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Summary

� Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is

trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi

decompose SOM and the mechanism by which they do so remain unclear, considering that

they have lost many genes encoding lignocellulose-degrading enzymes that are present in

their saprotrophic ancestors.
� Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms

by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis,

decompose SOM extracted from forest soils.
� In the presence of glucose and when acquiring nitrogen, all species converted the organic

matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during

oxidative decomposition has diverged over evolutionary time. Each species expressed a differ-

ent set of transcripts encoding proteins associated with oxidation of lignocellulose by sapro-

trophic fungi. The decomposition ‘toolbox’ has diverged through differences in the regulation

of orthologous genes, the formation of new genes by gene duplications, and the recruitment

of genes from diverse but functionally similar enzyme families.
� The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We

propose that the ancestral decay mechanisms used primarily to obtain carbon have been

adapted in symbiosis to scavenge nutrients instead.

Introduction

A large part of the nitrogen (N) found in forest soils is present in
organic forms, primarily as proteins and peptides but also as
amino acids, amino sugars and heterocyclic molecules (Nannip-
ieri & Eldor, 2009). During decomposition, these N molecules
accumulate in a complex mixture of plant- and microbial-derived
molecules. This soil organic matter (SOM), operationally defined
as humic substances, consists of relatively low-molecular-weight
fragments of lignin, polysaccharides, polyphenols, lipids, pepti-
doglycan, peptides and other biomolecules (Simpson et al., 2007;
Schmidt et al., 2011). The molecules associate with each other in
supramolecular aggregates that are stabilized by hydrophobic
interactions and hydrogen (H) bonding and by interactions with
mineral particles (Kleber & Johnson, 2010; Kleber et al., 2015).
To become available for plants, the organic N compounds must

be released from the SOM. However, the microorganisms
and the mechanisms involved in these processes are poorly
characterized.

Filamentous saprotrophic fungi are thought to have a unique
ability to degrade lignin and other phenolic compounds of forest
SOM (Baldrian, 2008). On the basis of studies of wood-decaying
fungi, two major decomposition mechanisms have been charac-
terized in detail: decomposition by white-rot (WR) fungi and
decomposition by brown-rot (BR) fungi (Hatakka & Hammel,
2010). The ligninolytic system of WR fungi depends on extracel-
lular oxidative enzymes, particularly class II peroxidases (class II
PODs). These fungi also secrete various glycoside hydrolases
(GHs) that break down crystalline cellulose. BR fungi lack most
of the oxidative enzymes and cellulase systems of WR fungi
(Floudas et al., 2012) and instead decompose lignocellulose by
means of an initial nonenzymatic step: attack by reactive oxygen
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species, including hydroxyl radicals generated by the Fenton reac-
tion (H2O2 + Fe2+ +H+ ? H2O + Fe3+ + •OH) (Martinez et al.,
2009; Hatakka & Hammel, 2010). In recent years, a number of
new enzymes have been identified that are involved in the oxida-
tive conversion of lignocellulose, such as lytic polysaccharide
monooxygenases (LPMOs) (Quinlan et al., 2011), various oxi-
doreductases (Levasseur et al., 2013), and heme-containing
haloperoxidases, including chloroperoxidases and aromatic per-
oxygenases (Hofrichter et al., 2010). During fungal attack, these
oxidases promote extended cleavage of plant cell wall compo-
nents and generate the reactants needed for the Fenton reaction.
In addition, secondary metabolites such as hydroquinones and
variegatic acid have key roles in the reductions of Fe3+ and O2 in
BR fungi (Eastwood et al., 2011; Korripally et al., 2013).

The other main functional group of fungi in northern forest
soils comprises the ectomycorrhizal (ECM) symbionts. ECM
fungi are biotrophs that obtain photosynthetic sugars from the
host plant, which, in return, receives nutrients, including N and
phosphorus, from the fungal partner (Smith & Read, 2008). Car-
bon (C) from the plant supports the growth of an extramatrical
mycelium. This mycelium is present mainly in regions of the soil
horizons that are rich in humic substances (Lindahl et al., 2007).
To release the N present in such material, it can be expected that
ECM fungi can disrupt organic-matter-N complexes. Indeed,
studies using various model compounds such as cellulose and
polyphenols have shown that ECM fungi have some decompos-
ing capacity (Norkrans, 1950; Trojanowski et al., 1984). ECM
fungi also produce extracellular enzymes such as cellulases,
hemicellulases and polyphenoloxidases, which are thought to
contribute to the degradation of components of plant litter (Read
& Perez-Moreno, 2003). However, ECM fungi express such
enzymes at much lower levels than do saprotrophic fungi grown
under identical conditions (Read & Perez-Moreno, 2003).

Recent analyses of genome sequences further support the view
that ECM fungi have a limited capacity to decompose complex
organic material such as lignocellulose. These analyses have
shown that ECM fungi have a smaller set of genes encoding
enzymes that degrade plant cell walls than do their saprotrophic
ancestors, including BR and WR wood decayers (Martin et al.,
2008; Kohler et al., 2015). We previously demonstrated that the
ECM fungus Paxillus involutus can nevertheless decompose lig-
nocellulosic material in SOM extracts while assimilating organic
N using a Fenton-based oxidation mechanism similar to that of
BR fungi (Rineau et al., 2012). The oxidation is triggered by the
addition of glucose, which suggests that the mechanism can be
regulated by the host C supply (Rineau et al., 2013). During the
oxidative decomposition of the SOM extract, P. involutus
expresses a large number of extracellular endo- and exopeptidases
that are regulated in parallel with transporters and enzymes
involved in the assimilation and metabolism of the released N
(Shah et al., 2013). Other ECM taxa, including Cortinarius
species, contain genes encoding class II PODs (B€odeker et al.,
2009; Hatakka & Hammel, 2010). More recently, B€odeker et al.
(2014) demonstrated that the transcription of Cortinarius class II
PODs genes was correlated with high peroxidase activity in soils,
supporting the hypothesis that Cortinarius species may play an

important role in the decomposition of complex humic-rich
SOM in northern forest ecosystems.

