybean oil [106].

Fully epoxidized cardanol (18) (Figure 15) was prepared by direct O-glycidylation of the phenol,
followed by double bonds oxidation using mCPBA (78%) or perbenzoic acid and used as a natural
plasticizer for PVC films [105] or as diluent to improve the mechanical properties of DGEBA cured by
phthalic anhydride for glass-fiber reinforcement applications. For this latter application, Tg increased
with the amount of epoxidized cardanol, from 145 to 180 ◦C using 40% of diepoxy cardanol [107].
No epoxy/amine-based material has been reported, likely because the epoxy groups along the alkyl
chain exhibit a lower reactivity toward amines. In fact, glycidyl ether compounds are found to be the
most reactive species towards amine compounds because of the inductive effect of the oxygen on the
epoxy-ring and the fact that the ether oxygen is able to form hydrogen bonds with the amine [129].
An interesting approach is thus to combine both characteristics in one molecule.
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Triglycidyl ether of vanillylamine (19) (Figure 16) is the only tri-functional mono-phenolic
glycidylated derivative synthesized from the bio-based and non-toxic vanillin reported in the
literature [148]. It was prepared in a four-step synthesis from hydroxylamine hydrochloride:
(i) aldoximation of vanillin; (ii) reduction of the aldoxime using dihydrogen in the presence of
Pd/C; (iii) neutralization in basic medium leading to a potential alkanolamine hardener; (iv) direct
N-glycidylation of the resulting vanillylamine, with an overall yield of 61%. The materials cured with
isophorone diamine showed similar Tg than that of triglycidyl ether of phloroglucinol.
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5.1.3. Epoxy Monomers Based on Other Aromatic Rings

Furfuryl diglycidyl ether (20) (Figure 17) was prepared by direct glycidylation of the
5-hydroxymethyl-2-furfural, with a yield of 60% and a purity of 99%—however 5-hydroxymethyl-2
-furfural is a toxic substance. Hu et al. [149] found that the overall reactivity of furan derivatives was
significantly greater than that of the phenyl analogue and led to materials with a glass transition
temperature higher than their benzene analogs. However, in a recently corrected article [150],
the research group changed their observations and conclusions as the benzyl-based materials showed
higher Tg values than the furan-based ones, due to a higher freedom degree of the furan ring
and the hydrogen bonding between atoms in the furan rings and hydroxyl groups created by the
epoxy opening.

In another article, their further investigation on furfuryl diglycidyl ether cured with
difurfurylamine led them to conclude that each methylene spacer per ring reduced the Tg by 32–34 ◦C
and that furanyl structure led to higher freedom degree, which decreased Tg [151]. When compared
with those obtained from DGEBA, the mono-aromatic furan-based materials showed a Tg in between
66 and 97 ◦C lower.

Furfuryl diglycidyl ester (21) was prepared by allylation and epoxidation of the bio-based but
irritant 2,5-furandicarboxylic acid, in an overall yield of 59% [132]. The authors reported that the
furandicarboxylic-based materials displayed higher curing reactivity, higher Tg, similar mechanical
properties and thermal stability than those based on terephtalic derivatives. The freedom degree of
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furandicarboxylic structure is lower than with a methylene spacer, which is consistent with previous
observations [135,151], but lower stability toward hydrolysis is expected.

Molecules 2017, 22, 149 19 of 47 

 

 
Figure 17. Furan-based diglycidylated compounds. 

Furfuryl diglycidyl ester (21) was prepared by allylation and epoxidation of the bio-based but 
irritant 2,5-furandicarboxylic acid, in an overall yield of 59% [132]. The authors reported that the 
furandicarboxylic-based materials displayed higher curing reactivity, higher Tg, similar mechanical 
properties and thermal stability than those based on terephtalic derivatives. The freedom degree of 
furandicarboxylic structure is lower than with a methylene spacer, which is consistent with previous 
observations [135,151], but lower stability toward hydrolysis is expected. 

N,N′-Diglycidyl furfurylamine (22) was synthesized by double N-glycidylation of the relatively 
toxic 2-aminomethylfurfuran, with an overall yield of 50% [152]. When the resulting multi-functional 
epoxy was cured with maleimide and anhydride species, stable thermally reversible linkages were 
formed, leading to self-healing thermosetting materials. 

Recently Liu et al. [153] developed a six-armed epoxy resin (23) based on linoleic acid and 
hexamethylol melamine in a two-step process of esterification and epoxidation with H2O2 (Figure 18). 
Their goal was to reduce the high flexibility induced by the long aliphatic chain of the vegetable oils by 
introducing a rigid aromatic group. Resins were cured using 4-methyl hexahydrophthalic anhydride 
and 1,8-diazabicyclo[5.4.0]undec-7-ene as a catalyst and exhibited high degrees of cure, Tg values 
between 28 and 42 °C higher than those observed when epoxidized sucrose soyate was used. However, 
their temperature at 5% weight loss turned out to be from 20–90 °C lower, thus indicating a poorer 
thermo-oxidative stability. With similar hardener content, the resin presented a bio-based content of 70% 
vs. 80% for the sucrose soyate-based one. 

5.1.4. Conclusions 

Bio-based mono-aromatic epoxy materials show interesting properties in terms of Tg and thermal 
stability. While cardanol-based materials exhibit flexibility and low Tg values, tri- and tetraglycidyl ether, 
led to materials with higher Tg than DGEBA-based materials. Among the di-functional mono-aromatic 
substances, only the materials based on epoxy with no spacer and separated by a carbonyl group 
showed higher Tg. Unfortunately, since most of these epoxides are in development, their toxicity is not 
known and at that moment, little information is available on the potential endocrine disruption of their 
precursors. Tables 1 and 2 gather the known data on materials based-on mono-aromatic di- and 
poly-epoxy monomers from renewable resources. 

Figure 17. Furan-based diglycidylated compounds.

N,N′-Diglycidyl furfurylamine (22) was synthesized by double N-glycidylation of the relatively
toxic 2-aminomethylfurfuran, with an overall yield of 50% [152]. When the resulting multi-functional
epoxy was cured with maleimide and anhydride species, stable thermally reversible linkages were
formed, leading to self-healing thermosetting materials.

