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Time-dependent Lyapunov functionals appeared to be very efficient for sampled-data systems. In [14],
new Lyapunov functionals were constructed for sampled-data control in the presence of a constant input
delay. The construction of these functionals was based on Wirtinger’s inequality leading to simplified
and efficient stability conditions in terms of Linear Matrix Inequalities (LMIs). In the present paper we
extend the latter results to the discrete-time sampled-data systems. We show that the proposed approach
is less conservative on some examples with a lower number of decision variables.

Keywords: Discrete-time delay systems, sampled-data, Lyapunov-Krasovskii functional, Wirtinger in-
equality

1. Introduction

Sampled-data systems have been studied extensively over the past decades (see e.g. [1, 6, 17, 18,
8] and the references therein). Modeling of continuous-time systems with digital control in the form
of continuous-time systems with time-varying delay ([16]) and the extension of Krasovskii method
to systems with fast varying delays (without any constraints on the delay derivative as in [7]) and to
discontinuous delays ([6]) have allowed the development of the time-delay approach to sampled-data
and to network-based control (see Section 7 of [4] for details).

Till [3] the conventional time-independent Lyapunov functionals V (xt , ẋt) for systems with fast-
varying delays were applied to sampled-data systems ([6]). These functionals did not take advantage of
the sawtooth evolution of the delays induced by sampled-and-hold. The latter drawback was removed
in [3] and [20], where time-dependent Lyapunov functionals (inspired by [18]) were constructed for
sampled-data systems. A different time-dependent Lyapunov functional was suggested in [14] which is
based on Wirtinger’s inequality (see for instance [15] and [12]):

Let z(t) : (a,b)→ Rn be absolutely continuous with ż ∈ L2[a,b] and z(a) = 0. Then for any n× n
matrix W > 0 Wirtinger’s inequality holds:∫ b

a
żT (ξ )Wż(ξ )dξ >

π2

4(b−a)2

∫ b

a
zT (ξ )Wz(ξ )dξ .

The Wirtinger-based LMI is a single LMI with fewer decision variables than the LMIs of [3, 20]. More
important, differently from the Lyapunov functionals of [3] and [20], the extension of the Wirtinger-
based Lyapunov functionals to a more general sampled-data system in the presence of a constant in-
put/output delay leads to efficient stability conditions (see e.g.[14]).

In the present paper, we aim at extending the results of [14] to discrete-time sampled-data systems.
Unlike the continuous-time case, the discrete-time formulation has surprisingly attracted only few at-
tention in the literature even if the formulation represents an efficient way to model the dynamics of
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discrete-time systems subject to control packet losses. The problem of packet losses indeed appears in
many applications of networked control systems (see for instance [11] and [24]). As in the continuous-
time case, the Wirtinger-based Lyapunov functionals essentially reduce the numerical complexity of the
resulting LMIs leading in some examples to less restrictive conditions. Similarly to the continuous-time
case, discrete-time sampled-data can be seen as a discrete-time system subject to a particular time-
varying delay, for which there exist many stability conditions (see e.g. [10, 23, 13]). However, such
approaches do not account accurately the particularities of the sawtooth delay.

In the continuous-time case, the analysis of this class of functionals is made possible by considering
that the functionals do not grow at the sampling instants. A translation of such analysis in the discrete-
time framework is not easy and requires a dedicated analysis.

The paper is organized as follows. Section 2 describes the problem formulation. Section 3 shows
some preliminary summation inequalities including a Wirtinger’s and Jensen’s inequality as well as a
recent summation inequality that includes the Jensen’s inequality as a consequence. This last inequality
is the counter part of the Wirtinger-based inequality provided in [21]. Section 4 presents the main results
on the stability analysis of discrete-time sampled-data systems. Section 6 shows the efficiency of the
proposed method on some examples. Finally Section 7 draws some conclusions.