Here, we examined the capacity of several ECM fungi to
decompose biomolecules present in SOM and the mechanisms
underlying this decomposition. In particular, we assessed the fol-
lowing: whether the capacity to decompose SOM has been
retained by ECM fungi of different evolutionary origins and
functional ecologies; whether the arrays of enzymes expressed
upon SOM decomposition by ECM fungi are similar to those of
related saprotrophic wood decomposers; and whether the decom-
position mechanisms of ECM fungi have any common molecular
signatures as a result of similar selection pressures.

Materials and Methods

Fungal species

We analysed five ECM species belonging to three basidiomycete
orders (Boletales, Agaricales and Atheliales), selected based on the
availability of published genome sequences. The five ECM species
represent at least four independent evolutionary origins of symbio-
sis (Fig. 1; Supporting Information Table S1) and they are distant
from each other as the last common ancestor of Agaricomycetidae
probably lived between 125 and 150 million yr ago (Ma; Floudas
et al., 2012; Kohler et al., 2015). The most densely sampled clade
was the Boletales, with two ECM species (Paxillus involutus
(Batsch) Fr. and Suillus luteus (L.) Roussel) that are nested with a
paraphyletic assemblage of BR wood decayers (Kohler et al., 2015),
of which three species (Coniophora puteana (Schumach.) P. Karst,
Hydnomerulius pinastri (Fr.) Jarosch & Besl, and Serpula lacrymans
(Wulfen) P. Karst.) were included in our study. The two examined
ECM species of the Agaricales clade evolved independently from
different saprotrophic ancestors: Laccaria bicolor (Maire) P.D.
Orton may be derived from litter-decomposing saprotrophs,
whereas Hebeloma cylindrosporum Romagnesi is nested in a clade of
WR wood decayers (Matheny et al., 2006; Kohler et al., 2015).
Finally, Piloderma croceum J. Erikss. & Hjortstam is nested within
the ecologically diverse Atheliales–Amylocorticales clade, which
includes WR and BR saprotrophs as well as various biotrophs
(Hibbett et al., 2014; Kohler et al., 2015). The wood-decomposing
fungus Jaapia argillacea Bres. (Jaapiales), which lacks ligninolytic
class II PODs but encodes diverse enzymes acting on crystalline
cellulose (Riley et al., 2014), was used as an outgroup. The sampled
ECM fungi differ also in their ecology. The Boletales species are
long-distance-exploration types with a rapidly growing extramatri-
cal mycelium and a high capacity to decompose and mobilize
organic N. By contrast, the ECM species from the other clades are
short- and medium-distance-exploration types, which grow more
slowly and have a limited ability to assimilate organic N (Agerer,
2001; Hobbie & Agerer, 2010).

Culture conditions

The fungi were grown in Petri dishes on a layer of glass beads
immersed in a minimum Melin–Norkrans (MMN) medium
(2.5 g l�1 glucose, 500 mg l�1 KH2PO4, 200 mg l�1 NH4Cl,
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150 mg l�1 MgSO4�7H2O, 25 mg l�1 NaCl, 50 mg l�1 CaCl2,
12 mg l�1 FeCl3�6H2O and 1 mg l�1 thiamine-HCl; pH 4.0)
(Rineau et al., 2012). After 9 d of incubation (18°C in the dark),
the medium was replaced with MMN medium without N to
induce an N-deprived mycelium (Shah et al., 2013). After 24 h,
the mycelium was washed in sterile water, and the SOM extract
(10 ml) was added.

SOM was extracted from the upper 10-cm soil layer in a 61-
yr-old Norway spruce (Picea abies (L.) H. Karst) stand growing
in an N-poor site in central Sweden (soil pH 5.0) (Table S2)
using hot water (Davidson et al., 1987). Pyrolysis-GC/MS (py-
GC/MS) (Fig. 2c) showed that the SOM extract contained the
major classes of biomolecules that are present in intact SOM
(Simpson et al., 2007). Particles were removed by filtration
(0.2 lm), and low-molecular-weight metabolites were partly
removed by ultrafiltration (cut-off 1 kDa). The concentration of
the SOM extract was adjusted, and the extract was supplemented
with glucose to a final concentration similar to that in the MMN
medium (Rineau et al., 2012). The fungi were grown in either
the MMN medium or the SOM extract (three replicates each).
The cultures were incubated for 7 d at 18°C in the dark. To test
the capacity of the fungi to oxidize the organic matter in the
absence of glucose, four of the Boletales species were grown on
the SOM extract without glucose amendment.

