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Abstract

We study a minimal partition problem on the flat rectangular torus. We give a partial review of
the existing literature, and present some numerical and theoretical work recently published elsewhere
by V. Bonnaillie-Noël and the author, with some improvements.
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1 Introduction

1.1 Minimal partitions

The topic of spectral minimal partitions has been actively investigated by the shape optimization com-
munity during recent years. In addition to its intrinsic interest, it has many applications, for instance
condensed matter physics, mathematical ecology or data sorting. In this review, we focus on one specific
problem, for which the quantity to be optimized depends on the Dirichlet Laplacian eigenvalues. This
problem is intimately connected with the nodal patterns of Laplacian eigenfunctions. Although we begin
by recalling quite general results on minimal partitions in two dimensions, the paper then focus on the
model problem of the flat rectangular torus. For the most part, we review the numerical and theoretical
results obtained by the author in collaboration with V. Bonnaillie-Noël in [2]. We also present a new
lower bound on transition values which improves existing estimates (Proposition 2.3). We point out that
the authors previously studied circular sectors in a similar way [3].

Let Ω be a bounded open set in R2 or in a 2-dimensional Riemannian manifold. For any open subset
D of Ω, let (λk(D))k≥1 be the eigenvalues of the Dirichlet Laplacian in D, arranged in non-decreasing
order and counted with multiplicities. A k-partition of Ω is a family D = (D1, . . . , Dk) of open, connected
and mutually disjoint subsets. We define its energy as Λk(D) = max1≤i≤k λ1(Di). A k-partition D∗ is
called minimal if it has minimal energy, which we denote by Lk(Ω).

Let us introduce some additional notions, which enable us to describe the regularity of minimal
partitions. We say that the k-partition D = (D1, . . . , Dk) is strong if it fills the set Ω, that is to say if

Ω = Int
(
∪ki=1Di

)
\ ∂Ω.

In that case, we define the boundary of D as N(D) := ∪ki=1∂Di \ ∂Ω. We say that D is regular if it is
strong N(D) satisfies the following properties.

i. It is a union of regular arcs connecting a finite number of singular points (inside Ω or possibly on
∂Ω).

ii. At the singular points, the arcs meet with equal angles (taking into account ∂Ω if necessary).
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Point ii is called the equal angle meeting property. Let us note that these properties of N(D) are also
satisfied by the nodal set of a Dirichlet Laplacian eigenfunction. However, in this latter case, the singular
points inside Ω are crossing points, so the number of arcs meeting there must be even. This number can
be odd in the case of a minimal partition.

Existence and regularity of minimal partitions follow from the work of several authors: D. Bucur, G.
Buttazzo, and A. Henrot [5]; L. Caffarelli and F.-H. Lin [6]; M. Conti, S. Terracini, and G. Verzini [7];
B. Helffer, T. Hoffmann-Ostenhof, and S. Terracini [11]. In the rest of the paper, we refer to the results
by Helffer, Hoffmann-Ostenhof, and Terracini.

Theorem 1.1. Let Ω be a bounded open set in R2 with a piecewise-C1,+ boundary and satisfying the
interior cone property. Then, for any positive integer k,

i. there exists a minimal k-partition of Ω;

ii. any minimal k-partition of Ω is regular up to 0-capacity sets.

Reference [11] also establishes the subpartition property, which we use at the end of the present paper.

Theorem 1.2. Let D = (Di)1≤i≤k be a minimal k-partition of Ω. Let I ⊂ {1, . . . , k} with k′ := ]I,
k′ < k, such that

ΩI := Int

(⋃
i∈I

Di

)
is a connected open set. Then the sub-partition DI = (Di)i∈I is the unique minimal k′-partition of ΩI
(up to 0-capacity sets).