Recently Liu et al. [153] developed a six-armed epoxy resin (23) based on linoleic acid and
hexamethylol melamine in a two-step process of esterification and epoxidation with H2O2 (Figure 18).
Their goal was to reduce the high flexibility induced by the long aliphatic chain of the vegetable oils by
introducing a rigid aromatic group. Resins were cured using 4-methyl hexahydrophthalic anhydride
and 1,8-diazabicyclo[5.4.0]undec-7-ene as a catalyst and exhibited high degrees of cure, Tg values
between 28 and 42 ◦C higher than those observed when epoxidized sucrose soyate was used. However,
their temperature at 5% weight loss turned out to be from 20–90 ◦C lower, thus indicating a poorer
thermo-oxidative stability. With similar hardener content, the resin presented a bio-based content of
70% vs. 80% for the sucrose soyate-based one.
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5.1.4. Conclusions

Bio-based mono-aromatic epoxy materials show interesting properties in terms of Tg and thermal
stability. While cardanol-based materials exhibit flexibility and low Tg values, tri- and tetraglycidyl
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ether, led to materials with higher Tg than DGEBA-based materials. Among the di-functional
mono-aromatic substances, only the materials based on epoxy with no spacer and separated by
a carbonyl group showed higher Tg. Unfortunately, since most of these epoxides are in development,
their toxicity is not known and at that moment, little information is available on the potential
endocrine disruption of their precursors. Tables 1 and 2 gather the known data on materials based-on
mono-aromatic di- and poly-epoxy monomers from renewable resources.

Table 1. Mono-aromatic, di-epoxy monomers and thermal properties of the cured materials. Tg values
are indicated in plain text, Tα are in italics.

Epoxy Curing Agent
Tg (◦C) or Tα (◦C)

Td,5% (◦C) Reference
Materials DGEBA Comparison
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1,2-cyclohexanedicarboxylic 
anhydride 

154 144 311 [139] 

a Tα measured by DMA at the peak position of loss modulus curve; b Tα measured by DMA at the 
maximum of tan δ; c Td,50%. 
Table 2. Mono-aromatic, poly-epoxy resins and thermal properties of the cured materials. Tg values 
are indicated in plain text, Tα are in italics. 

Epoxy Curing Agent 

Tg (°C) or Tα (°C) 

Td,5% (°C) Reference 
Materials 

DGEBA 
Comparison 

 

PE-C9-NH2 102 a 57 266 c 
[141] 

PE-C18-NH2 112 a 52 283 c 

Isophorone Diamine 177 157 306 (10%) 

[142] Decane-1,10-diamine 137 - 300 (10%) 

Difurfuryl amine 134 - 290 (10%) 

 

Isophorone Diamine 233 a 160 300 [22] 

 

Isophorone Diamine 176/194 b 166/182 b 308 [148] 

 

4,4′-metylene 
biscyclohexylamine PACM 

71 a/80 b 167 a/176 b 303 

[[150]] 
Diethyl toluene diamine 

EPIKURE W 
88 a/94 b 185 a/198 b - 

5,5′-methylene 
difurfurylamine 

56 a/62 b 121 a/128 b 272 

[151] 
5,5′-ethylidene 

difurfurylamine 56 a/69 b 128 a/142 b 272 

 

methyhexahydrophthalic 
anhydride MHHPA 

152 b 125 293 

[132] 
poly(propylene glycol) 

bis(2-aminopropyl ether) D230 
101 b 97 267 

1,2-cyclohexanedicarboxylic
anhydride 154 144 311 [139]

a Tα measured by DMA at the peak position of loss modulus curve; b Tα measured by DMA at the maximum
of tan δ; c Td,50%.
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Table 2. Mono-aromatic, poly-epoxy resins and thermal properties of the cured materials. Tg values
are indicated in plain text, Tα are in italics.

Epoxy Curing Agent
Tg (◦C) or Tα (◦C)

Td,5% (◦C) Reference
Materials DGEBA Comparison
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4-methyl hexahydrophthalic 
anhydride 

78–92 - 246–316 [153] 

a Tα measured by DMA at the peak position of loss modulus curve; b Tα measured by DMA at the 
maximum of tan δ; c Td under air flow. 
Table 3. Di-epoxy resins with two aromatic rings separated by one atom, and thermal properties of the 
cured materials. 

Epoxy Curing Agent 

Tg (°C) or Tα (°C) 

Td,5% (°C) Reference 
Materials 

DGEBA 
Comparison 

 

4,4′-methylene-biscyclohexylamine 104 a/111 b 149 a/158 b 363 [17] 

 

Isophorone Diamine 158 

165 

361 

[157]  

Isophorone Diamine 136 363 

 

Isophorone Diamine 96 363 

 

Isophorone Diamine 86 362 

 

4,4′-diaminodiphenyl methane 161 179 367/368 c 

[116] 
4,4′-methylene 

bis(5-isopropyl-2-methylaniline) 
143 154 363/360 c 

 

4,4′-diaminodiphenyl methane 184/183 b - 346/355 c [159] 

a Tα measured by DMA at the peak position of loss modulus curve; b Tα measured by DMA at the 
maximum of tan δ; c Td under air flow. 
Table 4. Di-epoxy monomers with two aromatic rings separated by more than one atom exhibiting ester 
or amide bonds, and thermal properties of the cured materials. 

4-methyl hexahydrophthalic
anhydride 78–92 - 246–316 [153]

a Tα measured by DMA at the peak position of loss modulus curve; b Tα measured by DMA at the maximum of
tan δ; c Td under air flow.

5.2. Di-Aromatic Epoxy Compounds

Its bisphenolic structure provides BPA with high thermo-mechanical properties but also toxicity.
In an attempt to mimic but alter the BPA structure to match its qualities but not its defaults, researchers
have developed various di-aromatic derivatives based on bio-resources. The diaromatic glycidyl ether
compounds are defined as having strictly two benzene rings bearing two or more epoxy groups per
molecule. As the spacer between these two aromatic rings plays an important role in the estrogenic
disruption of BPA, the epoxy monomers will be presented in the following sections according to
the number of atoms between the two aromatic moieties: (i) two benzene rings without spacer;
(ii) separated by one atom; (iii) separated by two atoms and (iv) separated by long spacers.
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5.2.1. Two Aromatic Rings without Spacer

Grelier et al. [155] synthesized a diglycidyl ether derivative (24) from the bio-based but highly
toxic for the environment (H411) 2,6-dimethoxyphenol using a three-steps pathway: (i) enzymatic
coupling using laccase from Tramates versicolor; (ii) reduction of the carbon-oxygen double bonds into
alcohols and (iii) O-glycidylation with epichlorohydrin (Scheme 9). The di-epoxy monomer obtained
was crosslinked using isophorone diamine yielding a material that exhibits a Tg of 126 ◦C and a good
thermal stability with a Td,5% of 312 ◦C. Unfortunately, no DGEBA comparison was provided.
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Scheme 9. Synthetic pathway developed by Grelier et al. [155] to obtain diphenolic derivatives from 
2,6-dimethoxyphenol. 

Following this method, the same team synthesized di-phenols from vanillin [156] (Scheme 10). A 
methylation step using methyl iodide can be applied prior to the reduction in order to obtain 
di-functional derivatives. No epoxides were synthesized from these compounds but a simple 
glycidylation step could easily lead to potential bio-based monomers. 