Notations: Throughout the paper, Z (N) denotes the set of (positive) integers, Rn the n-dimensional
Euclidean space with vector norm | · |, Rn×m the set of all n×m real matrices. For any symmetric matrix
P ∈Rn×n, the notation P > 0 (or P < 0) means that P is positive (or negative) definite. The set S+n refers
to the set of symmetric positive definite matrices. For any matrices A, B in Rn×n, the notation diag(A,B)
denotes the block diagonal matrix

[
A 0
∗ B

]
. For any square matrix, He(A) stands for A+AT . Along the

paper, for any real number a < b, the notation [a, b]Z denotes [a, b]∩Z. The same notations will also
hold for open intervals.

2. Problem formulation

Consider a linear discrete-time time-delay system of the form:{
x(t +1) = Ax(t)+Adx(tk−h), ∀k ∈ [ki,ki+1)Z
x(θ) = x0(θ), ∀θ ∈ [−h, 0]. (2.1)

where x(t) ∈ Rn is the state vector, x0 is the initial condition and A, Ad ∈ Rn×n are constant matrices.
The delay h∈N is assumed to be constant and known and the sequence of integers {tk}k∈N ⊂N satisfies

∀k ∈ N, tk+1− tk ∈ [1, Tmax]Z,
limk→+∞ tk =+∞.

(2.2)

Following the principles of the input delay approach for discrete-time systems, we can define an input
delay function τ given by

τ(t) = t− tk, ∀t ∈ [tk, tk+1)Z,

τ(t +1) =
{

τ(t)+1 if t < tk+1
0 if t = tk+1

(2.3)

The system (2.1) can then be rewritten as a discrete-time system subject to a time-varying delay.
The delay function can be seen as the discrete-time version of the sawtooth delay function considered
in [6] for continuous-time sampled-data systems.{

x(t +1) = Ax(t)+Adx(t−h− τ(t)), ∀t ∈ [tk, tk+1)Z
x(θ) = x0(θ), ∀θ ∈ [−h, 0]Z,

(2.4)
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where the delay h is constant and where the sampling delay τ(t) is given in (2.3). In this paper, we aim at
providing stability conditions for this peculiar class of systems using a method based on discontinuous
Lyapunov functionals. The present article can be seen as the discrete-time counterpart of the recent
article [14]. To this end, we will provide a stability analysis of such class of systems, where novel
Wirtinger-based terms are added to ”nominal” Lyapunov functionals for the stability analysis of the
discrete-time systems with the constant delay h.

3. Preliminaries on summation inequalities

3.1 Discrete-time Wirtinger inequality

Wirtinger inequalities are integral inequalities issued from the Fourier analysis. The continuous-time
versions of this inequality have already shown their potential for the stability analysis of partial differ-
ential equation ([5]), sampled-data systems ([14]) or time-delay systems ([21]). In the present article
we aim at showing that this class of inequalities also serves for the stability analysis of discrete-time
systems. Indeed a discrete-time version of these inequalities have been extended to the discrete-time
framework. It is stated in the following lemma taken from [2].

LEMMA 3.1 For a given N ∈ N>0, consider a sequence of N real scalars x0,x1, . . . ,xN such that x0 = 0.
Then, the following inequality holds

N−1

∑
i=0

(xi− xi+1)
2 > λ

2
N

N−1

∑
i=0

x2
i . (3.1)

where λN = 2sin(π/(2(2N +1))).

A straightforward corollary of this lemma is provided for n-dimensional sequences z and is stated
below.

COROLLARY 3.1 For a given N ∈N>0, consider a sequence of N real n-dimensional vectors z0,z2, . . . ,zN
such that z0 = 0. Then, the following inequality holds, for any symmetric positive definite matrix
W ∈ Sn

+.
N−1

∑
i=0

(zi− zi+1)
TW (zi− zi+1)> λ

2
N

N−1

∑
i=0

zT
i Wzi, (3.2)

where λN = 2sin(π/(2(2N +1))).

