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Abstract

This paper presents a novel strategy to generate, from 3-D lidar measures,
dense depth and reflectance images coherent with given color images. It also
estimates for each pixel of the input images a visibility attribute. 3-D lidar
measures carry multiple information, e.g. relative distances to the sensor
(from which we can compute depths) and reflectances. When projecting a
lidar point cloud onto a reference image plane, we generally obtain sparse
images, due to undersampling. Moreover, lidar and image sensor positions
typically differ during acquisition; therefore points belonging to objects that
are hidden from the image view point might appear in the lidar images. The
proposed algorithm estimates the complete depth and reflectance images,
while concurrently excluding those hidden points. It consists in solving a joint
(depth and reflectance) variational image inpainting problem, with an extra
variable to concurrently estimate handling the selection of visible points. As
regularizers, two coupled total variation terms are included to match, two
by two, the depth, reflectance, and color image gradients. We compare our
algorithm with other image-guided depth upsampling methods, and show
that, when dealing with real data, it produces better inpainted images, by
solving the visibility issue.
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1. Introduction1

Image-based 3D reconstruction of static and dynamic scenes (Herbort2

and Wöhler, 2011; Seitz et al., 2006; Stoykova et al., 2007) is one of the main3

challenges in computer vision nowadays. In the recent years many efforts4

have been made to elaborate configurations and approaches, possibly requir-5

ing the employment of multiple sensors, with the final goal of generating6

plausible and detailed 3D models of scenes. To this end, typical optical cam-7

eras are often combined with non-visual sensors. The intermediate outputs8

of these hybrid systems, prior to the final scene rendering, are in general9

depth or depth+color images (RGB-D). Among the non-visual sensors, we10

can find Time-of-Flight (ToF) cameras (Kolb et al., 2010), which acquire11

low-resolution co-registered depth and color images at a cheap cost, and the12

famous Kinect (Zhang, 2012), capable to extract depth information by ex-13

ploiting structural light. Another possibility is represented by lidar devices,14

which are used in a variety of applications and provide as output point clouds15

with measures of distance and reflectivity of the sensed surfaces.16

This work lies in the context described and is particularly driven by the17

exploitation of data acquired by Mobile Mapping Systems (MMS), such as18

(Paparoditis et al., 2012). MMS systems are vehicles equipped with high-19

resolution cameras and at least one lidar sensor: their contained dimensions20

allow them to be driven through regular streets and acquire data of urban21

scenes. The data acquired is a set of calibrated and geolocated images,22

together with coherent lidar point clouds. The interest towards them comes23

from the possibility of having available, at a relatively small processing cost,24

the combination of depth and color information, without having to perform25

explicit (error-prone) reconstructions. Having a good depth estimate at each26

pixel, for example, would enable the possibility to perform depth-image-27

based rendering algorithms, e.g. (Chen et al., 2005; Schmeing and Jiang,28

2011; Zinger et al., 2010). Similarly, the availability of depth information29

allows the insertion of virtual elements into the image, such as pedestrians or30

vehicles generated by a traffic simulation (Brédif, 2013). While MMS data31

sets do not include directly depth images aligned with the available color32

images, it is easy, by exploiting the known geometry, to project the lidar33
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point clouds onto each image. This operation produces initial depth images,34

which present three main issues (see Figure 1, where three parts of an input35

depth image are shown, together with the corresponding image parts).

(a) Undersampling (b) Visibility (c) Occlusions

Figure 1: Examples of parts from a resulting input depth image (bottom row), with the
corresponding parts from the reference color image (top row), showing the three issues
mentioned: undersampling, appearance of hidden points, and presence of occlusions.

36

1. Undersampling : since lidar and image acquisitions are deeply different37

in terms of geometry and characteristics, the resulting depth images38

turn to be irregular. No points are present in the sky and on reflective39

surfaces. Moreover, the point density, which depends on the variable40

distances between the camera image plane and the positions of the lidar41

sensor, is generally significantly smaller than the pixel resolution. We42

can therefore talk about sparse input depth images (see for example43

Figure 1a, showing the low density of lidar points from the ground).44

2. Visibility (hidden parts appear): since points that are not visible from45

the image view point (hidden points) can be occasionally “seen” by46

the moving lidar sensor, erroneous values referring to such points can47

appear in the input depth image. This occurs even when a Z-buffer48

approach (Greene et al., 1993) is used, i.e. only the closest depth values49

for each pixel are kept (in case multiple values end up in the same pixel50

location). E.g., Figure 1b shows that depth values from the building51

behind appear as foreground points.52

3. Occlusions (visible parts disappear): for the same reason as above, i.e.53

the different acquisition timing and geometry between image and lidar54
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sensors, surfaces normally visible from the image view point do not get55

a corresponding depth. This can happen when the lidar sensor suffers56

occlusions at a given instant or because of the scene dynamics. E.g.,57

in Figure 1c, a moving bus that is not present at the moment of the58

image shot happens to appear in the depth image.59

While there is a variety of methods in the literature that deal with the first60

issue, i.e. that aim at upscaling an irregular input depth image possibly with61

the guidance of a corresponding color image, little work has been performed62

to address the last two issues. In this paper, while inpainting the input depth63

image, we also intend to tackle the visibility problem. Moreover, we treat at64

the same time an additional input: a sparse reflectance image derived in the65

same way as the input depth image (i.e., by naively projecting the lidar point66

cloud, considering the reflectance information carried out by each point). We67

will show that the simultaneous use of a reflectance image, which is inpainted68

jointly with the depth, improves the quality of the produced depth image69

itself. To jointly inpaint depth and reflectance and concurrently evaluate the70

visibility of each point (i.e. establish if a single point is reliable or, since71

non-visible, must be discarded), we formulate an optimization problem with72

three variables to estimate: depth, reflectance and a visibility attribute per73

pixel. The inpainting process is also guided by the available color image, by74

means of a two-fold coupled total variation (TV) regularizer.75

The remainder of the paper is organized as follows. In Section 2, we76

present our approach and mention the related works, in particular on the77

image-guided depth inpainting problem. In sections 3 and 4 we describe the78

model used and the primal-dual optimization algorithm that arises, respec-79

tively. Finally, in Section 5 we bring experimental evidence that proves the80

effectiveness of the proposed approach.81

2. Problem addressed and related work82

Figure 2 depicts the scheme of the proposed approach. Given an MMS83

data set consisting of a lidar point cloud and a set of camera images, we84

choose among the latter a reference color image (w), and we obtain input85

depth (uS) and reflectance (rs) images by re-projecting the lidar points ac-86

cording to the image geometry. The two lidar-originated images are sparse87

images with irregular sampling and need to be inpainted. We propose to do88

that jointly and simultaneously estimate the visibility of the input points,89
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within a variational optimization framework. The output of the algorithm90

are then three: the inpainted depth and reflectance (u and r, respectively),91

and a binary image expressing the visibility at each point (v).92

Figure 2: General scheme of the proposed approach. The final outputs of the algorithm
are the inpainted reflectance and depth images, r and d respectively, and a binary visibility
image v. To represent v, we show the original depth values that finally get v ' 0.