Corollary 1.3 (pair compatibility condition). Let D = (Di)1≤i≤k (k ≥ 3) be a minimal k-partition
of Ω. For any two neighbors Di and Dj, the second eigenvalue of the Dirichlet Laplacian on Di,j :=
Int
(
Di ∪Dj

)
, is simple, and Di and Dj are the nodal domains of an eigenfunction associated with

λ2(Di,j).

1.2 Nodal partitions

If u is an eigenfunction of the Dirichlet Laplacian in Ω, the connected components of the complement of
its zero set are called its nodal domains. Let us denote by ν(u) the number of nodal domain of u. The
family Du = (Di)1≤i≤ν(u) of all the nodal domains of u is the nodal partition associated with u. Given
a regular k-partition D = (Di)1≤i≤k, we say that two domains Di and Dj are neighbors if they have a
common boundary not reduced to points, that is to say if the set Di,j := Int

(
Di ∪Dj

)
is connected.

Theorem 1.4. A minimal k-partition of Ω is nodal if, and only if, it is bipartite, that is to say if we
can color its domains with only two colors such that two neighbors have a different color.

Theorem 1.5 (Courant, 1923). If u is an eigenfunction associated with λk(Ω), ν(u) ≤ k.

Theorem 1.6 (Courant-sharp characterization). The nodal partition associated with the eigenfunction
u is minimal if, and only if, u is Courant-sharp, that is to say associated with λk(Ω), where k = ν(u).

In particular, a minimal 2-partition is always the nodal partition associated with a second eigenfunc-
tion. Theorem 1.6 allows one to give explicit examples of minimal partitions, in domains Ω for which
the eigenvalues and eigenfunctions of the Laplacian are explicitly known: see for instance [11, 1]. Com-
bined with topogical arguments and covering surface, it can also be use to produce example of non-nodal
minimal partitions [12, 9, 15]. Let us add that while minimal partitions are in general not nodal for the
Dirichlet Laplacian [11, Corollary 7.8], they are always nodal for a magnetic Laplacian, with a suitable
magnetic potential of Aharonov-Bohm type, as was proved by B. Helffer and T. Hoffmann-Ostenhof [8]
(see also [13, 1, 10]).
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2 Transitions for the flat torus

2.1 Statement of the problem

Let us now describe our model problem. We consider the flat rectangular torus of length a and width b:
T(a, b) = (R/aZ)× (R/bZ) . The set of its eigenvalue is {λm,n(a, b) ; (m,n) ∈ N2

0}, with

λm,n(a, b) = 4π2

(
m2

a2
+
n2

b2

)
,

and a corresponding basis of eigenfunctions is given by

ua,bm,n(x, y) = ϕ

(
2mπx

a

)
ψ

(
2nπy

b

)
,

where ϕ,ψ ∈ {cos, sin}.
We first consider the partition of T(a, b) into k equal vertical strips: Dk(a, b) = (Di)1≤i≤k, with

Di =

(
i− 1

k
a,
i

k
a

)
× (0, b) .

Its energy is Λk(Dk(a, b)) = k2π2/a2. We investigate the following question: for which values of b ∈ (0, 1]
is Dk(1, b) a minimal partition of T(1, b). More specifically, let us define the transition value

bk = sup{b ∈ (0, 1] ; Dk(1, b) is a minimal k-partition of T(1, b)}.

The following result justifies the term transition value (see [2, Proposition 2.1]).

Proposition 2.1. The partition Dk(1, b) is minimal for all b ∈ (0, bk].

We want to localize as precisely as possible this transition value. Let us first recall a result of Helffer
and Hoffmann-Ostenhof [9].

Theorem 2.2. If k is even, bk = 2/k. If k is odd, bk ≥ 1/k.

We want to improve the lower bound when k is odd. This can be done by considering the following
auxiliary optimization problem. For b ∈ (0, 1] , we consider the infinite strip Sb = R × (0, b) and we
define

bSk = sup
{
b ∈ (0, 1] ; j(b) > k2π2

}
, with j(b) = inf

Ω⊂Sb,|Ω|≤b
λ1(Ω).