5.2.2. Two Aromatic Rings Separated by One Atom 

Hernandez et al. [17] recently synthesized epoxy resins by a two-steps pathway involving the 
electrophilic condensation of vanillyl alcohol and guaiacol, a mono phenolic derivative that can be 
obtained in large quantities when carrying out the pyrolysis of lignin. This original method is an 
interesting alternative to the use of formaldehyde, especially for the synthesis of an analogue to 
bisphenol F. The obtain bis-guaiacol was then glycidylated (25) (Figure 19) and cured with 
4,4′-methylene-biscyclohexylamine (Amicure PACM), yielding a material with a Tg value of 111 °C 
compared to 158 °C for the DGEBA-based material and a slightly lower thermal stability. 

Scheme 9. Synthetic pathway developed by Grelier et al. [155] to obtain diphenolic derivatives from
2,6-dimethoxyphenol.

Following this method, the same team synthesized di-phenols from vanillin [156] (Scheme 10).
A methylation step using methyl iodide can be applied prior to the reduction in order to obtain
di-functional derivatives. No epoxides were synthesized from these compounds but a simple
glycidylation step could easily lead to potential bio-based monomers.Molecules 2017, 22, 149 23 of 47 

 

 
Scheme 10. Synthetic pathway developed by Grelier et al. [156] to obtain diphenolic derivatives from vanillin. 

N-alkyl diphenolate diglycidyl ethers (26) were synthesized by Maiorana et al. [157] in yields 
ranging from 85% to 97% in a two-step pathway using diphenolic acid. First, it was esterified with 
various alcohols and then glycidylated using epichlorohydrin. The advantage of these epoxides is their 
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Figure 19. Bio-based di-aromatic epoxy derivatives with a single carbon atom spacer. 

Harvey et al. [117] synthesized di-epoxides (27) through methylene bridging between two carvacrol 
molecules with 1,3,5-trioxane in dilute HCl at elevated temperature (Figure 19) and O-glycidylation 
using epichlorohydrin, with an overall yield of 42%. The resulting monomer was cured with 
4,4′-diaminodiphenyl methane and 4,4′-methylene bis(5-isopropyl-2-methylaniline), also prepared from 

Scheme 10. Synthetic pathway developed by Grelier et al. [156] to obtain diphenolic derivatives
from vanillin.

5.2.2. Two Aromatic Rings Separated by One Atom

Hernandez et al. [17] recently synthesized epoxy resins by a two-steps pathway involving the
electrophilic condensation of vanillyl alcohol and guaiacol, a mono phenolic derivative that can
be obtained in large quantities when carrying out the pyrolysis of lignin. This original method is
an interesting alternative to the use of formaldehyde, especially for the synthesis of an analogue
to bisphenol F. The obtain bis-guaiacol was then glycidylated (25) (Figure 19) and cured with
4,4′-methylene-biscyclohexylamine (Amicure PACM), yielding a material with a Tg value of 111 ◦C
compared to 158 ◦C for the DGEBA-based material and a slightly lower thermal stability.
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N-alkyl diphenolate diglycidyl ethers (26) were synthesized by Maiorana et al. [157] in yields
ranging from 85% to 97% in a two-step pathway using diphenolic acid. First, it was esterified with
various alcohols and then glycidylated using epichlorohydrin. The advantage of these epoxides is
their liquid state at room temperature and the possibility to have fully bio-based materials. In fact,
levulinic acid is produced from cellulose by the acid hydrolysis of C6 sugars at the pilot plant scale by
Biofine [110] and Segetis [158]. The materials cured with isophorone diamine showed glass transition
temperatures in between 86 and 158 ◦C, depending of the alkyl chain, which is lower than that of
DGEBA-based equivalents (165 ◦C). Tg decreases with increasing alkyl chain length. No trend was
observed regarding storage modulus or tensile strength but materials exhibited mechanical properties
similar to DGEBA-based materials and slightly lower thermal stability.

Harvey et al. [117] synthesized di-epoxides (27) through methylene bridging between two
carvacrol molecules with 1,3,5-trioxane in dilute HCl at elevated temperature (Figure 19) and
O-glycidylation using epichlorohydrin, with an overall yield of 42%. The resulting monomer was
cured with 4,4′-diaminodiphenyl methane and 4,4′-methylene bis(5-isopropyl-2-methylaniline), also
prepared from p-cymene [116]. The ortho-methylene substituents led to lower degree of cure and
higher moisture resistance, and likely lower hydrolysis. The obtained materials showed glass transition
temperatures ranging from 143 to 161 ◦C, which is slightly lower than DGEBA-based materials. When
this di-epoxide was cured with 4,4′-diaminodiphenyl methane and compared with diglycidyl ether of
tetramethylbisphenol F, the material based on the former showed lower Tg than the latter, up to 23 ◦C.

Diglycidyl ether of tetramethylbisphenol F (28) was prepared in a two-step synthesis route
from 2,6-dimethylphenol and the mutagenic and carcinogenic (H341-350) formaldehyde: (i) aldol
condensation reaction between formaldehyde and two molecules of 2,6-dimethylphenol followed by
(ii) the direct O-glycidylation using epichlorohydrin, with an overall yield of 79% [159]; The Tg of the
material cured with 4,4′-diaminodiphenyl methane showed a high Tg value, up to 184 ◦C. When this
epoxide was compared with its non-spacer analogue, 3,3′,5,5′-tetramethyl-4,4′-biphenol, the additional
methylene spacer led to a slight decrease of the glass transition temperature, up to 15 ◦C lower.

Diglycidyl ether of bisfuran (29) was prepared in a four-step synthesis from the bio-based 2-furoic
acid and acetone: (i) protection of the carboxylic groups using methanol; (ii) coupling of two resulting
molecules in the presence of acetone and concentrated sulfuric acid; (iii) reduction of the ester groups
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using lithium aluminum hydride and then; (iv) direct O-glycidylation of the di-alcohol, with an overall
yield of 48% [113]. However, no materials have been prepared from this epoxy resin.

Meylemans et al. [160] proposed an interesting strategy to synthesize di-phenols from creosol,
a phenolic derivative coming from the reduction of vanillin (Figure 20). Through Zn(AcO)2 or
acid catalyzed coupling with aldehydes, they obtained two different di-phenol suitable for epoxide
synthesis. Unfortunately, no glycidylation step was carried out on these original compounds, although
the use of bio-based aldehydes such as benzaldehyde may produce highly bio-sourced monomers as
well as greatly influence the mechanical and thermal properties. However, despite the presence of
methoxy moieties and a meta substitution, the di-phenol derivatives exhibit a structure very close to
bisphenol E and F, according to the aldehyde chosen, thus requiring toxicological studies to determine
their potential dangerousness or estrogen disruptor behavior.
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5.2.3. Two Aromatic Rings Separated by Two Atoms

Duann et al. [161] prepared a bis-phenolic glycidylated derivative by reacting p-aminophenol
and p-hydroxybenzaldehyde prior to a direct epoxidation with epichlorohydrin (30) (Figure 21).
p-hydroxybenzaldehyde can be obtained from biomass by depolymerizing lignin [162] but to our
knowledge no bio-based commercial p-aminophenol is currently available. However, Ng et al. [163]
claimed in a patent to have developed a process for producing this compound using genetically
engineered microorganisms and biomass-based sugars, possibly providing this resin with a high
renewability percentage. After curing with 4,4′-diamino diphenyl methane, they obtained a material
with a Tg of 200 ◦C and a temperature of 5% weight loss under air of 342 ◦C. Unfortunately, no
comparison with a DGEBA-based material was provided to determine the role of the carbon-nitrogen
double-bond on the thermal and mechanical properties.Molecules 2017, 22, 149 25 of 47 

 

 
Figure 21. Epoxy resin based on p-aminophenol and p-hydroxybenzaldehyde synthesized by Duann et al. [161]. 