Chemical analyses

Total organic C concentration was measured with an organic C
analyser (Shimadzu, Kyoto, Japan). Total N content was mea-
sured with the same apparatus equipped with a total nitrogen
module (TNM-1) detector. The glucose concentration was mea-
sured by means of a glucose assay (Sigma-Aldrich, Seelze, Ger-
many). Fourier transform infrared (FTIR) spectra were recorded
on a Bruker IFS66 v/s spectrometer (Bruker Scientific Instru-
ments, Billerica, MA, USA). Data were collected in diffuse
reflectance mode. Each spectrum was the result of 1000 consecu-
tive scans at a resolution of 4 cm�1. A Perkin-Elmer TurboMass/
Autosystem XL with a Frontier Lab Double Shot pyrolyser was
used for py-GC/MS (Perkin-Elmer, Waltham, MA, USA). Pyrol-
ysis data were acquired and processed with QCALIBUR 1.4 SR1
software (Thermo Finnigan, San Jose, CA, USA), and peaks were
identified by comparison with published and stored data
(National Institute of Standards and Technology (NIST) library).
A standard series of SOM extracts with increasing concentrations
of glucose (0.0–2.5 g l�1 glucose) was analysed to correct the con-
tribution of glucose to each pyrolytic product. The iron-reducing
activity in the culture filtrates was analysed by means of a fer-
rozine assay (Goodell et al., 2006). Further details of the chemical
analyses are given in Rineau et al. (2012).
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Transcriptome analysis

After the incubation, the mycelium was collected, immediately
frozen in liquid N2 and subsequently ground to a fine powder
with a mortar. Total RNA was isolated using the RNeasy Plant

Mini Kit (Qiagen, Hilden, Germany) with the RLC buffer and
on-column DNase treatment, according to the manufacturer’s
instructions. Total RNA was eluted in H2O and stored at �20°C
until use. For quality assessments, all samples were inspected with
an RNA 6000 Nano Kit on a 2100 Bioanalyzer (Agilent, Santa
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Fig. 2 Decomposition of soil organic matter
(SOM) extract. (a) Fourier transform infrared
(FTIR) spectra of the SOM extract before
(FH0, initial material) and after 7 d of
incubation with various ectomycorrhizal
(ECM) and saprophytic fungi (au, arbitrary
units). All spectra have been normalized to
the same total area over the wave number
region displayed (n = 3). Spectral changes
were observed in six regions ascribed to
different vibrational modes: C–O and C–O–C
stretching of carbohydrates (970–
1150 cm�1); C–O stretching of phenols
(1150–1250 cm�1); C–O stretching of esters
(1300 cm�1); O–H bending, aliphatic C–H
deformation or ammonium N–H bending
(1350–1450 cm�1); C–C stretching of
aromatic rings (1510 cm�1); and C=O
stretching of carbonyl groups (1620–
1800 cm�1). (b) Principal component analysis
(PCA) scores plot of the FTIR spectra of the
SOM extract before (FH0) and after 7 d
incubation with the ECM fungi and
saprotrophic fungi (n = 3). (c) Pyrolysis-GC/
MS results (shown as sums of the major
groups of organic compounds). The data are
corrected for the total organic C
concentration and normalized to the
nonincubated SOM extract (FH0)
(mean� SE; n = 3). The identified pyrolytic
compounds are listed in Supporting
Information Table S2. The inset shows the
ratio of guaiacylacetone to trans-
propenylguaiacol (Ox/C3-G) (grey bars),
which is a marker of the degree of oxidation
of guaiacyl lignin (Buurman et al., 2008).
Bars with different lowercase letters are
significantly different according to Tukey’s
test (P < 0.05). The values are normalized to
the nonincubated samples (mean� SE;
n = 3). The species abbreviations are listed in
the legend of Fig. 1.
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Clara, CA, USA). After reverse transcription into double-
stranded cDNA and barcoding by means of the massively parallel
signature sequencing protocol (Brenner et al., 2000), libraries
were sequenced (RNA-Seq) using a HiSeq2000 instrument (Illu-
mina Inc., San Diego, CA, USA) in single-read mode and with a
read length of 50 bp (IGA Technology Services, Udine, Italy;
http://www.igatechnology.com). The reads were mapped onto
the corresponding genomes by means of TOPHAT (v.2.0.8b)
(Kim et al., 2013). The transcript abundances were normalized
using the R package DESeq (Anders & Huber, 2010) for each
fungus by dividing the expression values by size factors to adjust
for different sequence depth between the two conditions. The size
factor for each sample was calculated as follows: the read count of
each gene was divided by the geometric mean of the expression
across the SOM and MMN samples. Significantly differentially
expressed genes (SOM vs MMN) were identified with DESeq (t-
test, false discovery rate, q-value < 0.01; Benjamini & Hochberg,
1995). The RNA-Seq data are deposited in the GEO database
(http://www.ncbi.nlm.nih.gov/geo/) with accession number
GSE64897.

Annotations

Gene models and annotations for each of the fungal species were
retrieved from the Joint Genome Institute (JGI) MycoCosm
database (Table S1). The SIGNALP algorithm (v.4.0) was used for
additional searches for prediction of secretion signals (Petersen
et al., 2011). Conserved protein domain families (Pfam) were
identified by searching through the Pfam family protein database
(pfam_scan.pl tool with default settings) (Finn et al., 2014).
Orphans were defined as sequences not having matches in the
Pfam database or homologues in other organisms as revealed by
BLASTP searches (Altschul et al., 1990) against the UniProt
database (cut-off 1E< 10�5). Putative peptidases were annotated
by searching the proteome of each fungus against the MEROPS
database (Rawlings et al., 2012).