Proof. Since W > 0, there exists an orthogonal matrix U =
[

UT
1 UT

2 . . . UT
n
]T and a positive

definite diagonal matrix ∆ = diag(∆1,∆2, ...∆n) such that W =UT ∆U . It holds

λ
2
N

N−1

∑
i=0

zT
i Wzi = λ

2
N

N−1

∑
i=0

n

∑
j=1

(U jzi)
T

∆ j(U jzi)

=
n

∑
j=1

∆ jλ
2
N

N−1

∑
i=0

(U jzi)
2

(3.3)

Following the same procedure, we also have

N−1

∑
i=0

(zi− zi+1)
TW (zi− zi+1) =

n

∑
j=1

∆ j

N−1

∑
i=0

(U j(zi− zi+1))
2 (3.4)
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Since the vector z0 = 0, the scalar U jz0 is zero for all j = 1, . . . ,n. Hence the Wirtinger inequality in
Lemma 3.1 ensures that

N−1

∑
i=0

(U j(zi− zi+1))
2 > λ

2
N

N−1

∑
i=0

(U jzi)
2, j = 1, . . . ,n.

Finally computing the sum over j = 1, . . . ,n of the previous inequality weighted by ∆ j leads to

n

∑
j=1

∆ j

N−1

∑
i=0

(U j(zi− zi+1))
2 >

n

∑
j=1

∆ jλ
2
N

N−1

∑
i=0

(U jzi)
2

which is equivalent to (3.2) thanks to (3.3) and (3.4). �

3.2 Summation inequalities

In this section, two summation inequalities are recalled. The first one is the Jensen inequality and is
stated here.

LEMMA 3.2 For a given symmetric positive definite matrix Z ∈ Sn
+, any sequence of discrete-time

variable x in [−h,0]Z→ Rn, where h> 1, the following inequality holds:

0

∑
i=−h+1

yT (i)Zy(i)>
1
h

Θ
T
0 ZΘ0, (3.5)

where y(i) = x(i)− x(i−1) and Θ0 = x(0)− x(−h).

The second lemma is a recent inequality proposed in [22] that extends the Wirtinger-based integral
inequality (see [21]) to the discrete-time case.

LEMMA 3.3 For a given symmetric positive definite matrix Z ∈ Sn
+, any sequence of discrete-time

variable x in [−h,0]Z→ Rn, where h> 1, the inequality

0

∑
i=−h+1

yT (i)Zy(i)>
1
h

[
Θ0
Θ1

]T
 Z 0

0 3
(

h+1
h−1

)
Z

[ Θ0
Θ1

]
, (3.6)

holds where
y(i) = x(i)− x(i−1),
Θ0 = x(0)− x(−h),

Θ1 = x(0)+ x(−h)− 2
h+1

0
∑

i=−h
x(i).

Proof. The proof is provided in [22] and is therefore omitted. �

REMARK 3.1 The inequality provided in Lemma 3.3 implies

0

∑
i=−h+1

yT (i)Zy(i) > 1
hΘ T

0 ZΘ0,

which is exactly the Jensen summation inequality. Therefore, Lemma 3.3 is less conservative than the
celebrated Jensen inequality since a positive quantity is added in the right-hand side of the inequalities.
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4. Stability analysis

4.1 Wirtinger-based functional

In this section, we aim at proposing a new functional to deal with the discrete-time sampled-data system
(2.4) by an appropriate use of the discrete time Wirtinger inequality resumed in Lemma 3.1. This
contribution is proposed in the following lemma.

LEMMA 4.1 Consider the following Lyapunov functional, for a given matrix W ∈ Sn
+, a given k ∈ N

and for all t ∈ [tk, tk+1)Z

VW (xt) =
t−1

∑
i=tk−h

yT (i)Wy(i)−λ
2
T σ(t,xt), (4.1)

where
y(i) = x(i+1)− x(i), ∀i ∈N

λT = 2sin
(

π

2(2Tmax+1)

)
σ(t,xt) =


t−1

∑
i=tk

ν(i)Wν(i), t ∈ [tk +1, tk+1−1]

0, t = tk,

ν(i) = x(i−h)− x(tk−h), i ∈ [tk, tk+1−1].