In the literature there is a variety of methods that aim at upscaling or93

inpainting an original sparse depth image. Most of them are presented in the94

context of ToF cameras; thus, a high quality color image is acquired at the95

same time and can be exploited. We refer to this problem as image-guided96

depth inpanting. The typical assumption, when exploiting the available im-97

age, is that image edges are related to depth edges. Following this principle,98

many approaches have been proposed, such as methods using different ver-99

sions of multilateral filtering (Chan et al., 2008; Garcia et al., 2010; Yang100

et al., 2013), methods based on Markov Random Fields (Diebel and Thrun,101

2005), and methods using Non-Local Means (Huhle et al., 2010; Park et al.,102

2011). Another family relates to recent methods that make use of optimiza-103

tion (Ferstl et al., 2013; Harrison and Newman, 2010; Liu and Gong, 2013;104

Schneider et al., 2016; Schwarz et al., 2012). Among these, in (Harrison105

and Newman, 2010), a method to assign image pixel with a range value,106

using both image appearance and sparse laser data, is proposed. The prob-107

lem is posed as an optimization of a cost function encapsulating a spatially108
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varying smoothness cost and measurement compatibility. In the same spirit,109

the authors of (Ferstl et al., 2013) present an optimization-based depth up-110

sampling method, which uses an Anisotropic Total Generalized Variation111

(ATGV) term to regularize the solution while exploiting the color image in-112

formation. Another recent algorithm for the upsampling of sparse depth data113

is presented in (Schneider et al., 2016). The key idea here is to exploit ad-114

ditional object boundary cues (via structured edge detection and semantic115

scene labelling) together with usual intenisty cues in a unique optimization116

framework.117

While presenting good results on images that are not particularly “prob-118

lematic”, in none of the mentioned methods the visibility issue is directly119

tackled, i.e. there is no explicity estimation of input depth measures to pos-120

sibly exclude from the inpainting process.We instead intend to estimate visi-121

bility, to be able to cope with realistic depth images. To this end, we build on122

our previous work on lidar-based depth inpainting (Bevilacqua et al., 2016).123

W.r.t. the latter, the model is significantly modified to include a reflectance124

image as well into a new optimization framework. We will show that depth125

and reflectance mutually benefit of each other in the inpainting process, thus126

leading to better output results for both. In the next section we present the127

novel model.128

3. Model129

Let Ω ⊆ R2 be the “full” image support, and ΩS ⊆ Ω the sparse im-130

age support where the input images are defined (i.e., there is at least one131

lidar point ending up there after projection). Given an input depth image132

uS : ΩS → R, an input reflectance image rS : ΩS → R, and the luminance133

component of their corresponding color image w : Ω→ R (defined in the134

complete domain), the goal is to fully inpaint the depth and reflectance in-135

put images to obtain u : Ω→ R and r : Ω→ R, and concurrently estimate a136

visibility attribute v : ΩS → R. For each input pixel, v indicates whether it137

is visible from the image view point and should thus be taken into account in138

the inpainting process. Figure 3 reports an example of three possible input139

images - depth (uS), reflectance (rS) and camera images - and their respective140

gradient images.141

We model our joint inpainting problem as an optimization problem with142

three variables, u, r, and v, to be estimated. Lower and upper bounds for the143

values of u and r are considered in the expression. The visibility attribute144
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~ 380 m.

~ 1 m. 

Depth Reflectance Color image

Figure 3: Example of input depth, reflectance and color images (top row), and their re-
spective gradient images (bottom row). Besides the input depth image, the color map used
to encode depth values is reported. Gradients of depth and reflectance are computed on
the interpolated versions of the input sparse images, initially obtained by nearest neighbor
interpolation.

v takes values in [0, 1], where v = 0 stands for “hidden” and v = 1 means145

that the point is visible from the considered image view point. The model146

considered consists of four terms:147

min
u∈[um,uM]
r∈[rm,rM]
v∈[0,1]

F (u, v|uS) +G(r, v|rS) +H(v|uS, rS) +R(u, r|w) . (1)

F (u, v|uS) and G(r, v|rS) are two data-fidelity terms, for depth and re-148

flectance respectively. In both of them the visibility attribute v intervenes.149

H(v|uS, rS) is a term depending exclusively on v, which represents the total150

cost of classifying input pixels as non-visible. Finally, R(u, r|w) is a regular-151

ization term that penalizes the total variation of u and r, by also taking into152

account the color image w. In the next sections we will detail all the terms153

composing (1).154
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3.1. Visibility-weighted data-fidelity terms155

The data-fitting terms in (1) are meant to enforce fidelity with the original156

values of depth and reflectance, uS and rS respectively. Deviations from the157

original values are more penalized if the points are considered “trustful”;158

conversely, for erroneous original measures (e.g., referring to hidden points)159

larger deviations are allowed. Therefore we use the visibility attribute v to160

weight the data terms. For the reflectance data-fidelity term G(r, v|rS) we161

have the following expression:162

G(r, v|rS) = η2

∫
ΩS

v|r − rS| dx1 dx2 , (2)

where η2 is a coefficient weighting the term within the model, and dx1 and163

dx2 express the differential lengths in the two image directions. Note that in164

(2) an `1-norm error is used. The `1 norm is considered in substitution of the165

classical `2 measure of the error for its effectiveness in implicitly removing166

impulse noise with strong outliers (Nikolova, 2004) and its better contrast167

preservation (Chan and Esedoglu, 2005). As said, weighting by v relaxes the168

dependence on the input data for those points classified as hidden.169

The depth data-fidelity term, weighted by the coefficient η1, is further170

divided into two terms, as follows:171

F (u, v|uS) = η1

(∫
ΩS

max(0, u− uS) dx1 dx2 +

∫
ΩS

v(max(0, uS − u)) dx1 dx2

)
= F1(u|uS) + F2(u, v|uS) .

(3)

The basic idea behind this separation is to treat differently over- and under-172

estimated depths. Points for which the estimated depth is greater than the173

original value (u > uS) most likely correspond to correct input measures,174

where the over-estimation would be due to the surrounding presence of larger175

erroneous depths. The expression max(0, u− uS) is meant to select this176

kind of points (over-estimated depths). As they are considered reliable, an177

unweighted data-fitting term, F1(u|uS), is imposed. It is easy to see that178

for these points the visibility attribute v tends to converge to 1, i.e. they179

are the best candidates for being classified as visible points. Conversely, the180

hidden points to remove are sought among depth values which undergo under-181

estimation (u < uS). These points are taken into account in the second term182

F2(u, v|uS), where the `1 error is weighted by the visibility attribute. Ideally,183

a fraction of them, the most “problematic” ones, will be classified as hidden184
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Figure 4: Depth data-fidelity cost F (u, v|uS) as a function of u−uS for different values of
v (η1 = 1 for simplicity). For over-estimated depths (u− uS > 0) the cost is independent
of v, whereas for u− uS < 0 we have different lines as v varies.

(v = 0) and thus not considered in the data fitting cost. Figure 4 shows185

graphically the depth data-fidelity cost as a function of u− uS. Depending186

on the value of the visibility attribute v, the `1-type error |u− uS| is relaxed187

for negative depth deviations (u < uS).188

3.2. Removal cost189

The second term of the model (1) is meant to penalize the total number190

of hidden points.191

H(v|uS, rS) =

∫
ΩS

α(uS, rS)(1− v) dx1 dx2 . (4)

The cost of a single pixel exclusion is proportional to 1− v, i.e. we have the192

highest cost for an input pixel when it is totally excluded in the data-fitting193

cost (v = 0). We individually weight each removal cost, in order to give194

different importance to each decision visible/hidden. Individual weighting is195

given by a coefficient dependent on the original depth and reflectance values,196

α(uS, rS). We generally choose α = k1uS +k2rS. The linear dependence of α197

on the depth and the reflectance “balances” the three terms of (1) depending198

on v, such that k1 and k2 appear to be constants. We will discuss their choice199

later in this paper (Section 5.1).200

3.3. Coupled Total Variation201

Depth upsampling/inpainting methods that exploit corresponding camera202

images often relate image edges to depth edges. This has been shown to203

improve the quality of the reconstructed depth images.204
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To couple two images in a total variation framework, we adopt the coupled205

total variation (coupled TV) of (Pierre et al., 2015):206

TVλ (a, b) =

∫
Ω

√
(∂x1a)2 + (∂x2a)2 + λ2(∂x1b)