As seen in [2, Theorem 1.9], bk ≥ bSk if k is odd. The following estimate gives a quantitative improvement
of Theorem 2.2 and of [2, Theorem 1.9]

Proposition 2.3. For any integer k ≥ 2, 1/
√
k2 − 1/8 ≤ bSk < 1/

√
k2 − 1.

As was pointed out to us by Bernard Helffer, the method of covering surfaces in [9] leads quite
naturally to the following conjecture.

Conjecture 2.4. For any odd integer k ≥ 3, bk = 2/
√
k2 − 1.

It can actually be proved that bk ≤ 2/
√
k2 − 1 (see [2, Proposition 2.8]). The conjecture is supported

by the numerical study. Proposition 2.3 shows that, for any odd integer k ≥ 3, bSk < 2/
√
k2 − 1. New

idea would therefore be needed to prove Conjecture 2.4.

2.2 Proof of Proposition 2.3

Let us sketch the proof of Proposition 2.3. It is a direct consequence of the following proposition, after
rescaling.

Proposition 2.5. For V ≥ 1/2,

π2

(
1 +

1

8V 2

)
≤ J(V ) < π2

(
1 +

1

V 2

)
, where J(V ) := inf

Ω⊂S1,|Ω|≤V
λ1(Ω).
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Let us note that in Proposition 2.5, and in the rest of this section, we define λ1(Ω) for any open set
in R2, possibly unbounded and of infinite volume, as the infimum of a Rayleigh quotient:

λ1 (Ω) := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

.

The upper bound of J(V ) is obtained immediately by considering the rectangle (0, V )× (0, 1), which
cannot be minimal, since the normal derivative of the first eigenfunction on its free boundary is not
constant. The lower bound is harder to prove. The first part of the proof relies on a symmetrization
argument. For all V > 0, we define an open subset CV of S by

CV :=

{
(x1, x1) ∈ R2 :

∣∣∣∣x2 −
1

2

∣∣∣∣ < g(x1)

}
with g(x1) := min

(
1

2
,
V

4x1

)
.

Lemma 2.6. For all V > 0, J(V ) ≥ λ1 (CV ).

Proof. Let Ω be an open subset of S, of volume V . We perform two successive Steiner symmetrizations,
with respect to the lines x1 = 0 and x2 = 1

2 , and denote by Ω∗ the resulting set. We have, according to
the definition of Steiner symmetrization,

Ω∗ =

{
(x1, x2) ∈ R2 :

∣∣∣∣x2 −
1

2

∣∣∣∣ < f(x1)

}
,

where f : R→
[
0, 1

2

]
is an even function, non-increasing in [0,+∞). Since f is non-increasing, we have,

for all x1 ∈ (0,+∞),

x1f(x1) ≤
∫ x1

0

f(t) dt ≤
∫ +∞

0

f(t) dt =
V

4
,

and therefore f(x1) ≤ V
4x1

. This implies that f(x1) ≤ g(x1), and therefore Ω∗ ⊂ CV . Since the first
Dirichlet Laplacian eigenvalue is non-increasing with respect to Steiner symmetrization and the inclusion
of domains, we obtain

λ1 (CV ) ≤ λ1 (Ω∗) ≤ λ1(Ω).

Passing to the infimum, we get the desired result.

To conclude the proof of Proposition 2.5, we obtain an explicit lower bound of λ1 (CV ). For h > 0,
let us define the ordinary differential operator Ph by

Ph := −h2 d
2

dt2
+ π2(t2 − 1)+,

with (t2 − 1)+ := max
(
0, t2 − 1

)
. This operator is positive and self-adjoint, with compact resolvent. It

therefore has discrete spectrum, and we denote by µ1(h) its first eigenvalue.

Lemma 2.7. For all V > 0, λ1 (CV ) ≥ π2 + µ1

(
2
V

)
.