Annotations on gene models encoding enzymes active on
carbohydrates (CAZymes) were retrieved from the Carbohy-
drate-Active Enzymes database (CAZy; http://www.cazy.org/),
including the extended set of auxiliary activities (AAs) to cover
redox enzymes that act in conjunction with CAZymes
(Cantarel et al., 2009; Levasseur et al., 2013). Annotations for
various types of PODs in all nine genomes were retrieved from
the PeroxiBase database (Fawal et al., 2013). Gene models rep-
resenting tyrosinases were retrieved directly from the JGI
database by the use of InterPro term IPR002227 as a search
term. All gene models of CAZymes, auxiliary activities, PODs
and tyrosinases detected were inspected manually, and the
selected and filtered gene model in the JGI database was modi-
fied if necessary. Genes encoding multidomain natural-
product-biosynthesis enzymes (polyketide synthases, nonriboso-
mal peptide synthetases and related enzymes) were annotated
in a two-step process: first, on the basis of homology by means
of BLAST and a conserved domain search (Marchler-Bauer
et al., 2011) and, second, by manual inspection of each filtered
gene model.

Identification of orthologues and phylogenetic analyses

Orthologues were identified with the PROTEINORTHO program
(Lechner et al., 2011). Principal component analysis (PCA) of
orthologues was performed with the QLUCORE EXPLORER software
(v.2.2; Qlucore AB, Lund, Sweden) with default settings. For
rescaling of the gene expression data before the PCA, clustering
analyses, and phylogenetic analyses, the expression values of the
orthologues were normalized by means of the DESeq package
(Anders & Huber, 2010) and were then log2(counts + 1) trans-
formed.

The construction of a species tree for the nine species included
in this study was based on a phylogenetic analysis of 3148 one-
to-one (1 : 1) orthologues. These orthologues were aligned with
MAFFT (v.7.147) (Katoh & Standley, 2013) with default set-
tings, and the resulting alignments were trimmed with GBLOCKS

(v.0.91b) (Talavera & Castresana, 2007) and concatenated into a
supermatrix. The protein model was determined with PROTTEST

(v.3.4) (Abascal et al., 2005) and RAXML-HPC (Stamatakis,
2006) with default settings, and the PROTGAMMALGF model was
chosen to reconstruct the phylogenetic tree with 1000 bootstrap
replicates.

A gene expression tree of the 1 : 1 orthologues was constructed
by means of the neighbour-joining (NJ) method. The expression
values of three biological replicates from the same putative 1 : 1
orthologues used for the species tree were normalized, by means
of the DESeq package, to make the values comparable between
species. The sample distances were calculated as Euclidean
distances between the mean of the samples or alternatively, as
(1 � P) where P is the Spearman’s correlation coefficient between
the sample expression profiles. The APE package in R was used
to construct the NJ expression tree and to perform the bootstrap
analysis with 1000 replicates (Paradis et al., 2004).

Proteins encoding laccases (CAZy subfamily AA1_1) in all
nine fungal genomes were retrieved from the CAZy database
(http://www.cazy.org/). The 72 proteins were aligned with
MAFFT (v.7.147) (Katoh & Standley, 2013) and subsequently
trimmed with GBLOCKS (Talavera & Castresana, 2007)
using options to reduce the stringency (–b1 = 2 –b2 = 2 –b3 = 8
–b4 = 5 –b5 = h –b6 = y). PROTTEST (v.2.4) (Abascal et al., 2005)
was used to identify the most suitable evolutionary model. On
the basis of the PROTTEST results, the Whelan and Goldman
(WAG) protein substitution model with a gamma shape parame-
ter and a proportion of invariant sites (P-Invar) was chosen for
the phylogenetic reconstruction using RAXML with 1000 boot-
strap replicates (Stamatakis, 2006). ITOL was used to visualize
the tree and map the differential gene expression to the tree
(Letunic & Bork, 2011). A phylogenetic analysis of the aspartate
protease family was performed using the alignment of the Pfam
domain PF00026 (eukaryotic aspartyl protease). In total, 323
proteins containing this domain were identified in the nine anal-
ysed basidiomycete genomes. The domain sequences were
extracted and retrieved using hmmalign in the HMMER3 package
(v.3.1b1) (Eddy, 2011), and the sequences were subsequently
aligned with MAFFT (v.7.147). The alignment was further
trimmed with GBLOCKS with the settings described for the
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proteins encoding laccases. A phylogenetic reconstruction using
RAXML and the JTT model with 1000 bootstrap replicates was
performed and the results were viewed with ITOL. The tree can
be viewed online at http://itol.embl.de/external.cgi?
tree=1302351965015151413446270.

Results

Chemical conversion of the SOM extract

In the presence of glucose, all of the sampled ECM fungi grew
and assimilated C and N from the SOM extract (Table S2; Figs
S1a,b). The FTIR spectra of the SOM extract before and after a
7-d incubation with fungi showed marked differences, indicating
significant conversion of the organic compounds (Fig. 2a). A
PCA based on the FTIR spectra allowed us to group the repli-
cates of each fungus and clearly separated the initial SOM extract
from the material modified by the fungi (Fig. 2b). The first prin-
cipal component (PC1) explained 76.2% of the total variability
and separated the initial material from the incubated material.
The FTIR spectra of the SOM extract were separated along the
PC1 axis into a group showing spectral features dominated by
polysaccharide bands and N–H bending bands (right) and a
group showing spectral features dominated by carbonyl bands
(left), which are indicative of oxidized organic matter (Fig. S2).
The separation of the ECM species was associated with the
amounts of C and N assimilated by the fungi (Fig. S1a). The sec-
ond principal component (PC2) accounted for 12.2% of the
total variance and separated the fungi into two groups: one group
consisting of the long-distance-exploration ECM fungi (P. invo-
lutus and S. luteus) and the closely related saprotrophic fungus
Hydnomerulius pinastri and a second group containing the
remaining ECM and saprotrophic species. PC2 was dominated
by strong positive bands at 1510 cm�1, which are indicative of
aromatic ring compounds (Fig. S2). The spectra of the SOM
extracts incubated with Serpula lacrymans deviated significantly
from those of the other species along PC2, mainly as a result of
the peak at 1300 cm�1, which was attributed to esters. The two
ECM boletes (P. involutus and S. luteus) were grouped close
together by both PC1 and PC2.