(4.2)

Then, the forward difference of the functional VW satisfies the inequality

∆VW (xt) 6 (x(t +1)− x(t))TW (x(t +1)− x(t))−λ 2
T νT (t)Wν(t) (4.3)

holds, for all t ∈ [tk, tk+1)Z, and for any sampling satisfying (2.2).

Proof. For a given k ∈ N, consider first t ∈ [tk, tk+1− 2]Z. Then the computation of ∆VW straightfor-
wardly leads, for all t ∈ [tk, tk+1−2]Z, to

∆VW (xt) =
t

∑
i=tk−h

yT (i)Wy(i)−
t−1

∑
i=tk−h

yT (i)Wy(i)−λ
2
T (σ(t +1,xt+1)−σ(t,xt))

= yT (t)Wy(t)−λ 2
T (σ(t +1,xt+1)−σ(t,xt)) .

(4.4)

From the definition of σ(t,xt), it is easy to see that, if t 6= tk, we have

σ(t +1,xt+1)−σ(t,xt) =
tk

∑
i=tk

ν(i)Wν(i)−0 = ν
T (t)Wν(t),

and if t = tk

σ(tk +1,xtk+1)−σ(tk,xtk) =
t

∑
i=tk

ν(i)Wν(i)−
t−1

∑
i=tk

ν(i)Wν(i) = ν
T (tk)Wν(tk).

This ensures that, for all t ∈ [tk, tk+1−2]Z, the following equality holds

∆VW (xt) = (x(t +1)− x(t))TW (x(t +1)− x(t))−λ 2
T νT (t)Wν(t). (4.5)
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Consider now the remaining case t = tk+1−1. The computation of ∆VW leads to

∆VW (xt) =
tk+1−1

∑
i=tk+1−h

yT (i)Wy(i)−
tk+1−2

∑
i=tk−h

yT (i)Wy(i)−λ
2
T

(
0−

tk+1−h−2

∑
i=tk−h

ν
T (i)Wν(i)

)
= yT (t)Wy(t)−λ 2

T νT (t)Wν(t)−ψ,

where

ψ =
tk+1−h−1

∑
i=tk−h

yT (i)Wy(i)−λ
2
T

tk+1−h−1

∑
i=tk−h

ν
T (i)Wν(i).

By noting that
ν(tk) = 0, ∀k ∈ N
ν(i+1)−ν(i) = y(i), ∀i ∈ [tk, tk+1)Z,
tk+1− tk 6 Tmax, ∀k ∈ N,

the assumptions of the Wirtinger inequality in Corollary 3.1 are satisfied, which guarantees that ψ > 0.
It thus holds that, for t = tk+1−1

∆VW (xt) 6 (x(t +1)− x(t))TW (x(t +1)− x(t))−λ 2
T νT (t)Wν(t). (4.6)

Then, combining (4.4) and (4.6) proves the result. �
Note that inequality (4.6) is actually an equality when t 6= tk+1− 1 and is an inequality only when

t = tk+1−1. The computation of this inequality only relies on the computation of the forward increment
of functional VW and the use of the Wirtinger inequality.

The objective in the remainder of the paper is to include this functional in the stability analysis of
discrete sampled-data systems. Next, we will propose two stability theorems which rely on the use of
the Jensen inequality and on Lemma 3.3.

4.2 Jensen-based Theorem

The following theorem holds

THEOREM 4.1 For given h and Tmax in N, assume that there exist n× n matrices P, Q, Z and W ∈ Sn
+

such that the LMI condition
Π(Tmax,h)< 0, (4.7)

holds where

Π(Tmax,h) =

 Q 0 0
∗ −Q 0
∗ ∗ −λ 2

TW

+MT
1 PM1−MT

2 PM2 +MT
0 (W +h2Z)M0−MT

3 ZM3,

M0 =
[

A− I Ad −Ad
]
, M1 =

[
A Ad −Ad

]
,

M2 =
[

I 0 0
]
, M3 =

[
I −I 0

]
,

λT = 2sin
(

π

2(2Tmax+1)

)
.