Using vanillin as a starting material, Harvey et al. [164] synthesized a di-phenol stilbene using 
titanium chloride and magnesium, and further hydrogenated it on platinum oxide (Scheme 11). These 
compounds were turned into cyanates and used to obtain polycyanurates, but no glycidylation step has 
been considered by the authors despite the interesting potential of these molecules for di-epoxy 
monomers. 

 
Scheme 11. Synthesis of di-phenolic compounds from vanillin according to Harvey et al. [164] 

5.2.4. Two Aromatic Rings Separated by More Than Two Atoms 

The small size of BPA allows it to mimic the natural estrogen 17β-estradiol and enter the estrogen 
receptor pocket. Thus, by increasing the length of the spacer, it may be possible to decrease the activity of 
the epoxy monomer precursors. In this part, all monomers with long aliphatic or cycloaliphatic spacer 
will be presented, including both di- and poly-epoxy monomers. 

Di-Epoxy Monomers 

Recently, Zou et al. [165] synthesized bio-based epoxy monomers by coupling glycidylated eugenol 
via photo-initiated thiol-ene reaction using three different aliphatic di-thiols (31) (Figure 22). The resins 
were cured by 4,4′-diaminodiphenylmethane and the resulting materials exhibited Tg and Tα values 
ranging from 39 to 60 °C by DSC and 54 to 70 °C by DMA, respectively. As expected, the glass transition 
decreased when increasing the di-thiol chain length. 

 
Figure 22. Eugenol-based epoxy prepolymers synthesized by Zou et al. [165]. 

Following the same synthetic pathway, Maiorana et al. [123] and Menard et al. [166] synthesized 
bio-based bis-ferulate epoxy monomers (32) (33) and (34) (Scheme 12) via a three step synthetic pathway: 
(i) synthesis of ethyl ferulate by reacting with HCl and hydrogenating over Pd/C; (ii) enzyme-catalyzed 
transesterification with various bio-based diols including n-alkyl diols and isosorbide or 
transamidification with 1,4-diaminobutane; and (iii) O-glycidylation with epichlorohydrin in high yields. 

Figure 21. Epoxy resin based on p-aminophenol and p-hydroxybenzaldehyde synthesized by
Duann et al. [161].

Using vanillin as a starting material, Harvey et al. [164] synthesized a di-phenol stilbene using
titanium chloride and magnesium, and further hydrogenated it on platinum oxide (Scheme 11).
These compounds were turned into cyanates and used to obtain polycyanurates, but no glycidylation
step has been considered by the authors despite the interesting potential of these molecules for
di-epoxy monomers.
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5.2.4. Two Aromatic Rings Separated by More Than Two Atoms

The small size of BPA allows it to mimic the natural estrogen 17β-estradiol and enter the estrogen
receptor pocket. Thus, by increasing the length of the spacer, it may be possible to decrease the activity
of the epoxy monomer precursors. In this part, all monomers with long aliphatic or cycloaliphatic
spacer will be presented, including both di- and poly-epoxy monomers.

Di-Epoxy Monomers

Recently, Zou et al. [165] synthesized bio-based epoxy monomers by coupling glycidylated
eugenol via photo-initiated thiol-ene reaction using three different aliphatic di-thiols (31) (Figure 22).
The resins were cured by 4,4′-diaminodiphenylmethane and the resulting materials exhibited Tg and
Tα values ranging from 39 to 60 ◦C by DSC and 54 to 70 ◦C by DMA, respectively. As expected, the
glass transition decreased when increasing the di-thiol chain length.
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Figure 22. Eugenol-based epoxy prepolymers synthesized by Zou et al. [165].

Following the same synthetic pathway, Maiorana et al. [123] and Menard et al. [166]
synthesized bio-based bis-ferulate epoxy monomers (32) (33) and (34) (Scheme 12) via a three
step synthetic pathway: (i) synthesis of ethyl ferulate by reacting with HCl and hydrogenating
over Pd/C; (ii) enzyme-catalyzed transesterification with various bio-based diols including n-alkyl
diols and isosorbide or transamidification with 1,4-diaminobutane; and (iii) O-glycidylation with
epichlorohydrin in high yields. The epoxy monomers were cured by isophorone diamine,
1,10-diaminodecane and difurfurylamine. Regarding the thermosets based on the n-alkyl bis-ferulates
and IPDA, the Tα values ranged from 50 to 65 ◦C and decreased while increasing the diol chain
length, compared to 170 ◦C for DGEBA-based material. The change of ester to amide bonds lead
to higher Tg values thanks to the hydrogen bonding induced by the nitrogen atoms. These values
were roughly similar to those obtained with the isosorbide derivative, the cycloaliphatic structure
of which brought more rigidity to the polymeric network. However, none of these materials could
compete with DGEBA-based resources in terms of Tg/Tα. An interesting point to mention nonetheless
is that Maiorana et al. [123] also focused on the degradability of the obtained materials for thermosets
recyclability issues, and studied the estrogenic activity of bisferulates compared to bisphenol A and
17β-estradiol. The n-alkyl bis-ferulates derivatives showed no significant estrogenic activity for ER α
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at concentrations where bisphenol A does, highlighting the potential of these compounds as a safer
substitute for BPA.

In a similar way, Aouf et al. [40] synthesized glycidylated bio-based bis-vanillic acid (35)
in a three-steps pathway: (i) synthesis of bis-vanillic acid by reaction with 1,5-dibromopentane;
(ii) allylation of the hydroxyl functions with allyl bromide and (iii) epoxidation of the allyl bond
with an enzymatic catalyst (Figure 23). Unfortunately, no materials were synthesized with these
di-epoxy monomers.
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Fourcade et al. [167] used 1,6-hexanediol to synthesize an epoxy resin using a two-steps synthetic
route: (i) phenolization of the 1,6-hexanediol using ethyl-4-hydroxybenzoate with 92% of yield; and
(ii) direct O-glycidylation using epichlorohydrin in the presence of sodium carbonate (36) (Figure 23).
The resulting epoxide was used as a DGEBA diluent and blended with 50%–90% of DGEBA and
then cured with dicyandiamide. The glass transition temperature of the blend materials ranged from
77 to 109 ◦C, decreasing when increasing the amount of aliphatic epoxide. Materials exhibited high
thermal stabilities under air, but unfortunately no sample without DGEBA was mentioned. While
the 1,6-hexanediol used by the authors was oil-based, it can be obtained by hydrogenation of adipic
acid coming from different biomass such as glucose, lignin and fatty acids [168]. It is considered lowly
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toxic [169] and is not labelled as carcinogenic or mutagen. Ethyl-4-hydroxybenzoate is obtained by
esterification of 4-hydroxybenzoic acid, a naturally occurring product synthesized industrially from
phenol, carbon dioxide and bio-ethanol. Moreover, the authors used epichlorohydrin from glycerol
(Epicerol® process) making the resins possibly highly renewable, although no value was given.