2 + λ2(∂x2b)
2 dx1 dx2 . (5)

where λ is a coupling parameter. When λ 6= 0 the minimization of TVλ207

encourages the gradient “jumps” to occur at the same locations in a and b.208

The coupled TV is then a way to align the edges of an image with those of209

a given one.210

In our problem we have three types of images: a color image w, a depth211

image u, and a reflectance image r. Figure 3 reports in the bottom row212

an example of gradient magnitudes related to three images. The gradients213

of the input depth and reflectance images have been computed after initial214

interpolation of the latter. As we can clearly see from the image, the color215

image gradient particularly matches the reflectance one, while being rather216

dissimilar to the depth gradient. In turn, the reflectance gradient shares217

some patterns, yet less prominently, with the depth one. See, e.g., the area218

at the base of the column, where multiple layers mix and produce a similar219

effect in the two gradient images. We therefore propose to match the three220

gradients two by two: depth with reflectance, and the same reflectance with221

the fixed color image. By using the previous definition of coupled TV (5),222

we express the regularization term as follows:223

R(u, r|w) = TVλ1 (u, r) + TVλ2 (r, w) . (6)

After detailing all the terms, our model (1) can therefore be rewritten as224

follows, the four terms being still distinct:225

min
u∈[um,uM]
r∈[rm,rM]
v∈[0,1]

η1

(∫
ΩS

max(0, u− uS) +

∫
ΩS

v(max(0, uS − u))

)
︸ ︷︷ ︸

F : Data-fidelity for Depth

+ η2

∫
ΩS

v|r − rS|︸ ︷︷ ︸
G: Data-fidelity for Reflectance

+

∫
ΩS

α(uS, rS) (1− v)︸ ︷︷ ︸
H: Removal cost

+ TVλ1 (u, r) + TVλ2 (r, w)︸ ︷︷ ︸
R: TV regularization

.

(7)

In the next section we detail a primal-dual approach to solve (7).226

4. Algorithm227

The optimization problem (7) turns out to be convex, but not smooth,228

due to `1-type data-fidelity terms, F (u, v|uS) and G(r, v|rS), and the total229
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variation regularization term R(u, r|w). Recently, in (Chambolle and Pock,230

2011) a primal-dual first-order algorithm has been proposed to solve such231

problems. In Section 4.1 we provide the necessary definitions for the algo-232

rithm, which is subsequently described in Section 4.2.233

4.1. Discrete setting and definitions234

Images, considered in Section 3 as continuous functions in R2, are here235

converted into real finite-dimensional vectors. Let M and N be the image236

dimensions in this discrete setting, and (i, j) the indices denoting all possible237

discrete locations in the Cartesian grid of size M ×N (1 ≤ i ≤ M , 1 ≤ j ≤238

N). We then have u, uS, r, rS, v, w, and α ∈ X = RMN , where X is a finite239

dimensional vector space equipped with a standard scalar product:240

〈u, v〉X =
∑

1≤i≤M
1≤j≤N

ui,jvi,j , u, v ∈ X . (8)

The gradient of an image u ∈ X, ∇u, is a vector in the vector space X2
241

with two components per pixel:242

(∇u)i,j = ((∇V u)i,j, (∇Hu)i,j) . (9)

We compute the gradient components via standard finite differences with243

Neumann boundary conditions, i.e.:244

(∇V u)i,j =

{
ui+1,j − ui,j i < M
0 i = M

(∇Hu)i,j =

{
ui,j+1 − ui,j j < N
0 j = N

. (10)

From the definition of gradient, it follows the expression of discrete cou-245

pled total variation, which matches the continuous one (5):246

TVλ (a, b) =
∑

1≤i≤M
1≤j≤N

√
(∇Hai,j)2 + (∇V ai,j)2 + λ2 (∇Hbi,j)2 + λ2 (∇V bi,j)2 . (11)

As first suggested by (Chan et al., 1999), a total variation optimization247

problem can be recast into a primal-dual form that makes its solution eas-248

ier, by rewriting the gradient norm by means of a vector-valued dual vari-249

able. To this end, in our case we first define a “coupled gradient” operator250
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Kλb : X → Y (Y = X4), which, applied to an image a ∈ X, expands its251

gradient to include the one of a reference image b according to a coupling252

parameter λ. I.e., we have the following element-wise definition:253

(Kλba)i,j = ((∇Ha)i,j, (∇V a)i,j, λ(∇Hb)i,j, λ(∇V b)i,j) . (12)

The coupled gradient operator Kλb can be further decomposed as Kλb =254

K̃ + βλ(b), according to the following element-wise definition:255

(Kλba)i,j = (K̃a)i,j + (βλ(b))i,j
= ((∇Ha)i,j, (∇V a)i,j, 0, 0) + (0, 0, λ(∇Hb)i,j, λ(∇V b)i,j) .

(13)

K̃ is the usual gradient operator “padded” with two zero components and it256

is linear in a; βλ(b) is a bias term, depending on the gradient of the fixed257

variable b, which determines the last two components of the global coupled258

gradient operator.259

Thanks to the definitions above, we can express alternatively the coupled260

total variation (11), by introducing the dual variable p ∈ Y :261

TVλ (a, b) = max
p∈Y
〈Kλba, p〉Y − δP (p)

= max
p∈Y
〈K̃a, p〉Y + 〈βλ(b), p〉Y − δP (p) ,

(14)

where the scalar product in Y is defined as

〈p, q〉Y =
∑

1≤i≤M
1≤j≤N

p1
i,jq

1
i,j + p2

i,jq
2
i,j + p3

i,jq
3
i,j + p4

i,jq
4
i,j

p = (p1, p2, p3, p4), q = (q1, q2, q3, q4) ∈ Y

,

δP denotes the indicator function of the set P262

δP (p) =

{
0 if p ∈ P
+∞ if p /∈ P , (15)

and the feasibility set P for the dual variable p, is defined as263

P =
{
p ∈ Y | ‖pi,j‖2 ≤ 1, ∀i, j

}
, (16)

i.e. ‖p‖∞ ≤ 1.264
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We can now finally express the regularization term of our model R(u, r|w)265

(6) as the maximization over two dual variables. We then have:266

R(u, r|w) = max
p∈Y

max
q∈Y
〈Kλ1ru, p〉Y + 〈Kλ2wr, p〉Y − δP (p)− δQ(q)

= max
p∈Y

max
q∈Y
〈K̃u, p〉Y + 〈βλ1(r), p〉Y + 〈K̃r, q〉Y + 〈βλ2(w), q〉Y − δP (p)− δQ(q) .

(17)

This will let us formulate a discrete version of our joint inpainting problem267

(7), which falls into the primal-dual optimization framework. As for the268

other terms in (7), rewritten in discrete notation, we have:269

F1(u|uS) = η1

∑
1≤i≤M
1≤j≤N

Φi,j max(0, ui,j − uS i,j)

F2(u, v|uS) = η1

∑
1≤i≤M
1≤j≤N

Φi,jvi,j max(0, uS i,j − ui,j)

G(r, v|rS) = η2

∑
1≤i≤M
1≤j≤N

Φi,jvi,j|ri,j − rS i,j|

H(v|uS, rS) =
∑

1≤i≤M
1≤j≤N

Φi,jαi,j(1− vi,j)

(18)

where Φ is a binary mask indicating the initial known pixels, i.e. belonging270

to the sparse image support ΩS.271

4.2. A primal-dual algorithm272

Thanks to the previous definitions, we can express our model (7) in the
form of the following saddle-point problem, which is an extension (including
two extra variables) of the one presented in (Pierre et al., 2015):

min
u∈X

min
r∈X

min
v∈X

max
p∈Y

max
q∈Y
{〈K1u, p〉+ 〈K2r, q〉 −D∗1(p)−D∗2(q)

+A(u) +B(r) + a(u, v) + b(r, v) + C(v)} . (19)