To compare the decomposition capacity of P. involutus and
S. luteus with that of the saprotrophic species in more detail, we
analysed the SOM extracts using py-GC/MS (Fig. 2c; Table S3).
For all of the tested fungi, the levels of the major classes of com-
pounds present in the SOM decreased during incubation. Analy-
sis of the pyrolysates related to lignin residuals revealed changes
in their chemical structure during fungal growth; specifically, the
ratio of guaiacylacetone to trans-propenylguaiacol, which indi-
cates the oxidation state of guaiacyl-lignin building blocks, was
higher in the pyrolysates from the SOM extract exposed to the
ECM fungi P. involutus and S. luteus than in pyrolysates from
SOM exposed to the saprotrophic BR Boletales species (H. pinas-
tri and Coniophora puteana) and J. argillacea (Fig. 2c, inset).

In the absence of glucose, the FTIR spectra of the SOM extract
incubated with P. involutus, S. luteus, H. pinastri and C. puteana
were almost identical to the spectra of the initial material

(Fig. S3). Minute changes were detected in the FTIR spectra of
the SOM extract incubated with C. puteana, observed as an
increase in absorbance in the carbonyl region at 1710 cm�1

accompanied by a decrease in absorbance in the spectral region at
1350–1450 cm�1. Thus, the decomposition of the SOM was
stimulated by glucose amendment in both the ECM and the
saprotrophic species.

After growth, extracellular iron-reducing activity was detected
in the SOM extract of all fungi except H. cylindrosporum
(Fig. S4). Thus, during growth on the SOM extract, iron-
reducing metabolites or iron-reducing enzymes were produced by
most of the examined ECM fungi.

Global transcriptional responses

The transcriptional profiles of all fungi after growth on the SOM
extract and on a mineral nutrient MMN medium were compared
using RNA sequencing (Table S1). For comparison of the tran-
scriptomes among the nine species, the genes were classified into
orthologous groups (Table S4). In total, we identified 10 939
groups, of which 3148 were identified as putative 1 : 1 ortho-
logues that were the best reciprocal BLAST hits shared by all nine
species. The 1 : 1 orthologues constituted 14–25% of the total
number of genes in each of the fungal genomes. The remaining
genes were found in orthologous groups shared by two to eight
species, in groups of so-called co-orthologues (i.e. genes that are
duplicated within a lineage), or were species specific. Depending
on the species, 16–29% of the transcripts were significantly up-
regulated in the SOM extracts (Table S1), and between 23 and
32% of those were 1 : 1 orthologues (Table S4).

To obtain an initial view of the expression patterns, we per-
formed a PCA on the expression levels of the 1 : 1 orthologues.
The PCA closely grouped the SOM- and MMN-grown samples
for each species (Fig. S5). PC1 (which explained 15% of the varia-
tion) clustered the Boletales species together and separated them
from the species in the Jaapiales, Agaricales and Atheliales clades.
PC2 (13% of the variation) separated the ECM fungi from the
saprotrophs. To reconstruct the evolutionary trends in more detail,
an NJ tree was constructed based on the distances of the expression
levels of the 1 : 1 orthologues (Figs 1, S6). Consistent with the
PCA results, the divergence of gene expression between a fungus
grown on SOM extract and the same fungus grown on MMN
medium was significantly less than the divergence between species,
and the species were correctly separated into the four major clades.
However, the topologies of the trees constructed from the expres-
sion data and from the sequence data (species tree) were not always
consistent (Fig. 1). In agreement with more extensive genome phy-
logenies (Kohler et al., 2015), our species tree placed the ECM
fungus P. involutus close to the BR species H. pinastri, whereas the
expression tree clustered P. involutus and S. luteus.

Analysis of the most highly up-regulated genes during SOM
decomposition showed that a majority of them were found in
orthologue clusters whose members were only up-regulated in a
single species, or they were nonorthologues genes. We identified
715 genes that were at least five-fold SOM-up-regulated (pairwise
comparisons in SOM extract vs MMN medium; q < 0.01; n = 3)
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in the nine analysed species. Of those genes, 387 were identified as
having orthologues in at least two species, and 328 were found to
be species specific (Table S5). The up-regulated orthologues were
found in 321 orthologue clusters. None of these clusters contained
genes that were up-regulated in all species. Genes from two clusters
were up-regulated in four species, those from six clusters in three
species and those from 28 clusters in two species, and the remain-
ing 285 orthologue clusters contained up-regulated genes from
one species only (Figs 3, S7). The highly SOM-up-regulated
orthologue clusters encoded a diverse set of protein families

(Table S6). Out of the 241 unique Pfam families that were identi-
fied in these orthologues, none were up-regulated in all species. In
total, 22 Pfam families were commonly up-regulated in at least
three species including domains of transporters, proteases, oxidore-
ductases and glycoside hydrolases (Table S7).

Secretome

Between 6 and 9% of all SOM-up-regulated genes (q < 0.01)
were predicted to encode secreted proteins (Table S1). The
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up-regulated secretome contained a large fraction of genes that
were either species specific or shared with a limited set of other
species (Tables S4). Still, the functional annotation terms of the
proteins in the up-regulated secretome were similar. The SOM-
induced secretomes contained a large fraction (38–60%) of genes
encoding extracellular enzymes such as oxidases, hydrolases and
peptidases (Fig. 4). Apart from these enzymes, the up-regulated
secretomes also contained cell wall proteins including members
of the hydrophobin family (Pfam domain PF01185).
Hydrophobins are small (c. 100 amino acid (aa) residues) cys-
teine-rich proteins that can self-assemble and form aggregations
of proteins on surfaces of filamentous ascomycetes and basid-
iomycetes (W€osten, 2001). Among the most highly expressed
proteins in the up-regulated secretome were also a large number
of small secreted proteins (SSPs; < 300 aa) that lacked both Pfam
domains and homologues, so they can be referred to as orphans.