Diglycidyl ether derivatives including spiro-ring as spacer can be prepared in a two-step
pathway from non-toxic, bio-based reactants, e.g., vanillin [27,135,170,171] and pentaerythritol [167]:
(i) condensation of both starting substances and (ii) direct O-glycidylation using epichlorohydrin in the
presence of sodium hydroxide. However, no other detail, such as reaction yield could be found [172].
In 1986 and 1987, Ochi et al. [173] investigated a series of diglycidyl ether containing spiro-ring building
blocks (37) (38) (39), as shown in Figure 24. Materials cured with hexahydrophthalic anhydride showed
similar or higher glass transition temperatures than that of their DGEBA counterparts. Curing with
more rigid anhydrides, e.g., phthalic anhydride and nadic anhydride allowed to slightly increase Tg,
in comparison to hexahydrophthalic anhydride.
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Rao and Samui [174] synthesized diepoxy monomers including bisbenzylidene segments by
reaction between vanillin or syringaldehyde with acetone (40) and cycloaliphatic ketones (41) followed
by glycidylation with epichlorohydrin (Scheme 13). These monomers were used to synthesize linear
polyesters for photoactive liquid crystal applications but also reacted with benzene-1,3,5-tricarboxylic
acid to obtain dendrimers, although their protocol seems more likely to yield crosslinked materials.
No data on potential thermo-mechanical properties is thus mentioned.
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Scheme 13. Synthesis of di-epoxy monomers from vanillin and syringaldehyde with acetone or
cycloaliphatic ketones according to Rao and Samui [174].

Poly-Epoxy Monomers

Triglycidyl ether of polyphenol (42) (Figure 25) was synthesized in a two-steps pathway
from resorcinol and acetone: a coupling reaction followed by direct O-glycidylation using
epichlorohydrin [175]. The glass transition temperature of the resulting material cured with
diaminodiphenyl sulfone was not observed neither in DSC, nor in DMA, up to 300 ◦C. The authors
concluded that the Tg was above 300 ◦C, thus making it much higher than that of DGEBA-based



Molecules 2017, 22, 149 29 of 48

material. The three epoxy groups and the rigidity of the cyclic backbone may in fact explain such
a result.
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For this reason, Nouailhas et al. [128,177] focused their research on catechin, one of the constitutive 
units of condensed tannins. Although it is not yet bio-based, it can be obtained by acid-depolymerization 
as previously described (Section 4.2.). The direct O-glycidylation of catechin (Figure 27) led mainly to the 
tetraglycidylated catechin (45) (46%) and to two di-glycidylated benzodioxane derivatives (46), with a 
yield of 18% and 15%, respectively. As the mixture was a solid at room temperature, it was mixed with 
25 and 50% of DGEBA as a reactive diluent and cured with Epamine PC 19, which is composed of benzyl 
alcohol, 1,3-bis(aminomethyl)benzene, 3-amino-methyl-3,5,5-trimethylcyclohexylamine and BPA- 

Figure 25. Triglycidyl ether derivative based on resorcinol and acetone.

Aouf et al. [176] studied hydrolysable tara tannins as potential candidates for a source of phenolic
moieties. These galloylquinic acid oligomers were first depolymerized by tannase-assisted hydrolysis
to produce mainly gallic acid and galloylquinic acid. The epoxidation of this mixture was carried out
by direct O-glycidylation, leading to galloylquinic esters and glycidylated dimerized gallic moieties
(Figure 26). The obtained monomer mixture was cured using isophorone diamine and the resulting
material showed a Tg up to 129 ◦C, which is 20 ◦C lower than that of DGEBA-based materials in the
same conditions. The presence of esters bonds may however make these thermosets more sensitive to
hydrolysis and favour the use of condensed instead of hydrolysable tannins.
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Figure 26. Main oligomers obtained from the glycidylation of depolymerized tara tannins by
Aouf et al. [176].

For this reason, Nouailhas et al. [128,177] focused their research on catechin, one of the
constitutive units of condensed tannins. Although it is not yet bio-based, it can be obtained by
acid-depolymerization as previously described (Section 4.2.). The direct O-glycidylation of catechin
(Figure 27) led mainly to the tetraglycidylated catechin (45) (46%) and to two di-glycidylated
benzodioxane derivatives (46), with a yield of 18% and 15%, respectively. As the mixture was a
solid at room temperature, it was mixed with 25 and 50% of DGEBA as a reactive diluent and
cured with Epamine PC 19, which is composed of benzyl alcohol, 1,3-bis(aminomethyl)benzene,
3-amino-methyl-3,5,5-trimethylcyclohexylamine and BPA-epichlorohydrin polymer. The materials
based on the 50% and 75% blends of glycidylated catechin exhibited slightly lower and 10 ◦C higher
Tg than DGEBA-based materials, respectively. These results may seem surprising as the introduction
of tetra-epoxy monomers with the catechin rigid structure was expected to increase glass transition
temperature. However, the role of the di-epoxy benzodioxane derivative is not elucidated and may
explain these results.
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5.2.5. Conclusions

A wide range of di-aromatic bio-based epoxy monomers has been synthesized and cured over the
past years with most of them exhibiting interesting and varied properties in terms of glass transition
temperature and thermal stability. Shrewd strategies have been developed to slightly or largely step
away from the detrimental structure of BPA, but similarly to mono-aromatic compounds, very few
were studied for their estrogen activity. The following tables (Tables 3–5) gather the known data on
cured materials based on the di-aromatic di- and poly-epoxy monomers.

Table 3. Di-epoxy resins with two aromatic rings separated by one atom, and thermal properties of the
cured materials.

Epoxy Curing Agent
Tg (◦C) or Tα (◦C)

Td,5% (◦C) Reference
Materials DGEBA Comparison
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Table 4. Di-epoxy monomers with two aromatic rings separated by more than one atom exhibiting
ester or amide bonds, and thermal properties of the cured materials.