It is a primal-dual problem with three primal variables (u, r, and v) and273

two dual variables (p and q) that evolve independently. Each dual variable274

is particularly linked to the gradient of a primal variable, i.e. p to u, and275

q to r. D∗1, D∗2, A, B, and C are convex functions; a and b are convex276

w.r.t. each of its respective variables. Globally, the functional is not convex277
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w.r.t. the triplet (u, r, v). By relating (7) and (19), and using the primal-dual278

expression of the regularization term reported in (17), we have the following279

equivalences:280

• K1u = K̃u; • K2r = K̃r;281

• D∗1(p) = −〈βλ1(r), p〉Y + δP (p); • D∗2(q) = −〈βλ2(w), q〉Y + δQ(q);282

• A(u) = F1(u|uS) + δ[um,uM](u); • B(r) = δ[rm,rM](r);283

• a(u, v) = F2(u, v|uS); • b(r, v) = G(r, v|rS);284

• C(v) = H(v|uS, rS) + δ[0,1](v).285

An algorithm to solve (19) can be derived within the primal-dual opti-286

mization framework of (Chambolle and Pock, 2011). It consists in a unique287

loop, where all variables are alternatively updated via proximal operators288

(see Algorithm 1). The algorithm takes as inputs the initial estimates of289

the complete depth and reflectance images (u0 and r0, respectively), and the290

reference intensity image w. It also requires three parameters inherent to the291

algorithm: σ and τ , which are related to each other by the relation 16τσ ≤ 1292

(Chambolle and Pock, 2011), and ρ, which is a parameter regulating the293

update speed of v.294

Algorithm 1 involves the computation of the adjoints to the linear op-295

erators K1 and K2 (the “zero-padded” gradient operators). It is known296

that the adjoint of the gradient operator is the negative divergence operator297

(∇∗ = − div). In our case, the adjoint to the operator K1 : X → Y is a298

linear operator K∗1 : Y → X consisting in the negative divergence computed299

only on the two first components of a four-component dual variable p ∈ Y ,300

and by taking finite differences in the opposite direction than the gradient301

operator (10). These components are in fact the ones related to the primal302

variable to which the coupled gradient operator has been applied. We then303

have the following element-wise definition for K∗1p (the same definition stands304

for K∗2q):305

(K∗1p)i,j = −


p1
i,j − p1

i−1,j if 1 < i < M

p1
i,j if i = 1

−p1
i−1,j if i = M

−


p2
i,j − p2

i,j−1 if 1 < j < N

p2
i,j if j = 1

−p2
i,j−1 if j = N

. (20)
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Algorithm 1 Primal-dual based algorithm for depth and reflectance joint
inpainting.

1: Inputs:
u0, r0, w, σ, ρ, τ

2: Initialize:
u0, ū0 ← u0, r

0, r̄0 ← r0, v
0
i,j ← 0.5,

p0 ← (∇u0, λ1∇r0), q0 ← (∇r0, λ2∇w)
3: for n = 0, 1, . . . do
4: pn+1 ← proxσD∗

1
(pn + σK1ū

n)

5: qn+1 ← proxσD∗
2
(qn + σK2r̄

n)

6: vn+1 ← proxρa(ūn,·)+ρb(r̄n,·)+ρC(vn)
7: un+1 ← proxτA+τa(·,vn+1)(u

n − τK∗1pn+1)
8: rn+1 ← proxτB+τb(·,vn+1)(r

n − τK∗2qn+1)
9: ūn+1 ← 2un+1 − un

10: r̄n+1 ← 2rn+1 − rn
11: end for

Closed-form expressions for the update rules in Algorithm 1 can be easily306

computed by applying the definition of proximal operator (see Appendix307

A). The resulting expressions are reported here below, where P denotes308

the projection operation over a given real interval, i.e. values are clipped if309

exceeding the interval limits. Details about the derivation of these expression310

can be found in Appendix A.311

proxσD∗
1
(p̃) =

p̃+ σβλ1(r)

max(1, ‖p̃+ σβλ1(r)‖2)
(21)

proxσD∗
2
(q̃) =

q̃ + σβλ2(w)

max(1, ‖q̃ + σβλ2(w)‖2)
(22)

proxρa(ū,·)+ρb(r̄,·)+ρC(ṽ) =
P[0,1] (ṽ) if Φi,j = 0

P[0,1] (ṽ + ρα− ρη2|r̄ − rS|) if Φi,j = 1, ūi,j ≥ uS i,j

P[0,1] (ṽ + ρα− ρη1(uS − ū)− ρη2|r̄ − rS|) if Φi,j = 1, ūi,j < uS i,j

(23)
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proxτA+τa(·,v)(ũ) =


P[um,uM ] (ũ) if Φi,j = 0

P[um,uM ] (ũ− τη1) if Φi,j = 1, ũi,j > uS i,j + τη1

P[um,uM ] (ũ+ vτη1) if Φi,j = 1, ũi,j < uS i,j − vτη1

P[um,uM ] (uS) otherwise

(24)

proxτB+τb(·,v)(r̃) =


P[rm,rM ] (r̃) if Φi,j = 0

P[rm,rM ] (r̃ − vτη2) if Φi,j = 1, r̃i,j > rS i,j + vτη2

P[rm,rM ] (r̃ + vτη2) if Φi,j = 1, r̃i,j < rS i,j − vτη2

P[rm,rM ] (rS) otherwise

(25)

The operations indicated in the proximal operators are pixel-wise, al-312

though the pixel coordinates have not been made explicit for clearer read-313

ing.314

5. Experimental results315

The algorithm presented in Section 4 is evaluated with a new data set316

acquired in an urban scenario by a Mobile Mapping System (MMS), com-317

posed of lidar measures and camera-originated images. With this data set,318

we provide a qualitative evaluation of our algorithm in comparison with other319

methods, by showing the reconstructed depth and reflectance images, and we320

assess the quality of the visibility estimation task, which is a crucial charac-321

teristic of our algorithm. Moreover, we also provide a quantitative analysis322

by means of a benchmark data set publicly available. Before showing results323

and comparisons, in Section 5.1 we motivate some critical choices in terms324

of model and algorithmic parameters.325

5.1. Parameters of the algorithm and model choices326

Our finally resulting joint inpainting model (7) consists of four terms:327

two data-fidelity terms, F (u, v|uS) and G(r, v|rS), a “removal” cost depend-328

ing solely on the variable v, H(v|uS, rS), and the two-fold regularization329

term R(u, r|w). As discussed in Section 3.1, for the data-fidelity terms we330

opt for an `1 measure of the error, in order to promote more contrasted so-331

lutions (Chan and Esedoglu, 2005). The visibility attribute v weights the332

data matching cost of each single pixel (data matching is more and more333
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relaxed, as v tends to zero, i.e. when that particular point is considered to334

be excluded). However, over-estimated depths (u > uS) are not weighted by335

v but are fully penalized. These values relate to pixels where either there336

is noise on a visible point that is slightly corrected (u− uS is small), or the337

value uS represents an outlier (e.g. it is due to a mobile object). At present,338

we do not have a way to handle the latter case.339

In H(v|uS, rS) (4), each point removal cost is the product between (1− v)340

(the level of “invisibility” of the point) and a coefficient α depending on the341

local input depth and reflectance: α = k1uS + k2rS. This choice has been342

made in order to balance all terms in (7) where v appears. Let us now343

observe the “complete” update rule for v (last case of (23), i.e. for points344

with under-estimated depth). According to it, we have that at each iteration345

v is incremented/decremented by a quantity ∆v = ρ (α− η1∆u− η2∆r). Let346

us suppose that the fluctuations on depth are significantly larger than the347

fluctuations on reflectance (the appearance of a hidden point can cause a big348

“jump” in depth, while the reflectance values might still be similar. For the349

sake of simplicity we can then adjust the value of α only on the basis of the350

depth input value. The proposed simplified expression for α is then:351

α = kuS . (26)

With the assumptions made we therefore have ∆v ∝ (kuS − η1∆u). The352

attribute v for a certain pixel increases (it gets a higher confidence as a353

visible point) if ∆u
uS

< k
η1

, i.e. if the relative depth deviation is below a certain354

threshold. k is an adimensional parameter that contributes determining this355

threshold. Conversely, v decreases for relative depth deviations exceeding356

the threshold. As for the update of v for points with over-estimated depths357

(second case of (23)), if we hypothesize that α, adjusted on depth, is large358

enough w.r.t. the reflectance deviation, we have that v progressively tends359

to one (unless large absolute reflectance deviations occur).360

As for the regularization term R(u, r|w), we proposed in Section 3.3 to361

combine two distinct coupled total variation terms: TVλ1 (u, r) (depth is362

individually coupled with reflectance) and TVλ2 (r, w) (reflectance is individ-363

ually coupled with the color image). By having two separate coupled TV364

terms, each one encoded by a dual variable that evolves independently from365

the other one, the reflectance gradient is constantly brought back to the ref-366

erence gradient of the color image. At the same time the “correct” gradient367

information is transferred to the depth via the second term. Figure 5 shows368
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an example of results obtained with the algorithm for the same test case as369

Figure 3.370

(a) (b) (c)

(d) (e) (f)

Figure 5: Output of the proposed algorithm for the image Column1 : (a) Inpainted depth,
(b) Inpainted reflectance, (c) Removed points (v = 0), (d) Final depth gradient, (e) Final
reflectance gradient, (f) Final histogram of v.