Lignin- and carbohydrate-degrading enzymes

Upon SOM decomposition, all of the examined ECM fungi
expressed a range of genes encoding enzymes involved in the
oxidative degradation of lignocellulose and the production of
hydrogen peroxide: for example, laccases, which catalyse the
oxidation of a wide range of organic compounds; glucose-
methanol-choline oxidoreductases (GMCOs) and copper-
radical oxidases (CROs), which reduce oxygen to peroxide and
might support Fenton chemistry and PODs by supplying
extracellular hydrogen peroxide; various PODs; and tyrosinases
(Fig. 5; Tables S8, S9).

Distinctive differences in the expression patterns of oxidore-
ductases were found between the ECM fungi and the sapro-
trophic Boletales (Figs 5, S8). Compared with the BR species,
P. involutus and S. luteus expressed more laccases and several of

them were significantly up-regulated in the SOM extract. More-
over, P. involutus and S. luteus expressed several genes encoding
PODs such as catalases, heme-containing haloperoxidases and
one class of nonheme typical two-cysteine peroxiredoxin that was
not found in the saprotrophic Boletales (Fig. S9; Table S9). By
contrast, the BR Boletales highly expressed various iron reduc-
tases (such as AA8) (Fig. 5).

Laccaria bicolor, H. cylindrosporum and P. croceum expressed
unique profiles of oxidoreductases that differed from the profiles
of P. involutus and S. luteus (Figs 5, S8, S9). For example, the
SOM-induced transcriptome of L. bicolor was characterized by
CROs; that of H. cylindrosporum by low numbers and expression
levels of laccases (AA1_1); and that of P. croceum by a compara-
tively large number of GMCOs and secreted tyrosinases.
Although putative class II PODs of L. bicolor, H. cylindrosporum
and P. croceum were up-regulated on the SOM substrate, none of
them was classified as classical class II PODs (a group that
includes lignin PODs, manganese PODs and versatile PODs),
which are typical for WR fungi (Table S8). The dye-
decolourizing PODs were also up-regulated in L. bicolor,
H. cylindrosporum and S. luteus (Fig. 5).

Many of the enzymes that were up-regulated upon SOM
decomposition are members of large gene families including lac-
cases (Fig. 5). Phylogenetic analysis showed that the laccase fam-
ily in P. involutus, S. luteus, L. bicolor and P. croceum contained
many recent gene duplicates (i.e. paralogues) (Fig. 6a). Many of
them were up-regulated during growth on the SOM extract
(Fig. 6b).

The saprotrophic species, as was expected, expressed several
genes encoding GHs and carbohydrate esterases (CEs) that are
predicted to be active on cellulose, cellulose/hemicelluloses,
hemicelluloses and starch (Figs 5, S10a; Table S10). By contrast,
the ECM expressed a limited set of genes encoding CAZymes
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and only a few of them were SOM-up-regulated (Fig. S10b).
CAZy genes induced by the addition of SOM extract differed
between ECM species. Among the induced genes were LPMOs
(formerly GH61), which catalyse the oxidative cleavage of
cellulose (L. bicolor), GH12 endoglucanases (P. croceum and
L. bicolor), a GH5-7 mannanase (S. luteus), GH79 b-
glucuronidases, GH3 b-glucosidases, which are involved in the
cleavage of cellobiose to glucose, and various other hemicellulose-
and starch-related genes.

Peptidases

Depending on the species, 4–13% of the SOM-induced secre-
tome constituted peptidases (Fig. S11; Table S11). Although the
most common types were endopeptidases of the aspartate pro-
tease A1 subfamily, each species expressed a diverse set of
endopeptidases (including subfamilies M36, S8 and S53) and
exopeptidases (M28, S9 and S28). The variation in the expres-
sion patterns of peptidases among species was smaller than that
of oxidoreductases. A phylogenetic analysis of the A1 aspartate
protease family showed that this family contained both gene
duplicates shared with other species (i.e. orthologues) as well par-
alogues. Members of both categories were SOM-up-regulated
(Fig. S12; Table S12).

Secondary metabolites

All nine examined fungi contained genes encoding enzymes with
possible roles in the synthesis of secondary metabolites
(Table S13). The total number of polyketide synthase and nonri-
bosomal peptide synthetase genes varied from three to four in
L. bicolor and P. croceum to 16 in S. lacrymans, and several of
those genes were up-regulated upon SOM decomposition
(Fig. S13). With the exception of C. puteana, the Boletales species
contained genes encoding quinone synthetases. Two of these
genes were significantly up-regulated in P. involutus, three were
up-regulated in S. luteus and one was up-regulated in H. pinastri.