(4.8)
Then system (2.4) is asymptotically stable for the constant delay h and any aperiodic sampling satisfying
(2.2).
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Proof. Consider the functional

V (xt) =V1(xt)+VW (xt)

where the functional VW have been defined previously. The fucntional V1 is build to assess stability of the
delayed term A1x(t−h) which appears in equation (2.4). Indeed a classical functional for discrete-time
delay system is given by

V1(xt) = xT (t)Px(t)+
t−1

∑
i=t−h

xT (i)Qx(i)+h
0

∑
i=−h+1

t−1

∑
j=t+i−1

yT ( j)Zy( j), (4.9)

where y(i) = x(i+ 1)− x(i). Define the increment of the Lyapunov-Krasovskii functional as follows
∆V (xt) =V (xt+1)−V (xt). From Lemma 4.1, we show that

∆V (xt) = xT (t +1)Px(t +1)− xT (t)Px(t)+ xT (t)Qx(t)− xT (t−h)Qx(t−h)
+h2(x(t +1)− x(t))T Z(x(t +1)− x(t))+(x(t +1)− x(t))TW (x(t +1)− x(t))

−λ 2
T νT (t)Wν(t)−h

t−1

∑
j=t−h

yT ( j)Zy( j).

Applying Jensen’s inequality to the summation term ensures that

∆V (xt) 6 xT (t +1)Px(t +1)− xT (t)Px(t)+ xT (t)Qx(t)− xT (t−h)Qx(t−h)
+h2(x(t +1)− x(t))T Z(x(t +1)− x(t))− (x(t)− x(t−h))T Z(x(t)− x(t−h))
+(x(t +1)− x(t))TW (x(t +1)− x(t))−λ 2

T νT (t)Wν(t).

It follows from the previous calculations that

∆V (xt)6

 x(t)
x(t−h)

ν(t)

T

Π(Tmax,h)

 x(t)
x(t−h)

ν(t)

 .
Then asymptotic stability results from the condition Π(T,h)< 0, which concludes the proof. �

4.3 Improved stability Theorem

As it was noticed in [22], the conservatism induces by the Jensen inequality can be notably reduced by
considering the refined summation inequality provided in Lemma 3.3. The resulting analysis leads to
the following theorem.

THEOREM 4.2 For given h and Tmax in N, assume that there exist a 2n× 2n matrix P > 0 and n× n
matrices Q > 0, Z > 0 and W > 0 such that the LMI condition

Φ(Tmax,h)< 0 (4.10)



8 of 15 A. SEURET and E. FRIDMAN

holds where

Φ(Tmax,h) =


Q 0 0 0
0 −Q 0 0
0 0 0 0
0 0 0 −λ 2

TW

+NT
1 PN1−NT

2 PN2 +NT
0 (W +h2Z)N0−NT

3 Z̃N3

N0 =
[

A− I Ad 0 −Ad
]

N1 =

[
A Ad 0 −Ad
0 −I (h+1)I 0

]
N2 =

[
I 0 0 0
−I 0 (h+1)I 0

]
N3 =

[
I −I 0 0
I I −2I 0

]
Z̃ =

[
Z 0
0 3 h+1

h−1 Z

]
λT = 2sin

(
π

2(2Tmax+1)

)
.

(4.11)
Then system (2.4) is asymptotically stable for the constant delay h and any aperiodic sampling satisfying
(2.2).