Epoxy Curing Agent
Tg (◦C) or Tα (◦C)

Td,5% (◦C) Reference
Materials DGEBA Comparison
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5.3. Polyaromatic Epoxy Compounds

As observed in the previous parts, it is hard to match up with the properties of DGEBA-based
materials, especially in term of glass transition temperature, thus making the use of polyaromatic
and possibly poly-epoxy derivatives a viable alternative. Moreover, the direct use of the biomass
would avoid the costly and time-consuming depolymerization and purification steps. The next part
will present the epoxy prepolymers containing at least three aromatic moieties and two or more
epoxy rings.

5.3.1. Glycidylated Lignin

Chemical modifications of lignin functional groups were carried out to increase its solubility
and chemical reactivity, and thus its range of applications. Among the possible functionalizations,
modification of the hydroxyl groups is the most versatile since phenolic hydroxyl groups are the most
reactive groups and can significantly affect the chemical reactivity of the materials. Allylation [178],
esterification [179,180], phenolation [181] or etherification [172,182–184] of lignin have been widely
investigated. However, only few research groups attempted to epoxidize raw depolymerized lignin by
direct O-glycidylation.

As the isolation of pure building blocks from lignin is both economically and environmentally
costly, Fache et al. [185] developed model mixtures of depolymerization products of lignin from both
hardwood and softwood, including for example vanillin, syringaldehyde and their acid equivalents.
After a Dakin oxidation to increase the number of reactive hydroxyl groups and an O-glycidylation
step, the materials cured with IPDA showed interesting thermo-mechanical properties, with Tg values
of 99 ◦C and 113 ◦C for hardwood and softwood model mixtures, respectively. These temperatures
remain lower than that of DGEBA-based materials synthesized by the same authors in fairly similar
conditions [135], probably due to the mono-epoxy derivatives included in the mixtures. Both materials
exhibited a good thermal stability with onset degradation temperatures above 250 ◦C under nitrogen
atmosphere and high char yields of 20%–23% at 600 ◦C. This study demonstrated that purification
steps are not necessarily required to achieve high-performance epoxy thermosets from biomass.

Ferdosian et al. [186] carried out the glycidylation of de-polymerized organosolv or Kraft lignin
with epichlorohydrin and highlighted the presence of epoxy by normalized FTIR. Then, they prepared
materials of the resulting epoxidized lignin by curing with aromatic and aliphatic amines to show the
influence of the curing agent on the thermal stability. Despite the good thermal stability and very high
char rate at 800 ◦C, no glass transition temperature or mechanical properties were given.

Following the work of Zhao et al. [187], Sun et al. [188] prepared a liquid epoxy resin from
phenolated lignosulfonate and focused their study on its curing kinetics with maleic anhydride. No
data on the material properties were given.

Kaiho et al. [189] used a three-steps pathway to synthesize lignin-based epoxy resins (Figure 28):
(i) selective β-O-4 bond cleavage of eucalyptus globulus lignin, (ii) transacetalization for the synthesis of
spiro rings (47) or annulation to form a phenyl-naphthalene derivative (48) and (iii) O-glycidylation
with epichlorohydrin. The obtained resins were cured with phenol novolac yielding materials with
glass transition temperatures ranging from 67 to 134 ◦C and of 95 ◦C for an epoxy/bisphenol A system.
As expected from the structures, the more rigid structure of the phenyl-naphthalene lignin epoxy
prepolymers lead to higher Tg values and higher flexural strength.

Similarly, Asada et al. [190] used various low molecular weight lignins extracted with methanol
to synthesized bio-based epoxy resins. The glycidylation was assessed by FTIR and 1H NMR
spectroscopies and four sets of materials were cured using two epoxy resins: glycidylated lignin
and an oil-based commercial Epikote 828 (EP828, DGEBA from Japan Epoxy Resins Co. Ltd., Nagoya,
Japan) and two phenolic hardeners: non-glycidylated lignin and TD2131 (a phenol novolac from DIC
Corp., Tokyo, Japan). The materials exhibited high thermal stabilities with Td,5% ranging from 259 to
326 ◦C, still lower than the fully oil-based material (361 ◦C) but with higher char rates, up to 41% at
800 ◦C. Unfortunately, no glass transition temperatures or mechanical properties were provided. It is
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worth noting that the lignin extract insoluble in methanol was enzymatically transformed into glucose,
increasing the biomass promotion.
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Other uses have been found to lignin for the improvement of epoxy resins. Lignin functionalized
by a dicarboxylic acid prepared by dimerizing unsaturated fatty acids was considered as a phenolic
aldehyde amine curing agent by Fang et al. [191]. Similarly, Engelmann et Ganster [192] blended a low
molecular weight lignin fraction with the bio-based tri-glycidylated glycerol for the preparation of
composites reinforced with cellulosic fibers.

5.3.2. Glycidylated Tannins

Few research papers are devoted to the use of tannins and tannin-based molecules for epoxy
materials synthesis compared to lignin ones. Maybe the reduced availability of the former is a key
factor in this result, as the complexity and the variability of both these bio-resources seem similar.
As previously mentioned before, Aouf et al. [176] considered the hydrolysable tannins from tara as
potential precursor for epoxy prepolymer synthesis, but they first carried out a depolymerization to
obtain gallic acid mixtures prior to glycidylation. Benyahya et al. [193] focused their work on the
inexpensive green tea (Camellia sinensis) tannins, which are condensed tannins mainly composed of
epicatechin, catechin dimers and their galloylated equivalents. The tannins extracts were glycidylated
with epichlorohydrin and cured with isophorone diamine. The obtained materials exhibited a Tα of
142 ◦C, a value similar to the 140 ◦C of the material from IPDA and DER352 (a mixture of DGEBA and
DGEBF supplied by Dow (France)). Swelling ratios and soluble fractions of these materials also proved
to be very low. Jahanshahi et al. [194,195] recently published two papers on the use of condensed
tannins for the synthesis of bio-based materials. In the first one [194], Mimosa (Acacia mearnsii) bark
tannins were glycidylated with epichlorohydrin but the epoxy rings were then reacted with acrylic
acid for adhesive synthesis. On the contrary, in their second paper, they focused their efforts on the
glycidylation optimal parameters and characterization of the epoxy prepolymers, thus very brief
results on tensile shear tests of glycidylated tannins mixed with DGEBA were mentioned.

5.3.3. Glycidylated Cardanol

To increase the low glass transition temperatures obtained with materials based on glycidylated
cardanol, a polyaromatic derivative of it can be designed by a two-steps synthesis, beginning by
a phenolation step and followed by direct O-glycidylation. The resulting product is idealized by
a diepoxidized diaromatic cardanol structure and marketed with the name NC514 by Cardolite.
However, Jaillet et al. [196] showed that the commercial product is a mixture (49), in which chains
are crosslinked and some epoxy rings are opened, as shown in Figure 29. This product may cause an
allergic skin reaction (H317), but can be used as food contact material, according to the supplier.