For the example test of Figure 5, as well as for all the results reported371

hereinafter, the following parameters, found with multiple tests, have been372

used to characterize the model (7): η1 = 1.7, η2 = 50, k = 0.05 (the co-373

efficient determining α according to (26)), λ1 = 0.5, λ2 = 1. These values374

have been found empirically by letting them vary one by one and observing375

the obtained visual results. The two data terms F (u, v|uS) and G(r, v|rS)376

are attributed different weights. The larger coefficient assigned to the re-377

flectance data term (η2 > η1) means that a greater data fidelity is imposed378

on reflectance. Depth values have instead a greater “freedom” in deviating379

from their original values. The two coupling parameters λ1 and λ2 being380

in the same order of magnitude, it shows that the two coupling terms have381

a similar importance. As for the parameters, inherent to the primal-dual382

optimization scheme (Algorithm 1), the following values have been set after383

testing: ρ = 10, τ = 0.004, σ = 14.384
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If we observe the input sparse depth image of Figure 3, we see that385

the major problems come from the fact that depth values referring to the386

building behind the column appear mixed with foreground depths. With387

our algorithm we are able to resolve these conflicts, as we can see in the388

inpainted depth image (Figure 5a). Part of the input pixels have in fact389

been removed, i.e. classified as non-visible (v = 0). Figure 5c reports the390

locations of such points in the original depth image. From the histogram of391

the values of v (Figure 5f) it is evident that the algorithm produces a bi-392

partition of the points according to their visibility attribute. Figure 5 shows393

also the inpainted reflectance and the final depth and reflectance gradients.394

By comparing the latter to the original gradients (Figure 3), we can observe395

that they end up incorporating elements of the color image gradient, while396

removing erroneous edges. In the next section we will present more results397

obtained with our algorithm, also in comparison to other inpainting methods.398

5.2. Results with urban data399

We consider a data set acquired by a MMS system (Paparoditis et al.,400

2012) at Place de la Bastille, Paris, consisting of one lidar point cloud in the401

order of one billion of points and hundreds of optical images simultaneously402

acquired by 5 cameras mounted on the vehicle. Given a reference optical403

image, we project onto it the available lidar points to form the initial depth404

and reflectance incomplete images. Note that not all the points are effectively405

visible from the image view point. The incomplete depth and reflectance406

images, along with the reference color image chosen, represent the input of407

the algorithm (uS, rS, and w respectively).408

Figures 6–9 present results for four images (cropped w.r.t. the full size)409

of the data set: Column1, Column2, Buildings1, Buildings2. For each ref-410

erence image, the input sparse depth and reflectance images, obtained via411

projection, are shown, as well as the inpainted depth and reflectance im-412

ages, obtained with four different methods. For the output depth images of413

Figure 8 and 9 we added some shading by modulating the color intensity414

of each pixel based on the zenith angle of the normal vector, to emphasize415

high-frequency changes. Moreover, for the inpainted depths, an alternative416

view of the resulting 3-D point cloud is proposed, where the coordinates of417

the points are retrieved thanks to the computed depths and color texture is418

applied to enrich the points. A color box is overlaid to the first of these 3-D419

views to highlight areas where the comparison between the different methods420

is particularly significant.421
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Our algorithm, presented in Section 4, gives as output the two inpainted
images u and r. As for the produced depth image, our algorithm is vi-
sually compared with nearest neighbor (NN) interpolation, the anisotropic
total generalized variation (ATGV ) method of (Ferstl et al., 2013), and our
previous depth inpainting method (Bevilacqua et al., 2016), which does not
rely on reflectance information. We refer to the latter as Depth Inpainting
with Visibility Estimation (DIVE ). The optimization problem of DIVE is
the following:

min
u∈[um,uM]
v∈[0,1]

η

∫
ΩS

(max(0, u− y))2 dx1 dx2 + η

∫
ΩS

v(max(0, y − u))2 dx1 dx2

+

∫
ΩS

(kuS)2(1− v) dx1 dx2 + TVλ (u,w) . (27)

The DIVE problem can be related to our proposed model (7), if we consider422

in the latter η1 = η, η2 = 0, λ1 = λ, and we suppress the coupled TV term423

related to the reflectance (depth is instead coupled directly with the color424

image). Moreover, in (27) we have a `2-norm data fidelity term; as a conse-425

quence of that, the coefficient of the removal cost term follows a quadratic426

law (we have α = (kuS)2, instead of α = kuS, as in (7)).427

As for the produced reflectance image, our algorithm is compared with428

nearest neighbor (NN) interpolation, the ATGV method of (Ferstl et al.,429

2013) applied to reflectance, and a reduced version of our model (7) limited to430

reflectance. We refer to this method as Reflectance Inpainting with Visibility431

Estimation (RIVE ). The RIVE method is derived from the solution of the432

following optimization problem:433

min
r∈[rm,rM]
v∈[0,1]

η

∫
ΩS

v|r − rS| dx1 dx2 +

∫
ΩS

(krS)(1− v) dx1 dx2 + TVλ (r, w) . (28)

Also in this case we can derive the considered problem (RIVE) as a simplified434

version of our proposed model (7), where η1 = 0, η2 = η, λ2 = λ, and the435

coupled TV term related to depth is suppressed. Moreover, the coefficient of436

the removal cost, while still following a linear law, here depends on the input437

reflectance rS.438

The four examples reported show the better performance of our algorithm439

in generating complete depth and reflectance images from real lidar measures.440

Results with the image Column1, reported in Figure 6, particularly prove the441
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(a)

Input depth 3-D zoom Input reflectance Color image

(b)

(c)

NN interp. ATGV DIVE Proposed

(d)

NN interp. ATGV RIVE Proposed

Figure 6: Visual results for the image Column1. Row (a) shows the related input images:
depth (with a 3-D zoom), reflectance, and reference color image. Rows (b) and (c) report
the results obtained in terms of inpainted depth images (with related 3-D zoomed-in view)
with the algorithms indicated below. Row (d) shows the inpainted reflectance images
obtained with different methods, our proposed method always reported as last.

effectiveness of our algorithm in detecting and removing hidden points ap-442

pearing in the front, thus producing inpainted images correct from the image443

view point. These points, in yellow/orange according to the color code used444

for depth, appear mixed to visible points belonging to the column and the445

fence. By looking at the depth images generated (row (b)), our algorithm446
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(a)

Input depth 3-D zoom Input reflectance Color image

(b)

(c)

NN interp. ATGV DIVE Proposed

(d)

NN interp. ATGV RIVE Proposed

Figure 7: Visual results for the image Column2. Row (a) shows the related input images:
depth (with a 3-D zoom), reflectance, and reference color image. Rows (b) and (c) report
the results obtained in terms of inpainted depth images (with related 3-D zoomed-in view)
with the algorithms indicated below. Row (d) shows the inpainted reflectance images
obtained with different methods, our proposed method always reported as last.

is the only one which is able to remove the misleading points and correctly447

reconstruct the foreground depth plane. This is even more visible by ob-448

serving the main marble pole highlighted in the 3-D views (row (c)). While449

other methods are not able to reconstruct the pole, since “distracted” by the450

interfering background depths, the reconstruction is better performed in our451
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(a)

Input depth 3-D zoom Input reflectance Color image

(b)

(c)