Discussion

In one of the earliest articles on ECM symbiosis, Frank stated
that there is ‘no doubt that mycorrhizal fungi account for a major
fraction of litter turnover, in order to supply nutrients to the
trees’ (translation from German) (Frank, 1894). However, ECM
fungi have primarily been considered as biotrophs that obtain
their energy and C from the host plant and have a limited capac-
ity to affect the decomposition of organic material, and the
decomposition of such material has been assumed to be carried
out almost exclusively by free-living saprotrophic fungi. The

Fig. 5 Soil organic matter (SOM) regulation of selected genes encoding auxiliary redox activities/enzymes (AAs), peroxidases and carbohydrate-modifying
enzymes acting on cellulose. Shown is the average ratio of gene expression (n = 3) of pairwise comparisons in SOM extract vs modified Melin–Norkrans
(MMN) medium. Within each subpanel, one for each species, the boxes represent individual gene models found within the family, and the colours show
the fold change in expression. The complete sets of enzymes are shown in Supporting Information Figs S8–S10 and Tables S8–S10. The species
abbreviations and clade affiliations (colour coded) are shown in the legend of Fig. 1.
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limited decomposing ability of ECM fungi is supported by recent
findings showing that they have lost many of the genes that
encode plant cell wall-degrading enzymes in their saprotrophic
ancestors (Kohler et al., 2015). However, here we demonstrate
that ECM fungi representing at least four distant origins of sym-
biosis have retained a significant capacity to decompose SOM

using oxidative mechanisms. Although recent laboratory and field
studies suggest that ECM fungi can act as SOM decomposers
(Rineau et al., 2012; B€odeker et al., 2014; Phillips et al., 2014;
Lindahl & Tunlid, 2015), we show that this capacity is
widespread in ECM fungi, expanding the roles of these fungi in
the forest C cycle.
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Fig. 6 Phylogeny and expression patterns of
laccases. (a) An unrooted maximum
likelihood tree of protein sequences of 71
laccases retrieved from sequences of genome
models (cf. Supporting Information
Table S8). Bootstrap values are shown for
branches having > 50% support. The gene
models were assigned trivial names according
to the fold change (from highest to lowest) in
pairwise comparisons in soil organic matter
(SOM) extract vs modified Melin–Norkrans
(MMN) medium. Vertical bars labelled with a
‘P’ indicate paralogue clades with > 50%
bootstrap support grouping at least three
sequences coming from only one species. (b)
SOM regulation of the 71 laccase genes. The
bars show the average fold change (n = 3) in
pairwise comparisons in media containing
SOM extract vs MMN medium. Along the x-
axis are gene models from the different
fungi. For each species, the models are
arranged from highest to lowest fold
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shown in the legend of Fig. 1.
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Spectroscopic analysis and genome-wide transcriptome profil-
ing showed that the decomposition of SOM by the analysed
ECM fungi involved oxidative processes and that these processes
were similar to those of saprotrophic fungi. The chemical changes
in the organic material were reflected in marked modifications of
the polysaccharide and carbonyl regions of the FTIR spectra. In
particular, the decrease in the polysaccharide content coincided
with an increase in C=O linkages, indicating partial oxidation of
the material during its decomposition (Weiland & Guyonnet,
2003). The SOM decomposed by species within the Boletales
clade was analysed using py-GC/MS, which showed that the
ECM species modified the side-chain structures of lignin-derived
molecules, as expected by a Fenton mechanism similar to that of
BR saprotrophs (Yelle et al., 2011). The detection of extracellular
iron-reducing activity further supported a Fenton mechanism
(Hatakka & Hammel, 2010; Eastwood et al., 2011). Notably, all
ECM species except H. cylindrosporum had extracellular iron-
reducing activity upon growth on the SOM extract, which agrees
with experimental studies showing that Fenton chemistry is pre-
sent in Agaricomycetes outside BR fungi (Tanaka et al., 2007;
Gomez-Toribio et al., 2009; Arantes et al., 2011). During SOM
decomposition, the ECM fungi expressed a number of oxidore-
ductases (e.g. GMCOs and CROs) that are thought to be
involved in generating H2O2 in Fenton-type reactions in BR
fungi (Martinez et al., 2009; Levasseur et al., 2013). Genes
encoding enzymes more frequently connected with lignin decay
in WR fungi were also expressed, including laccases, dye-
decolourizing PODs and haloperoxidases (Hatakka & Hammel,
2010; Hofrichter et al., 2010).

Though the observed oxidative modifications of the SOM dur-
ing decomposition were similar across the examined ECM
species, the extent of the oxidation differed and was related to the
growth rate and the rate of N uptake by the ECM fungi. The
rapidly growing, long-distance-exploration types oxidized SOM
and assimilated N to a greater extent than did the slow-growing,

short- and medium-distance-exploration types. Differences in N
uptake between exploration types have been observed in field
studies using isotopes (Hobbie & Agerer, 2010). Despite the sim-
ilarity in the chemical transformation of the SOM extract, each
species expressed a different set of transcripts, which suggests that
the decomposition mechanisms have diverged over evolutionary
time. For the most part, the divergence in the SOM-induced
expression profiles increased with evolution: that is, closely
related species displayed profiles that were more similar than dis-
tantly related species. This is expected not only because of the
evolutionary distance between the examined ECM lineages but
also because of the diverse nutritional backgrounds from which
these ECM lineages have evolved (Matheny et al., 2006; Kohler
et al., 2015). Analysis of the phylogenetic distribution of the
SOM-up-regulated genes indicates that the diversification of the
decomposition mechanism involves several evolutionary pro-
cesses. First, diversification is associated with differences in the
regulation of orthologues genes that are shared between distantly
related species. Second, the decomposition mechanism has
evolved by incorporating enzymes from different families with
apparently similar catalytic properties. For example, the exam-
ined species expressed genes encoding various enzymes from the
laccase, GMCO and CRO gene families that all could presum-
ably generate the H2O2 that is needed for Fenton chemistry.
Third, diversification is associated with the expression of
species-specific genes. Such genes include recent gene duplicates
(i.e. paralogues) of gene families that are conserved across the
Agaricomycetes, as exemplified by the laccase gene family, but
also orphans which lack both Pfam domains and homologues in
other species.