Epoxy-amine based materials showed moderate glass transition temperature, from 13 to
30 ◦C with linear aliphatic diamines [197–199]. The highest Tg was reached when epoxidized
cardanol was cured with isophorone diamine, up to 50 ◦C, which is still 100 ◦C lower than that
of DGEBA-based material [196]. Nevertheless, the fatty chain of the epoxidized cardanol allows more
flexibility, conferring mechanical properties suitable for particular coating applications. Glycidyl ether
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groups have also been converted to methacrylate, allowing radical polymerization for other coating
applications [200,201].
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5.3.4. Other Bio-Based Poly-Aromatic Monomers

Fourcade et al. [167] applied the same strategy as previously described (see Section 5.2.2.) on
various aliphatic polyols (Scheme 14). Glycerol (50) and sorbitol (51) are bio-based precursors,
pentaerythritol (52), di-pentaerythritol (53) and trimethylolpropane (54) are obtained via formaldehyde
and acetaldehyde from syngas of the Biomass-to-Liquid (BtL) process or carbon monoxide
hydrogenation. Moreover, according to their corresponding MSDS files, these polyols and
ethyl-4-hydroxybenzoate show no toxic risk. Only the dibutyltin dilaurate (DBTDL), which is used as
catalyst in the phenolation step and the unavoidable epichlorohydrin present safety risks.Molecules 2017, 22, 149 34 of 47 
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The phenolation step allowed 75% to 100% of conversion and the glycidylation of the resulting
phenolic compounds led to an overall functionality ranging between 2 and 5. The synthesized
polyaromatic glycidyl epoxides were blended with DGEBA and cured with dicyandiamide. From
a general point of view, the addition of these new resins decreased the glass transition temperature
of the blend materials, up to 24% when 25% are used. Glycidyl ether of trimethylolpropane-tris
(4-hydroxybenzoate) was cured with dicyandiamide in the absence of DGEBA and the corresponding
material showed a Tg of 105 ◦C, slightly lower than that of DGEBA-based material (119 ◦C). This result
is very promising since materials can be prepared from non-toxic hydroxyl compounds and almost
meet the thermal properties of the harmful DGEBA-based materials.

Similarly, Ménard et al. [166] synthesized a tri-aromatic tri-epoxy monomer based on glycerol
and ferulic acid (55) (Figure 30), although the esterification step was carried out with an enzymatic
catalyst. After curing with IPDA, difurfurylamine and 1,10-diaminodecane, the thermosets showed Tg

and Tα values ranging from 54 to 73 ◦C and 67 to 92 ◦C, respectively, with lowest values observed for
the aliphatic diamine. These values remain significantly lower than those observed for DGEBA-based
materials, as the increased functionality does not compensate the effect of the long aliphatic segments.
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Figure 30. Tri-epoxy monomer based on ferulic acid and glycerol synthesized by Ménard et al. [166].

Very recently, Wan et al. [121,202] prepared two eugenol-based di-epoxy compounds, using
a two-steps synthesis. The first step consisted in a Williamson etherification reaction between the
hydroxyl group of eugenol and chloride aromatic derivatives, α,α′-dichloro-p-xylene [202] or cyanuric
chloride [121]. The resulting allylated intermediate was achieved with an almost quantitative yield.
Then, the carbon-carbon double bonds were oxidized using mCPBA with a moderate yield (44%–70%),
yielding di- (56) and tri-glycidylated (57) derivatives (Figure 31). Despite a high net bio-based content
(70%) of these new epoxy resins, the chosen synthetic pathway requires the use of mCPBA, which is
known to be dangerous, and chlorinated derivatives, which are highly toxic (H302-H314-H330) for
cyaniric chloride and detrimental for the environment (H400) for α,α′-dichloro-p-xylene.

Both eugenol-based epoxies showed lower reactivity towards amine than DGEBA, due to the
lower electron withdrawing effect of the -CH2Ph epoxy-ring, compared to the usual -CH2OPh in
BPA, but they avoid the use of epichlorohydrin and still, eugenol-based materials were successfully
prepared by curing with aromatic diamines. The material based on the diglycidyl ether compounds
prepared from α,α′-dichloro-p-xylene showed a Tg 40 ◦C lower than for DGEBA-based materials,
probably due to the methoxy groups on the aromatic rings and the -CH2O linkages between them.
For the material obtained from cyanuric chloride, the glass transition temperature proved to be 33 ◦C
higher despite the methoxy moieties, probably thanks to the tri-functional nature of the prepolymer.
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Wan et al. [120] also prepared a bio-based epoxy building block in a two-step synthesis from
eugenol and terephthaloyl chloride: (i) a coupling reaction between eugenol and terephthaloyl chloride,
followed by (ii) an epoxidation by oxidation of the C=C double bonds (58). The coupling step
allowed 93% of yield and the final product was a white solid. However, the high toxicity of the
commercially available terephthaloyl chloride has to be taken in account. The material obtained by
curing with 3,3′-diaminodiphenyl sulfone showed lower Tg and thermal stability and slightly higher
mechanical properties than the one based on DGEBA. Furthermore, it exhibited interesting intrinsic
flame retardancy.

Czub [203] considered recycling polyethylene terephthalate (PET) wastes, especially coming from
bottles, for the synthesis of epoxy resins (59). The precursor of PET, terephtalic acid, is mostly produced
by air oxidation of oil-based p-xylene [204]. However, as previously stated, p-xylene can be obtained
from cellulosic biomass, for example via dehydration of iso-butanol into iso-butene, dimerization into
iso-octene and catalytic conversion. It can also be synthesized by dehydrogenation of 3-carene extracted
from pine tree or limonene extracted from citrus fruits into p-xylene. Thus, the author degraded PET
waste by glycolysis reaction into small aromatic hydroxy telechelic oligomers. Using epichlorohydrin,
these polyhydroxyl derivatives were glycidylated and mixed with DGEBA oligomers leading to an
improved water absorption and resistance to HNO3, H2SO4 and ethyl acetate (Figure 32). The addition
of 5%–20% of glycidylated PET-wastes in oligo(DGEBA) cured with isophorone diamine led to similar
and slightly higher Tg values, from 56 ◦C to 53–63 ◦C measured in DMTA.
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5.3.5. Conclusions

Due to their complexity and variability, bio-mass resources such as lignin or tannins have not
received as much attention as smaller molecules for BPA substitution. However, as observed in
the previous parts, they have been successfully turned into poly-epoxy monomers and used for the
synthesis of materials exhibiting interesting properties. Similarly, smaller bio-based molecules such
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as eugenol and ferulic acid were turned into poly-aromatic epoxy monomers, but still few materials
reached the high Tg values of their DGEBA counterparts. These results are gathered in Tables 6 and 7.

Table 6. Poly-aromatic epoxy monomers from crude bio-mass and thermal properties of the
cured materials.