NN interp. ATGV DIVE Proposed

(d)

NN interp. ATGV RIVE Proposed

Figure 8: Visual results for the image Buildings1. Row (a) shows the related input images:
depth (with a 3-D zoom), reflectance, and reference color image. Rows (b) and (c) report
the results obtained in terms of inpainted depth images (with related 3-D zoomed-in view)
with the algorithms indicated below. Row (d) shows the inpainted reflectance images
obtained with different methods, our proposed method always reported as last.

case. Results on the reflectance image confirm the trend. By observing again452

the main marble pole, we clearly see that the reflectance is better inpainted.453

This is possible thanks to the joint use of depth information, which helps de-454

tecting hidden points by leveraging depth over- and under-estimations, and455

the coupling with the color image gradient, which helps correctly restoring456
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(a)

Input depth 3-D zoom Input reflectance Color image

(b)

(c)

NN interp. ATGV DIVE Proposed

(d)

NN interp. ATGV RIVE Proposed

Figure 9: Visual results for the image Buildings2. Row (a) shows the related input images:
depth (with a 3-D zoom), reflectance, and reference color image. Rows (b) and (c) report
the results obtained in terms of inpainted depth images (with related 3-D zoomed-in view)
with the algorithms indicated below. Row (d) shows the inpainted reflectance images
obtained with different methods, our proposed method always reported as last.

the edges. Similar considerations can be made for the image Column2 (visual457

results are reported in Figure 7). Here the box overlaid on the 3-D views indi-458

cates an area where points, non-visible from the reference image view point,459

should be removed. The removal of these points, as well as the inpainting of460

depth and reflectance, is performed more efficiently by our method.461
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Figures 8 and 9 show results w.r.t. two other images taken peripherally to462

the scene. For the image Buildings1, we can observe that with our algorithm463

the inpainted depth and reflectance images look more satisfactory, the pole on464

the left being completely unveiled as a foreground element. The box overlaid465

on the 3-D views highlights a part of the scene where the depth values of466

two trees interfere. Our proposed algorithm (as well as the DIVE method467

(Bevilacqua et al., 2016)) makes a correct distinction between the two depth468

layers. Figure 9, reporting results related to the image Buildings2, presents469

the problem of wrong lidar measures appearing in the front. Our method470

turns out to be the most effective in clearing out these points, as also shown471

in the area highlighted by the box.472

5.3. Performance on visibility estimation473

While in the previous section we evaluated the performance of the algo-474

rithm in terms of produced inpainted images u and r, we now want to assess475

the quality of the third output of the algorithm, i.e. v, the visibility attribute.476

As visibility is estimated while performing the depth and reflectance es-477

timation, we can say that our algorithm fuses two problems: hidden point478

removal (HPR) and inpainting. Typically HPR is, instead, possibly per-479

formed as a preliminary operation. For HPR “stand-alone” the state of the480

art is represented by variations of (Katz et al., 2007) that relate the visible481

point set to the convex hull of a viewpoint-dependent transformation of it,482

discarding points based on a concavity threshold as seen from the view point.483

While this approach is effective, there is in general no globally satisfactory484

concavity threshold that would both correctly detect hidden surfaces and485

keep background points close to foreground silhouettes. To compare the two486

strategies for estimating visibility (the dedicated operation of (Katz et al.,487

2007) and our “soft” estimation), we show an example in Figure 10, related488

to the image Column1. In our case, we consider hidden points those depth489

values that are assigned v = 0 at the end of the algorithm. As for (Katz490

et al., 2007), a concavity parameter equal to 4 has been chosen after tuning.491

The images obtained show that the “quality” of the visibility estimation492

process is comparable, if not higher with our method. If we observe closely493

the zoomed-in areas in Figure 10, in fact, we can see that the HPR method494

wrongly selects points around the silhouettes (see first patch), while some-495

times missing the detection of actual hidden points (see last two patches).496

As a further test, we also compare our method (which jointly performs497

visibility estimation and inpainting), with a two-step approach, where visibil-498
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(a) Intensity image (b) (Katz et al., 2007) (c) Proposed method

Figure 10: Detected hidden points in the case of the image Column1, by the state-of-the-
art method of (Katz et al., 2007) and our method. The three patches below each image
represent zoomed-in areas of the images themselves at same locations.

ity estimation (hidden point removal) is performed as a preliminary operation499

by the algorithm of (Katz et al., 2007). Depth is subsequently inpainted with500

the ATGV-based algorithm of (Ferstl et al., 2013). Figure 11 reports results501

for such comparison with two images, the two-step approach being denoted502

as “HPR + ATGV”.503

In the two cases of Figure 11, we can observe a better outcome with our504

algorithm. For the image Column1, the preliminary point removal operation505

is not able to remove all the ambiguities in the central part of the image,506

where the depth values of the fence and the column are confused. For the507

image Buildings2, the HPR method of (Katz et al., 2007) exceeds in removing508

several points along the upper board of the image, causing blurred edges in509

the final reconstructed depth image. Besides the benefits observable in the510

qualitative assessment, the joint approach of our method has the advantage of511

not requiring an explicit parameter to be globally set (the concavity threshold512

in the case of (Katz et al., 2007)) to perform HPR. This is instead done in a513

“soft” way that adapts to the input image.514

5.4. Quantitative evaluation with a benchmark data set515

In this section we perform a quantitative analysis of our algorithm by516

using the publicly available KITTI Vision Benchmark Suite (Geiger et al.,517

2013). The KITTI suite includes data acquired by a MMS similar to the one518

considered for our personal data set in Section 5.2, and allows to evaluate al-519

gorithms on several applications. The vehicle used is a standard car equipped520
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(a)

HPR + ATGV Proposed approach

(a)

HPR + ATGV Proposed approach

Figure 11: Comparison between our joint approach and a two-step approach, where visi-
bility estimation and inpainting are performed separately, on the images Column1 (a) and
Buldings2 (b).

with two high-resolution color and grayscale video cameras (enabling stereo521

vision), acquiring images with a pixel resolution equal to 1242 × 375. Ac-522

curate 3-D measures are provided by a Velodyne lidar scanner and a GPS523

localization system. Thus, the lidar measures are generally used as ground524

truth for algorithm evaluations. In (Menze and Geiger, 2015) a novel data525

set is presented for stereo benchmarking, which considers also moving ob-526

jects. By making a special processing on the latter and manually remov-527

ing erroneous points due to occlusions, ground truth disparity maps are528

obtained. These maps appear “cleaner” and denser than the input depth529

images that can be obtained with the raw lidar data, and can therefore be530

used to evaluate algorithm estimating disparity. To exploit this possibility,531

as described in (Schneider et al., 2016, Sec. 4.3), we use the ground truth532

maps of this stereo benchmark data set to have a quantitative evaluation533

of our depth+reflectance inpainting algorithm. As done by the authors of534
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(Schneider et al., 2016), we identify 82 frames (provided ground truth dis-535

parity maps) for which we can find correspondences in the raw data set, i.e.536

a corresponding color image and related lidar point cloud. We then use the537

raw data lidar to compute an input depth (e.g., Figure 12a) and use the538

provided ground truth map to compute a Mean Absolute Error (MAE). The539

ground truth maps, although denser than the input maps, are sparse, i.e.540

they are not defined for all pixels (only about 19% of the pixels have values).541

Thus, the MAE is computed only for those pixels which are defined in the542

respective ground truth map.543

(a) Input depth (b) Input depth after HPR

(c) ATGV (d) HPR+ATGV

(e) Proposed (f) Ground truth

Figure 12: Case example from the 2015 KITTI stereo benchmark data set. For each input
depth map (a), we have a ground truth disparity map available yet sparse (f), w.r.t. which
it is possible to compute an error by only considering the pixels where it is defined. By
applying a hidden point removal (HPR) algorithm to the input depth data it is possible to
create a new input map where background hidden pixels have been removed (b). Results
for different depth inpainting strategies are reported (c, d, e).