Proof. Let u be a smooth function compactly supported in CV . We have∫
CV

|∇u|2 dx =

∫ +∞

−∞
dx1

∫ 1
2 +g(x1)

1
2−g(x1)

dx2

(
|∂x1u|

2
+ |∂x2u|

2
)
.

For a given x1, the one-dimensional Poincaré inequality on the segment (1/2− g(x1), 1/2 + g(x1)) gives
us ∫ 1

2 +g(x1)

1
2−g(x1)

|∂x2u|
2
dx2 ≥

π2

4g(x1)2

∫ 1
2 +g(x1)

1
2−g(x1)

u2 dx2.

We obtain therefore∫
CV

|∇u|2 dx ≥
∫ 1

2 +g(x1)

1
2−g(x1)

dx2

∫ +∞

−∞
dx1

(
|∂x1u|

2
+

π2

4g(x1)2
u2

)
.

4



We now denote by ν1(V ) the first eigenvalue of the ordinary differential operator

QV := − d2

dx2
1

+
π2

4g(x1)2
.

According to the variational characterization of ν1(V ), we get∫ +∞

−∞
dx1

(
|∂x1

u|2 +
π2

4g(x1)2
u2

)
≥ ν1(V )

∫ +∞

−∞
u2 dx1

for all x2 ∈ (0, 1), and therefore ∫
CV

|∇u|2 dx ≥ ν1(V )

∫
CV

u2 dx.

By density, the inequality holds for any u ∈ H1
0 (CV ), and therefore λ1 (CV ) ≥ ν1(V ). The change of

variable x1 = (V/2)t shows that QV is unitarily equivalent to Ph +π2 with h = 2
V , which establishes the

desired result.

Lemma 2.8. If h ≤ 4, µ1(h) ≥ π2h2

32 .

Proof. For any h > 0, Rh ≤ Ph, where Rh is the differential operator

Rh := −h2 d
2

dt2
+W (t), with W (t) :=

{
0 if |t| <

√
2;

π2 if |t| ≥
√

2.

We therefore have µ1(h) ≥ ξ1(h), with ξ1(h) the first eigenvalue of Rh.
The spectrum of Rh is known explicitly (it is a Schrödinger operator with a square well potential,

studied in most textbooks on quantum mechanics, see for instance [14, Chapter 2, Section 9]). We find

ξ1(h) = h2

2 ρ
2
1(h), where ρ1(h) is the smallest positive solution of the equation ρ tan(ρ) =

√
2π2/h2 − ρ2.

It is easily seen that the assumption h ≤ 4 implies ρ1(h) ≥ π/4, and thus µ1(h) ≥ ξ1(h) ≥ π2h2/32.

Gathering all the previous estimates, we obtain, when V ≥ 1/2,

J(V ) ≥ λ1(CV ) ≥ ν1(V ) ≥ π2 + µ1

(
2

V

)
≥ π2 +

π2

8V 2
.

3 Numerical study of the flat torus

3.1 Algorithm and results

We performed in [2] a numerical study of our model problem, using the method introduced by B. Bourdin,
D. Bucur and É. Oudet [4], with some modifications. In their work, they looked for partitions which
are optimal with respect to the sum of the eigenvalues. They passed to a relaxed formulation, looking
for indicator functions instead of domains, and penalizing overlapping supports. They then discretized
the resulting optimization problem, through a five points finite difference method for the Laplacian, and
performed the optimization iteratively, with the projected gradient algorithm. We made the following
changes to their algorithm. First, we considered general `p-norms for the energy, rather than just the
`1-norm, in order to approach the maximum by taking a larger p. We also added a last step, in which we
built a strong partition from the result of the optimization algorithm, and evaluated its energy without
relaxation. As pointed out in [4], the algorithm proves to be quite sensitive to the initial condition, due
to the non-convexity of the problem. For each value of k and b, we therefore ran the algorithm several
times with different initial conditions, and chose the results giving the lowest energy.