Proof. Consider the functional
V (xt) =V2(xt)+VW (xt)

where we use the same definition for the functional VW as in Theorem 4.1. In order to fully take
advantages of the summation inequality provided in Lemma 3.3, we select the following functional V2
given by

V2(xt) =

 x(t)
t−1

∑
i=t−h

x(i)


T

P

 x(t)
t−1

∑
i=t−h

x(i)

+ t−1

∑
i=t−h

xT (i)Qx(i)

+h
0

∑
i=−h+1

t−1

∑
j=t+i−1

yT ( j)Zy( j),

(4.12)

where y(i) = x(i+ 1)− x(i). This functional has been build according to the method provided in
[22]. The forward difference of the Lyapunov-Krasovskii functional yields

∆V (xt) =

 x(t +1)
t

∑
i=t−h+1

x(i)

T

P

 x(t +1)
t

∑
i=t−h+1

x(i)

−
 x(t)

t−1

∑
i=t−h

x(i)


T

P

 x(t)
t−1

∑
i=t−h

x(i)


+xT (t)Qx(t)− xT (t−h)Qx(t−h)+h2(x(t +1)− x(t))T Z(x(t +1)− x(t))

−h
t−1

∑
j=t−h

yT ( j)Zy( j),

Define the ξ (t) = 1
h+1

t
∑

i=t−h
x(i) and applying the summation provided in Lemma 3.3 to the last term
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ensures that

∆V (xt) 6

[
x(t +1)

(h+1)ξ (t)− x(t−h)

]T

P
[

x(t +1)
(h+1)ξ (t)− x(t)

]
−
[

x(t)
(h+1)ξ (t)− x(t)

]T

P
[

x(t)
(h+1)ξ (t)− x(t)

]
+h2 (x(t +1)− x(t))T Z (x(t +1)− x(t))− (x(t)− x(t−h))T Z (x(t)− x(t−h))

−3
(

h+1
h−1

)
(x(t)+ x(t−h)−2ξ (t))T Z (x(t)+ x(t−h)−2ξ (t)) .

It follows from the previous calculations that

∆V (xt)6


x(t)

x(t−h)
ξ (t)
ν(t)


T

Φ(Tmax,h)


x(t)

x(t−h)
ξ (t)
ν(t)

 .
Then asymptotic stability results from the condition Φ(Tmax,h)< 0, which concludes the proof. �

REMARK 4.1 In the previous developments, we only focussed on the case of discrete-time delay systems
with a single delay and a single sampling. However, the methodology can be extended to the case
of multiple delays and multiple sampling by introducing additional functional terms. For the sake of
consistency, this problem is not addressed in this paper.

4.4 Comparison with approaches from the literature

In the present paper, we consider functionals of the form

V (xt) =V1(xt)+VW (xt)

where the functional V1 (or V2) aims at assessing the stability of system (2.1) without sampling and
where the functional VW (xt) aims at ensuring the robustness with respect to the sampling. In [22], the
functional can also be split into two parts where the first one is again the same V1 (or V2) but the second
part is related to the time-varying delay case. Therefore the conditions provided in [22] only address the
stability of the system driven by

x(t +1) = Ax(t)+Adx(t−h(k)),

where the delay h(k) can take any values between h and h+T , without respecting the constraint imposed
in this paper on the sawtooth form of the delay. Therefore the conditions provided in the present paper
and the one provided in [22] does not treat the same problem. However, it is correct to say that the
conditions of [22] guarantee stability of the sampled-data system (2.1) but also to a larger class of delay
systems.

The idea of this paper is to propose a dedicated construction of the functional to cope with the
stability analysis of sampled and delayed closed-loop system driven by (2.1).