We computed the MAE for all 82 frames of the found correspondences, for544

our method and the ATGV-based algorithm of (Ferstl et al., 2013). As done545

in Section 5.3, we also compare with a two-step approach, where AGTV-546

based inpainting is preceded by a hidden point removal (HPR) operation,547

performed with the algorithm of (Katz et al., 2007). The resulting average548

MEAs, which are measured as the average pixel displacement between two549
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disparity maps, are reported in Table 1.550

ATGV HPR+ATGV Proposed

Average MAE (px.) 2.13 2.07 1.99

Table 1: Average Mean Absolute Error (MAE), i.e. average pixel displacement between
ground truth and reconstructed disparity maps, obtained by averaging the results of 82
frames of the 2015 KITTI stereo benchmark data set.

When creating the ground truth maps, the authors of the KITTI bench-551

mark data set have removed objects presenting particular issues in terms of552

visibility. Other objects are instead manually handled (they are removed553

from the scene and re-inserted after fitting a CAD model). Thus, the ground554

truth maps basically consist of the latter and fixed parts of the scene (e.g.555

streets and walls) that do not yield any ambiguity. Due to this relative556

“simplicity” of the data set, the performance in terms of average MAE are557

rather similar among the three methods (ATGV, HPR+ATGV, and proposed558

method), with our method obtaining a slightly lower error. Nevertheless, we559

can observe that the ATGV method of (Ferstl et al., 2013) produces more560

artifacts (see, for example, the reconstructed pole on the left in Figure 12c,561

in comparison to Figure 12e). Most of these artifacts can be removed by562

performing a preliminary HPR step (see, in Figure 12b, an example of input563

depth map cleaned out of ambiguous pixel). The combination of a HPR step564

and the ATGV-based depth upsampling algorithm of (Ferstl et al., 2013)565

yields inpainted depth maps with a visual quality comparable to the one of566

our approach. However, as stated in Section 5.3, with our approach we keep567

the advantage of having an all-in-one procedure performing jointly inpaint-568

ing and “soft” visibility estimation (without the need of setting a per-image569

global threshold as requested by the algorithm of (Katz et al., 2007)). We570

also expect for our method a greater improvement of the MAE metric and571

the visual outcome on more complex scenes.572

6. Conclusion573

In this paper we presented a novel strategy to jointly inpaint depth and574

reflectance images with the guidance of a co-registered color image, and by575

simultaneously estimating a visibility attribute for each pixel. The problem576

studied and the proposed approach are particularly suited for data sets ac-577

quired by Mobile Mapping Systems (MMS): vehicles that can easily image578
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urban scenes by means of optical cameras and lidar sensors. By projecting579

the 3D lidar points onto a chosen reference image, we obtain depth and re-580

flectance images, which suffer of practical issues due to the big diversity of581

the lidar and optical sensor acquisitions. By estimating visibility, we aim at582

solving one of these issues, i.e. the appearance (in depth and reflectance) of583

parts of objects non-visible from the image view point, but captured by the584

lidar sensor. Those points are meant to be detected by our algorithm and585

thus discarded in the inpainting process. The proposed approach consists in586

a variational optimization problem, where three variables (depth, reflectance,587

and visibility) are simultaneously estimated. As a regularization term, a two-588

fold coupled total variation (TV) term is proposed, where the gradients of589

depth, reflectance and color image are matched two by two, by leveraging590

the inherent correlation between them. The proposed algorithm is compared,591

in terms of inpainted images, to other inpainting algorithms, which do not592

take into account the simultaneous detection of possibly erroneous measures.593

The clear superiority of the proposed method w.r.t. the latter proves that594

the visibility estimation is a necessary step. Another comparison is made595

with a simplified version of the algorithm, which accounts for visibility but596

considers alternatively either depth or reflectance. The worse performance of597

the simplified algorithm indicates that the joint exploitation of depth and re-598

flectance is a key aspect for the success of the algorithm. The mutual benefit599

comes from the fact that depth is particularly important for the visibility es-600

timation task; in turn, reflectance is crucial in restoring the correct edges, via601

coupling with the color image. Future work will continue in the direction of602

solving practical issues with lidar-based images to inpaint. Notably, another603

problem is related to disocclusions: the detection of mobile objects is in this604

case necessary to prevent occlusions in the produced depth and reflectance605

images. In this case, we could not only use each point measurement as a vote606

that there is a surface at that point, but we could also exploit the informa-607

tion that the line of sight from the sensor to that point is unobscured, e.g.608

as done in (Xiao et al., 2015). Other work, concerning modifications to the609

model presented in this paper, could consist in considering multiple depth610

candidates per pixel when several points project into the same 2-D location611

(instead of the Z-buffer approach currently used).612
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Appendix A. Derivation of the proximal operators in Algorithm 1613

In this section we detail the derivation of the closed-form expressions of614

the proximal operators for the update of three primal variables (v, u, and r)615

in Algorithm 1, as listed in Section 4.2. Let f : Rn → R ∪ {+∞} be a closed616

proper convex function. The proximal operator or mapping proxf : Rn → Rn
617

of f (Parikh and Boyd, 2013) is defined by:618

proxf (v) = arg min
x∈Rn

f(x) +
1

2
‖x− v‖2

2 . (A.1)

Broadly speaking, the proximal operator of a function is a mathematical619

tool that allows to make an approximation to a certain value, while making620

a compromise between the accuracy of the approximation and a cost given621

by the function itself.622

Given the general definition (A.1), we can derive the expressions for the623

proximal operators of the functions considered in our algorithm. We have624

that the operations involved are independent for each coordinate of the pro-625

cessed images. Therefore, the expressions reported below are to be intended626

per coordinate, although the spatial indices indicating a particular pixel lo-627

cation are not specified for brevity.628

• prox1 = proxσD∗
1
(p̃)629

ê

prox1 = arg min
p

1

2
(p− p̃)T(p− p̃)− σβTp+ δP (p)

= arg min
p

1

2
pTp− p̃Tp− σβTp+K + δP (p)

= arg min
p

1

2
pTp− (p̃+ σβ)Tp+K + δP (p)

= arg min
p

1

2
(p− (p̃+ σβ))T(p− (p̃+ σβ)) +K ′ + δP (p)

=
p̃+ σβ

max(1, ‖p̃+ σβ‖2)

(A.2)

(The variable p, even considered for a single coordinate, is vector-630

valued.)631

• prox2 = proxρa(ū,·)+ρb(r̄,·)+ρC(ṽ)632
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ê

prox2 = arg min
v

1

2
(v − ṽ)2 + ρη1Φvmax(0, uS − ū)

+ ρη2Φv|r̄ − rS|+ ραΦ(1− v) + δ[0,1](v) (A.3)

F If Φi,j = 0 (point out of the sparse domain), we trivially have:633

prox2 = arg min
v

1

2
(v − ṽ)2 + δ[0,1](v)

= P[0,1] (ṽ) .
(A.4)

F If Φi,j = 1 and ūi,j ≥ uS i,j, we have:634

prox2 = arg min
v

1

2
(v − ṽ)2 + ρη2v|r̄ − rS|+ ρα(1− v) + δ[0,1](v)

= arg min
v

1

2
v2 − vṽ + ρη2v|r̄ − rS| − ραv +K + δ[0,1](v)

= arg min
v

1

2
v2 − v (ṽ + ρα− ρη2|r̄ − rS|) +K + δ[0,1](v)

= arg min
v

1

2
[v − (ṽ + ρα− ρη2|r̄ − rS|)]2 +K ′ + δ[0,1](v)

= P[0,1] (ṽ + ρα− ρη2|r̄ − rS|) .

(A.5)

F If Φi,j = 1 and ūi,j < uS i,j, we have:635

prox2 = arg min
v

1

2
(v − ṽ)2 + ρη1v(uS − ū) + ρη2v|r̄ − rS|

+ρα(1− v) + δ[0,1](v)

= arg min
v

1

2
v2 − vṽ + ρη1v(uS − ū) + ρη2v|r̄ − rS| − ραv

+K + δ[0,1](v)

= arg min
v

1

2
v2 − v (ṽ + ρα− ρη1(uS − ū)− ρη2|r̄ − rS|)

+K + δ[0,1](v)

= arg min
v

1

2
[v − (ṽ + ρα− ρη1(uS − ū)− ρη2|r̄ − rS|)]2

+K ′ + δ[0,1](v)
= P[0,1] (ṽ + ρα− ρη1(uS − ū)− ρη2|r̄ − rS|) .