Figure 1 presents some results of the numerical optimization. Comparing the partitions in Figures
1(a) and 1(b), we see that b3 seems close to the value 1/

√
2 ' 0.7071 given by Conjecture 2.4. It appears

in fact slightly higher in our numerical computations, possibly because of the approximations introduced
in the algorithm. These results also suggest a transition mechanism from Figure 1(a) to Figure 1(b).
Indeed, we can construct a 3-partition of T(1, 1/

√
2), with the same energy as D3(1, 1/

√
2) but of a
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(a) b = 0.7 (b) b = 0.72 (c) b = 1

Figure 1: 3-partitions for some values of b .

Figure 2: 3-partition of T(1, 1/
√

2)

different topological type. It is represented on Figure 2, and is obtained by projecting on T(1, 1/
√

2) a
nodal 6-partition of the double covering T(2, 1/

√
2) (see [2, Section 2.3]). The partition on Figure 1(b)

could then be obtained by a deformation which splits each singular point of order 4 into two singular
points of order 3.

Finally, Figure 1(c) strongly suggests that for b quite larger than 1/
√

2, minimal partitions of T(1, b)
are close to hexagonal tilings. These tilings can be explicitly constructed, and their energy is an upper
bound of L3(T(1, b)), smaller that Λ3(D3(1, b)) for some values of b. Figure 3 summarizes the information
thus obtained on L3(T(1, b)). The solid line represents λ1 for a tiling hexagon, which is the energy of
the hexagonal tiling, the dashed line the energy of D3(1, b), and the crosses the results of the numerical
optimization. The transition around b = 1/

√
2 clearly appears. We obtained similar results for k ∈ {4, 5}.
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65

70

75

80

85

90

1

3
b
c

3
=

1
√

2

b

 

 

Λ
3
(D

3
(1,b))=9π2

λ
1
(H

3
(b))

Numerical estimates

Figure 3: Upper bounds of L3(T(1, b))
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3.2 Tilings

We constructed explicitly hexagonal tilings of the same topological type as the numerical results and
satisfying the equal angle meeting property [2, Section 4]. The results are summarized in the following
theorem, from [2, Section 1.3].

Theorem 3.1. For k ∈ {3 , 4 , 5} , there exists bHk ∈ (0, 1) such that, for any b ∈ (bHk , 1] , there exists a
tiling of T(1, b) by k hexagons that satisfies the equal angle meeting property. We denote by Hk(b) the
corresponding tiling domain, and we have

Lk(T(1, b)) ≤ min
(
k2π2, λ1(Hk(b))

)
, ∀b ∈ (bHk , 1] .

More explicitly, we can choose

bH3 =

√
11−

√
3

4
' 0.396 , bH4 =

1

2
√

3
' 0.289 < b4 =

1

2
, and bH5 =

√
291− 5

√
3

36
' 0.233 .

In order to test the minimality of these tilings, we used the pair compatibility condition (see [2,
Section 4.5]). Indeed, if one of these tilings is a minimal k-partition of T(1, b), Corollary 1.3 implies that
λ1(Hk(b)) = λ2(2Hk(b)), with 2Hk(b) any one of the polygonal domains obtained by gluing two copies
of Hk(b) along corresponding sides. Numerically, this condition does not seem to be met for b close to
1/
√

2 when k = 3, to 1/2 when k = 4, and to 1/
√

6 and 1 when k = 5. Hexagonal tilings therefore
appear not to be minimal under these conditions. This idea is supported by the numerical values of the
energy, and by the slight curvature visible in the boundary of the numerically obtained partitions. Let
us finally point out that when k = 5 and b = 1, the numerical result is very close to the partition into 5
squares represented on Figure 4 (see [2, Section 4.4]).

1
3

5
5

2

44

1
3

Figure 4: 5-partition of T(1, 1)

These numerical findings reveal a rich structure for minimal partitions of the flat rectangular torus.
A better understanding would however require faster numerical algorithms and new theoretical methods.
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