The observed species-specific changes in gene expression levels
within the Boletales suggest that selection may shape oxidative
decomposition mechanisms over a short evolutionary time.
Whether P. involutus and S. luteus represent two independently
evolved ECM lineages, or a single ECM origin and a reversal to
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saprotrophy in H. pinastri, is not clear (Kohler et al., 2015).
Hence, the similar oxidative decomposition mechanisms of
P. involutus and S. luteus might be a result of convergent evolu-
tion from two independent saprotrophic ancestors. Alternatively,
if the ECM lifestyle evolved only once between P. involutus and
S. luteus, then the saprotrophic decomposition mechanism of
H. pinastri represents a reversal from an ECM ancestor. Such an
ancestor probably contained a larger array of genes encoding
saprotrophy-related enzymes such as LPMOs or GH28 pecti-
nases than do the extant ECM Boletales (Kohler et al., 2015).

The extensive SOM-induced expression of laccases and the
expansion of this family in the genomes of ECM fungi as com-
pared with that in the BR wood decayers suggest that laccases
play an important role in the decomposition of SOM. This possi-
bility is supported by the fact that laccases have low redox poten-
tials that are suitable for oxidizing small lignin- and phenolic-like
compounds present in SOM (Martinez et al., 2005; Hatakka &
Hammel, 2010). By contrast, in the absence of low-molecular-
weight redox mediators, laccases cannot depolymerize macro-
molecular lignin found in native wood substrates (Martinez et al.,
2005; Hatakka & Hammel, 2010). However, in addition to their
possible involvement in the degradation of organic material, lac-
cases may also have several other functions in fungi, for example
in pigment formation, fruiting body development, defence reac-
tions and detoxification (K€ues & Ruhl, 2011).

An implication from this study is that the presently used
methods for measuring the decomposition activities of ECM
fungi in the field that are based on measuring enzyme activities
or transcript levels of oxidases such as laccases, phenol oxidases
and class II PODs (e.g. B€odeker et al., 2014; Phillips et al.,
2014) do not capture the diversity of oxidative mechanisms.
Our results suggest that ECM fungi decompose SOM using
mechanisms involving the action of both oxidative enzymes
and oxygen radicals formed by nonenzymatic Fenton reactions.
Further studies are needed to identify the key enzymes and
molecular components of these oxidation reactions, and how
their expression levels correlate with the chemical modifications
of SOM. Data from such experiments will probably generate
novel biomarkers that can accurately predict the decomposition
activities of ECM fungi in situ.

In agreement with previous studies, addition of glucose
stimulated the oxidative decomposition of organic matter in
both ECM fungi (Rineau et al., 2012) and BR fungi (Varela
et al., 2003). Accordingly, radical-based oxidation mechanisms
in ECM and saprotrophic fungi can be described as co-
metabolic processes that require growth on a source of utiliz-
able C and energy. In saprotrophs, metabolic C is liberated
from dead organic matter by the action of hydrolytic enzymes,
such as CAZymes. Polysaccharides were decomposed by
H. pinastri and C. puteana during growth on the SOM extract
(Fig. 2c). However, the very low extent of oxidation of the
SOM extract in the absence of glucose suggests that the
amount of C that was released during the limited time of
incubation (7 d) was too low to support significant levels of
oxidation. In ECM fungi, metabolic C is primarily provided
by the plant host and the overall reduced number of genes

coding for cell-wall-degrading enzymes in ECM species
(Kohler et al., 2015) seems to support this. This hypothesis is
also supported by field studies showing that ECM root tips
only accumulate trace levels of 14C-labelled leaf litter (Treseder
et al., 2006). That ECM fungi obtain most of the C from their
host plant is also indicated by 14C dating showing that the
structural C was synthesized from recent photosynthate while
proteins of ECM sporocarps were built from older pools of
soil organic N (Hobbie et al., 2013). In addition, progressive
increases in C : N ratios during ECM colonization of organic
matter support selective assimilation of N (Lindahl et al., 2007;
Clemmensen et al., 2013). However, upon growth on the
SOM extract, the ECM species in our data set expressed low
levels of a few CAZymes (e.g. mannanases and endoglucanses)
involved in plant cell wall decomposition. This suggests that
some hydrolytic decomposition of carbohydrates could have
taken place during SOM decomposition. In saprophytic fungi,
the expression of plant cell wall-degrading CAZymes is com-
monly repressed in the presence of glucose (Aro et al., 2005).
Additional studies are needed to show if such enzymes are
repressed in a similar way in ECM fungi and if their activity
can release metabolic C during SOM decomposition.

Taken together, the results of this study suggest that the pri-
mary function of the oxidative decomposition system of ECM
fungi is to open up SOM complexes and thereby mobilize
sequestered proteins and other nutrient sources. However, the
oxidation may also influence the functionality of the SOM and
the stability of soil C. Oxidative transformations can make the
SOM available for further degradation by saprotrophic microor-
ganisms that contain the enzymatic machinery for depolymeriza-
tion and complete mineralization. Alternatively, oxidation of
biomolecules present in the aqueous pool of SOM will enhance
their polarity and chemical reactivity, and such modifications
could promote the formation of stable supramolecular aggregates
or organic matter–mineral complexes (Kleber & Johnson, 2010;
Kleber et al., 2015). These processes and the widespread presence
of ECM fungi (H€ogberg & H€ogberg, 2002) suggest that ECM
fungi can have an important role in the turnover and stabilization
of organic matter in forest soils.
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