4.5 Example 1

Consider the continuous time sampled-data system linear driven, for all t ∈ [kT0,(k+1)T0)Z by

ẋ(t) = Acx(t)+BcdKx((k−h)T0), (4.13)
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Theorems Complexity
[13] (3.5n2 +2.5n)×4n
[22] (10n2 +3.5n)×12n

Theorem 4.1 (2n2 +2n)×3n
Theorem 4.2 (3.5n2 +2.5n)×4n

Table 1. Complexity of the LMI conditions tested in the example

Tmax 1 2 3 4 5 6 7 8 9 10 11
[13] 9 8 7 6 5 4 3 2 1 - -
[22] 9 8 7 6 5 4 3 2 1 - -

Theorem 4.1 9 8 7 6 5 4 4 3 2 1 1
Theorem 4.2 9 8 7 6 6 5 4 3 2 1 1

Table 2. Results derived from various theorems showing the maximal admissible constant delay h for several values of the
sampling period for system with T0 = 0.1

where t represents the continuous time and where

Ac =

[
0 1
0 −0.1

]
,Bcd =

[
0 0

−0.375 −1.15

]
, K =

[
−0.375 −1.15

]
and T0 is the discretization period, h is the delay and k is a positive integer. The associated discretized
system is given by discrete-time systems with delay given in (2.4) with the matrices

A = eAcT0 , Ad =
∫ T0

0
eAc(T0−s)dsBcdK.

The stability conditions provided in this paper and from the literature are tested on this system for
several values of the discretization period T0 = 0.1 and T0 = 0.01. The results and a comparison with
existing results from the literature are presented in Tables 2 and 3.

The stability conditions from [13, 22] address the problem of stability analysis of discrete-time
systems subject to an unknown time-varying delay but which belongs to the interval [h, h+T ]. To the
best of our knowledge, these results are the most efficient conditions for the stability analysis of discrete
systems with interval time-varying delays The sawtooth delay addressed in this paper is only a particular
case of this more general class of time-varying delays.

Tables 2 and 3 show that our theorems essentially reduce the complexity of the conditions provided
in [13, 22] leading to less conservative results.

Finally Figure 1 depicts the solutions of system (4.13) taken with a sampling period of the continuous
time systems T0 = 0.1 and the input delay h = 6. From Table 2, the maximal length between two
successive control updatetk+1− tk is upper bounded by 6. Figure 1 shows two simulations of a periodic
and an aperiodic implementation of the control input u = Kx(tk − h) where it can be seen that the
solutions of the systems remain stable in both cases. It is also worth noting that the system remains
stable with the periodic implementation up to T = 12, which means that the stability conditions resulting
from the functional term related to the Wirtinger inequality are still conservative even if they already
improve the condition issued from the time-varying delay case, which, again, allows assessing stability
of the system with a larger class of delay functions than sawtooth delays.
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Tmax 5 10 25 50 75 100 125 133
[13] 101 96 81 56 31 4 - -
[22] 109 103 86 58 33 7 - -

Theorem 4.1 102 98 85 65 45 25 7 1
Theorem 4.2 110 106 91 69 47 26 7 1

Table 3. Results derived from various theorems showing the maximal admissible constant delay h for several values of the
sampling period for system with T0 = 0.01

0 5 10 15 20 25 30
-20

0

20
State of the plant

x
1

x
2

0 5 10 15 20 25 30
0

5

10

t
k
-t

time

0 5 10 15 20 25 30
-100

0

100

u
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FIG. 1. Example 1. Simulation results representing the state x (top), the timer τ = t − tk (middle), and the control inputs u =
Kx(tk−h) (bottom), of System (4.13) with T0 = 0.1 with h = 5, Tmax = 6 and aperiodic (a) and periodic (b) samplings.

5. Model reduction and Predictor control

5.1 Definitions

Consider the linear discrete-time system driven by{
x(t +1) = Ax(t)+Bu(tk−h), ∀t ∈ [tk, tk+1)∩N
x(θ) = x0(θ), ∀θ ∈ [−h, 0]. (5.1)

where x(t) ∈ Rn is the state vector, x0 is the initial condition and A, Ad ∈ Rn×n are constant matrices.
with the initial condition x0. The prediction-based approach consists in considering the following control
law

u(t) = Kx̄(t +h)

x̄(t +h) = Ahx(t)+
h−1

∑
i=0

Ah−i−1Bu(t−h+ i)
(5.2)