Epoxy Curing Agent Tg (◦C) or Tα (◦C) Td,5% (◦C) Reference
Materials DGEBA Comparison

Epoxidized depolymerized
kraft lignin

Diethylenetriamine - - 252 d

[186]

4,4-diaminodiphenyl
methane - - 290 d

Epoxidized depolymerized
organosolv lignin

Diethylenetriamine - - 228 d

4,4-diaminodiphenyl
methane - - 257 d
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134 -

Epoxidized lignin (Cedar)
Phenol Novolac

(TD2131) - - 293

[190]

Lignin (Cedar) - - 296

Epoxidized lignin (Eucalyptus)
Phenol Novolac

(TD2131) - - 275

Lignin
(Eucalyptus) - - 274

Epoxidized lignin (Bamboo)
Phenol Novolac

(TD2131) - - 266

Lignin (Bamboo) - - 259

Epoxidized green tea extract Isophorone
Diamine 142 a,b 140 a,b 256/267 c [193]

Epoxidized cardanol (NC514)

Isophorone
Diamine 50 a,b 155 a,b 350 [205]

Jeffamine T403 23 70 352 e

[198]

Isophorone
Diamine

41 121 350 e

50/59 b 158/158 b 366 e/363
c,e

[196]
Jeffamine D400 15/9 b - 362 e/361

c,e

PE-C9-NH2 13 279 -
[141]

PE-C18-NH2 14 284 -

Phenalkamine
NX5454 30/38 a,b - 325 f/322

c,f

[206]
Cardanol

cysteamine 19/21 a,b - 328 f/311
c,f

a Tα measured by DMA at the peak position of loss modulus curve; b Tα measured by DMA at the maximum of
tan δ; c Td under air flow; d IDT = initial decomposition temperature; e Td,30%; f Td,10%.
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Table 7. Poly-aromatic di- and tri-epoxy monomers and thermal properties of the cured materials.

Epoxy Curing Agent Tg (◦C) or Tα (◦C) Td,5% (◦C) Reference
Materials DGEBA Comparison
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Epoxidized green tea extract Isophorone Diamine  142 a,b 140 a,b 256/267 c [193] 

Epoxidized cardanol (NC514) 

Isophorone Diamine  50 a,b 155 a,b 350 [205] 

Jeffamine T403 23 70 352 e 
[198] 

Isophorone Diamine  
41 121 350 e 

50/59 b 158/158 b 366 e/363 c,e 
[196] 

Jeffamine D400 15/9 b - 362 e/361 c,e 

PE-C9-NH2 13 279 - 
[141] 

PE-C18-NH2 14 284 - 

Phenalkamine NX5454 30/38 a,b - 325 f/322 c,f  
[206] 

Cardanol cysteamine 19/21 a,b - 328 f/311 c,f  

a Tα measured by DMA at the peak position of loss modulus curve; b Tα measured by DMA at the 
maximum of tan δ; c Td under air flow; d IDT = initial decomposition temperature; e Td,30%; f Td,10%. 

Table 7. Poly-aromatic di- and tri-epoxy monomers and thermal properties of the cured materials. 

Epoxy Curing Agent 

Tg (°C) or Tα (°C) 

Td,5% (°C) Reference 
Materials 

DGEBA 
Comparison 

 

4,4′-diaminodiphenyl 
methane 

114 b 154 b 341 [202] 

 

1,10-diaminodecane 54/70 b 

150/174 b 

293 

[166] 
Isophorone Diamine 73/92 b 294 

Difurfurylamine 58/67 b 284 

 

3,3′-diaminodiphenyl 
sulfone 

168 b 174 b 338/337 c [120] 

 

Dicyandiamide 105 b 119 b 305 c [167] Dicyandiamide 105 b 119 b 305 c [167]
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3,3′-diaminodiphenyl 
sulfone 207 b 174 b 326 [121] 

a Tα measured by DMA at the peak position of loss modulus curve; b Tα measured by DMA at the 
maximum of tan δ; c Td under air flow. 

3,3′-diaminodiphenyl
sulfone 207 b 174 b 326 [121]

a Tα measured by DMA at the peak position of loss modulus curve; b Tα measured by DMA at the maximum of
tan δ; c Td under air flow.

6. General Conclusions

Biorefinery processes and retreatment of biomass was out of our scope. However, it is clear that
the future of bio-based polymers, including building blocks for thermosetting epoxies is strongly
dependent on the future of biorefinery. The goal of a biorefinery is to produce high quality
chemicals for fuels, monomers, and finally polymers and materials. New screening techniques
like “Green Chemistry” and techno-economic and Life Cycle Assessment (LCA) indicators can help
chemical-based biorefinery project developments. But efficient, economical, and large-scale synthesis
of monomers is crucial, and the first key parameter remains a resource pool that should be abundant
and easily accessed.

At first glance, there are a lot of opportunities to develop molecular biomass and monomers for
preparation of renewable epoxy formulations and materials. But, the biggest changes for thermosetting
epoxy formulations in the near future will certainly come from the regulation changes like the
environmental directives for reducing Volatile Organic Constituents (VOC), the “Restriction of certain
Hazardous Substances” (RoHS), or the “Registration, Evaluation and Authorisation of Chemicals”,
(REACh). Bio-based compounds will not be the only solution for these policy pressures but will be
an opportunity.

There are many different routes to synthesize bio-based aromatic epoxy monomers and hence
to replace DGEBA. However, we have to take into account several parameters such as the epoxy
functionality; the different applications—for example coatings are totally different from composites
and the adaptation of properties to applications. Hence, even if DGEBA is very interesting since it
allows to cover all applications, it seems difficult to imagine to replace DGEBA by the same bio-based
epoxy monomer in all applications. Currently, only a handful of patents led to commercialization
of products, such as epoxided cardanol or vegetable oils. However, these epoxide monomers led to
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low Tg polyepoxide networks for low Tg applications. Epoxy aromatic monomers leading to high Tg

polyepoxide are desired and correspond to an important challenge. Some industrial countries have
declared bisphenol A (BPA) to be a toxic substance that causes risks to human health as well as to
the environment; thus it has to be banned for all food contact applications in the next coming years,
and in the immediate future the pressure is on its replacement. BPA is industrially produced from
condensation of acetone with phenols. Therefore, bio-based aromatic/rigid epoxy monomers are still
needed in order to fulfil good compromise between processing and properties, and able to enable
replacement of BPA.

Developing highly efficient, safe, low waste, low toxicity and atom economy processes are the
key words for green chemistry. Chemistry has to be simple, practical, and operational, and catalysts
are expected to play an important role. Epichlorohydrin is the preferred way to prepare epoxy
monomers; but epichlorohydrin is a toxic molecule which has to be manipulated in a safe environment.
Epoxidation without the use of epichlorohydrin is a key challenge. Even if allylation or crotonization
of alcohols can be a first step for epoxydation, the second step, i.e., double bond oxidation, requires the
use of hazardous catalysts. Therefore, the oxidation of terminal double bonds is an interesting route
but still needs research to propose industrial routes.
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