(A.6)

F Summing up, we have:636

prox2 =


P[0,1] (ṽ) if Φi,j = 0

P[0,1] (ṽ + ρα− ρη2|r̄ − rS|) if Φi,j = 1, ūi,j ≤ uS i,j

P[0,1] (ṽ + ρα− ρη1(uS − ū)− ρη2|r̄ − rS|) if Φi,j = 1, ūi,j > uS i,j

. (A.7)
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• prox3 = proxτA+τa(·,v)(ũ)637

ê

prox3 = arg min
u

1

2
(u− ũ)2 + τη1Φ max(0, u− uS)

+ τη1Φvmax(0, uS − u) + δ[um,uM ](u) (A.8)

F If Φi,j = 0, we trivially have:638

prox3 = arg min
u

1

2
(u− ũ)2 + δ[um,uM ](u)

= P[um,uM ] (ũ) .
(A.9)

F If Φi,j = 1 and ui,j > uS i,j, we have:639

prox3 = arg min
u

1

2
(u− ũ)2 + τη1(u− uS) + δ[um,uM ](u)

= arg min
u

1

2
u2 − uũ+ τη1u+K + δ[um,uM ](u)

= arg min
u

1

2
u2 − u(ũ− τη1) +K + δ[um,uM ](u)

= arg min
u

1

2
[u− (ũ− τη1)]2 +K ′ + δ[um,uM ](u)

= P[um,uM ] (ũ− τη1) .
(A.10)

By substituting the optimal value found for u in the splitting
condition, we have:

ui,j > uS i,j ⇒ ũi,j > uS i,j + τη1 .

F If Φi,j = 1 and ui,j < uS i,j, we have:640

prox3 = arg min
u

1

2
(u− ũ)2 + τη1v(uS − u) + δ[um,uM ](u)

= arg min
u

1

2
u2 − uũ− τη1vu+K + δ[um,uM ](u)

= arg min
u

1

2
u2 − u(ũ+ vτη1) +K + δ[um,uM ](u)

= arg min
u

1

2
[u− (ũ+ vτη1)]2 +K ′ + δ[um,uM ](u)

= P[um,uM ] (ũ+ vτη1) .

(A.11)
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By substituting the optimal value found for u in the splitting
condition, we have:

ui,j < uS i,j ⇒ ũi,j < uS i,j − vτη1 .

F The remaining case is: Φi,j = 1 and ui,j = uS i,j. This directly641

implies the solution for the proximal operator:642

prox2 = P[um,uM ] (uS) . (A.12)

From the previous cases, we can derive the related validity condi-
tion on the calculation point ũi,j, i.e.:

−vτη1 < ũi,j − uS i,j < τη1 .

F Summing up, we have:643

prox3 =


P[um,uM ] (ũ) if Φi,j = 0

P[um,uM ] (ũ− τη1) if Φi,j = 1, ũi,j > uS i,j + τη1

P[um,uM ] (ũ+ vτη1) if Φi,j = 1, ũi,j < uS i,j − vτη1

P[um,uM ] (uS) otherwise

(A.13)

• prox4 = proxτB+τb(·,v)(r̃)644

ê

prox4 = arg min
r

1

2
(r − r̃)2 + τη2Φv|r − rS|+ δ[rm,rM ](r) (A.14)

F If Φi,j = 0, we trivially have:645

prox4 = arg min
r

1

2
(r − r̃)2 + δ[rm,rM ](r)

= P[rm,rM ] (r̃) .
(A.15)
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F If Φi,j = 1 and ri,j > rS i,j, we have:646

prox4 = arg min
r

1

2
(r − r̃)2 + τη2v(r − rS) + δ[rm,rM ](r)

= arg min
r

1

2
r2 − rr̃ + vτη2r +K + δ[rm,rM ](r)

= arg min
r

1

2
r2 − r(r̃ − vτη2) +K + δ[rm,rM ](r)

= arg min
r

1

2
[r − (r̃ − vτη2)]2 +K ′ + δ[rm,rM ](r)

= P[rm,rM ] (r̃ − vτη2) .

(A.16)

By substituting the optimal value found for r in the splitting con-
dition, we have:

ri,j > rS i,j ⇒ r̃i,j > rS i,j + vτη1 .

F If Φi,j = 1 and ri,j < rS i,j, we have:647

prox4 = arg min
r

1

2
(r − r̃)2 + τη2v(rS − r) + δ[rm,rM ](r)

= arg min
r

1

2
r2 − rr̃ − vτη2r +K + δ[rm,rM ](r)

= arg min
r

1

2
r2 − r(r̃ + vτη2) +K + δ[rm,rM ](r)

= arg min
r

1

2
[r − (r̃ + vτη2)]2 +K ′ + δ[rm,rM ](r)

= P[rm,rM ] (r̃ + vτη2) .

(A.17)

By substituting the optimal value found for r in the splitting con-
dition, we have:

ri,j < rS i,j ⇒ r̃i,j < rS i,j − vτη1 .

F The remaining case is: Φi,j = 1 and ri,j = rS i,j. This directly648

implies the solution for the proximal operator:649

prox3 = P[rm,rM ] (rS) . (A.18)

From the previous cases, we can derive the related validity condi-
tion on the calculation point r̃i,j, i.e.:

|r̃i,j − rS i,j| < vτη2 .
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F Summing up, we have:650

prox3 =


P[rm,rM ] (r̃) if Φi,j = 0

P[rm,rM ] (r̃ − vτη2) if Φi,j = 1, r̃i,j > rS i,j + vτη2

P[rm,rM ] (r̃ + vτη2) if Φi,j = 1, r̃i,j < rS i,j − vτη2

P[rm,rM ] (rS) otherwise

(A.19)

36



References651

Bevilacqua, M., Aujol, J.-F., Brédif, M., Bugeau, A., 2016. Visibility Estimation and652

Joint Inpainting of Lidar Depth Maps. In: IEEE International Conference on Image653

Processing (ICIP). pp. 1–5.654

Brédif, M., 2013. Image-Based Rendering of LOD1 3D City Models for traffic-augmented655

Immersive Street-view Navigation. ISPRS Annals of Photogrammetry, Remote Sensing656

and Spatial Information Sciences 1 (3), 7–11.657

Chambolle, A., Pock, T., 2011. A First-Order Primal-Dual Algorithm for Convex Problems658

with Applications to Imaging. Journal of Mathematical Imaging and Vision 40 (1), 120–659

145.660

Chan, D., Buisman, H., Theobalt, C., Thrun, S., 2008. A Noise-Aware Filter for Real-Time661

Depth Upsampling. In: ECCV Workshop on Multi-camera and Multi-modal Sensor662

Fusion Algorithms and Applications (M2SFA2). pp. 1–12.663

Chan, T. F., Esedoglu, S., 2005. Aspects of Total Variation Regularized L1 Function664

Approximation. SIAM Journal on Applied Mathematics 65 (5), 1817–1837.665

Chan, T. F., Golub, G. H., Mulet, P., 1999. A Nonlinear Primal-Dual Method for Total666

Variation-Based Image Restoration. SIAM Journal on Scientific Computing 20 (6),667

1964–1977.668

Chen, W.-Y., Chang, Y.-L., Lin, S.-F., Ding, L.-F., Chen, L.-G., 2005. Efficient Depth669

Image Based Rendering with Edge Dependent Depth Filter and Interpolation. In: IEEE670

International Conference on Multimedia and Expo (ICME). pp. 1314–1317.671

Diebel, J., Thrun, S., 2005. An application of Mmarkov random fields to range sensing.672

In: Advances in Neural Information Processing Systems (NIPS). Vol. 5. pp. 291–298.673
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