In this formulation, the vector x̄ is the h−step ahead state prediction.
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LEMMA 5.1 The closed-looped system (5.1) with the control scheme (5.2) can be expressed as

z(t +1) = (A+BK)z(t)−AhBK[z(t−h)− z(tk−h)]. (5.3)

Proof. Define the new state z(t) = x̄(t +h) where x̄ is given in (5.2). It holds

z(t +1) = Ah(Ax(t)+Bu(tk−h))+
h−1

∑
i=0

Ah−i−1Bu(t +1−h+ i)

= Ah(Ax(t)+Bu(tk−h))+A
h−1

∑
i=0

Ah−i−1Bu(t−h+ i)+Bu(t)−AhBu(t−h)

= A[Ahx(t)+
h−1

∑
i=0

Ah−i−1Bu(t−h+ i)]+Bu(t)+AhBu(tk−h))−AhBu(t−h)

= Az(t)+Bu(t)+AhB[u(tk−h))−u(t−h)]

Finally, reinjecting the definition of u = Kz in the previous equation leads to the result. �

5.2 Stability conditions

The following theorem holds

THEOREM 5.1 For a given controller gain K and a given delay h, assume that there exists two n× n
matrices P > 0 and W > 0 such that the LMI condition

−P 0 (A+BK− I)TW (A+BK)T P
∗ −λ 2

TW −(AhBK)TW −(AhBK)T P
∗ ∗ −W 0
∗ ∗ ∗ −P

< 0 (5.4)

holds where λT = 2sin
(

π

2(2T+1)

)
.

Proof. Consider the functional
Vt(xt) = xT (t)Px(t)+VW (xt)

where the functionals V and VW have been defined previously. It follows from the previous calculations
that

∆Vt(xt)6

[
x(t)
ν(t)

]T

Ψ2

[
x(t)
ν(t)

]
where

Ψ2 =

[
−P 0
∗ −λ 2

TW

]
+

[
(A+BK)T − I
−(AhBK)T

]
W
[

(A+BK)T − I
−(AhBK)T

]T

+

[
(A+BK)T

−(AhBK)T

]
P
[

(A+BK)T

−(AhBK)T

]T (5.5)

Then asymptotic stability results from the condition Ψ2 < 0, which is equivalent to (5.4) by applica-
tion of the Schur complement.

�



REFERENCES 13 of 15

T 1 2 3 4 5 6 7 8 9 10 Number of decision Variables
Theorem 5.1 3 7 10 13 15 16 17 19 20 21 3.5n2 +2.5n

Table 4. Evolution of the maximal admissible sampling period T for several values of the input delay h

5.3 Example 2

Consider the linear discrete-time systems with delay given in (2.4) with the matrices taken from [9]

A =

[
0.8 0

0.05 0.9

]
, Ad =

[
−0.1 0
−0.2 −0.1

]

The results are presented in Table 4. One can see from this example that the robustness of the
predictor control is reenforced for large delays. This means that the more the delay, the more the
maximal allowable sampling period is obtained. A possible interpretation for such behavior is that
the matrix A0 is Schur stable. Therefore the matrix Ah

0 in the LMI conditions becomes smaller when
the delay increases so that the contribution of λT becomes sufficiently great to ensure robustness with
respect to the sampling period.

A counter part of this numerical results, is that the performances of the closed loop systems may
be affected. This means that increasing the delay T for large values of h would lead to power perfor-
mances. In order to measure the performance degradation, one may look at L2 performance criteria
or exponential stability criteria with guaranteed decay rate. For the latter solution, one would need to
lightly modify the Wirtinger-based functional to account for exponential stability. This can be achieved
following the idea developed for the continuous-time case in Lemma 1 of [19].

6. Conclusions

This paper addresses the stability analysis of discrete time sampled-data systems. The approach devel-
oped in this paper can be interpreted as the counterpart of the recent result on continuous-time systems
from [14]. Two stability theorems have been provided and are tested on a simple example showing the
efficiency of the method.
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