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Abstract 

 

Intrinsically disordered proteins (IDPs) form biologically active complexes that can retain a high 

degree of conformational disorder, escaping structural characterization by conventional 

approaches. An example is offered by the complex between the intrinsically disordered NTAIL 

domain and the phosphoprotein X domain (PXD) from measles virus (MeV). Here we detect 

distinct conformers of the complex by electrospray ionization-mass spectrometry (ESI-MS) and 

ion mobility (IM) techniques yielding estimates for the solvent-accessible surface area (SASA) 

in solution and the average collision cross section (CCS) in the gas phase. Computational 

modeling of the complex in solution, based on experimental constraints, provides atomic-

resolution structural models featuring different levels of compactness. The resulting models 

indicate high structural heterogeneity. The intermolecular interactions are predominantly 

hydrophobic, not only in the ordered core of the complex, but also in the dynamic, disordered 

regions. Electrostatic interactions become involved in the more compact states. This system 

represents an illustrative example of a hydrophobic complex that could be directly detected in the 

gas phase by native mass spectrometry. This work represents the first attempt to modeling the 

entire NTAIL domain bound to PXD at atomic resolution. 

 

 

Introduction 

 

The last decade has witnessed an extension to the protein structure-function paradigm, with the 

progressive understanding of the functional importance of intrinsically disordered proteins 
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(IDPs) or regions (IDRs). These proteins or protein regions lack ordered secondary and tertiary 

structure under physiological conditions and exist in solution as dynamic and heterogeneous 

conformational ensembles [1-3]. Approximately 40% of the human proteins are predicted to 

contain at least one disordered segment of at least 30 amino acids, with as many as 25% of them 

being likely disordered from start to end [4]. Predictions on representative genomes from the 

three kingdoms of life (i.e. bacteria, archaea and eukaryotes) confirmed the ubiquitous character 

of structural disorder, in spite of significant differences in its relative amount in the three 

domains [5]. The extent of protein structural disorder tends to increase with biological 

complexity. This trend could be related to the typical involvement of IDPs in signalling and 

regulation [6-8]. 

 

The structural plasticity of IDPs allows for recognition and binding of multiple partners, 

resulting in pleiotropic roles of these proteins. Many cases have been described in the literature, 

in which IDPs acquire ordered conformations upon binding to partners or ligands. Folding 

coupled to binding can pertain either to specific segments or to the whole protein mettere qui 

[14]. Complete folding can lead to well-structured complexes that can be analysed by 

conventional techniques, such as X-ray crystallography [9-11]. However, increasing evidence 

shows that many IDPs retain a high degree of structural disorder even in the bound state. These 

“fuzzy” complexes [12] are stabilized by short, ordered recognition elements, referred to as 

molecular recognition elements (MoREs), and a large number of highly unstable contacts, 

leading to a cloud of interconverting conformations around a structured core [9, 12-16]. This 

staccato-type of interactions is much more difficult to characterize than stable interactions of 

folded complexes. Yet, it is thought to be relevant for biological function. Fuzzy regions within 
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complexes can harbour regulatory post-translational modification sites, or can mediate 

interactions with additional partners. They can even directly or indirectly interfere with 

recognition elements, promoting or inhibiting binding. In addition, fuzziness provides a way to 

reduce entropic penalty, thereby affording enhanced affinity [15, 17]. 

 

Hence, description of the conformational ensembles characterizing fuzzy IDP complexes is 

essential to the understanding of the molecular processes by which IDPs establish their 

functional networks. However, the highly heterogeneous nature of IDPs and the fuzziness that is 

often observed in their bound state makes their structural characterization very challenging. Such 

investigation demands the combined application of various biophysical methods capable of 

capturing conformational heterogeneity and identifying metastable states.  

  

In this regard, native mass spectrometry based on nano-ESI sources has emerged as a powerful 

approach, allowing detection of coexisting conformers with distinct global compactness 

[18][Kaltashov 2008]. The average charge state of each component yields an estimate of SASA 

for the structure in solution, at the moment of transfer to the gas phase [19, 20]. Hyphenation 

with IM measurements adds a further dimension to species separation and offers estimates of the 

CCS for each detected structure in the gas phase [21-24]. These techniques conjugate the 

exceptional analytical power of mass spectrometry with structural description and, therefore, are 

particularly well suited to the challenges posed by conformational studies on IDPs [Chen 2014; 

Saikusa 2013; Beveridge 2013]. The development of atomic-resolution models requires, 

however, complementation of experimental data by computational simulations. Theoretical 

approaches have been improved to effectively model disordered conformational ensembles based 
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on structural information derived from native mass spectrometry and other biophysical analyses 

[25-27]. 

 

We herein combine ESI-MS, ESI-IM-MS and computational methods to describe the NTAIL-PXD 

complex from measles virus (MeV). While NTAIL is an intrinsically disordered domain of 125 

residues [28-31], PXD is folded into an ordered three-helix bundle [32]. Interaction between NTAIL 

and PXD is crucial for MeV replication, as it allows recruitment of the viral RNA-dependent 

RNA polymerase onto the nucleocapsid template (Longhi, Curr Topics Microbiol Immunol 

2009; Habchi and Longhi, Mol Biosysts 2012). Upon binding to PXD, NTAIL undergoes induced 

folding localized in an 18-residue -helical region. This -helical molecular recognition element 

(α-MoRE) [30, 31, 33, 34] associates to PXD forming a four-helix bundle [32, 35]. The NTAIL-PXD 

interaction mostly relies on hydrophobic contacts [30, 35, 36] and is characterized by a KD in the 

sub-micromolar range, as consistently indicated by surface plasmon resonance (SPR) and 

isothermal titration calorimetry (ITC) experiments [33, 37, 38]. Previous studies on the NTAIL-

PXD complex by small-angle X-ray scattering (SAXS) and NMR showed that the majority of 

NTAIL remains disordered in the bound state, thus supporting the fuzzy and heterogeneous nature 

of this complex [30, 33, 39]. Although hydrophobic complexes could be expected to dissociate in 

the gas phase, detection of such complexes by MS has been reported in some instances [40-42]. 

The results of this study show that the MeV NTAIL-PXD complex is amenable to MS analysis and 

that distinct conformational states can be detected. Experimental data are used to validate 

structural modeling. The results highlight the conformational freedom of the complex and the 

hydrophobic nature of its interface.  
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Materials and methods 

 

Expression and purification of MeV NTAIL and PXD proteins 

The expression constructs in the pDEST14 vector, allowing expression of N-terminally (NTAIL) 

or C-terminally (PXD) hexahistidine tagged forms of the MeV proteins under the control of the 

T7 promoter, have already been described [33]. Expression and purification of MeV NTAIL and 

PXD were carried out as described [33], except that the final gel filtration step was carried out 

using 10 mM ammonium acetate pH 6.5 as elution buffer.  

 

Mass spectrometry 

Nano-ESI-MS analyses were performed on a hybrid quadrupole time of flight (Q-TOF) mass 

spectrometer (QSTAR Elite; ABsciex, Framingham, MA) equipped with a nano-electrospray 

ionization sample source. Metal-coated borosilicate capillaries (Proxeon, Odense, Denmark), 

with medium-length emitter tips of 1-μm internal diameter, were used to infuse the samples. The 

instrument was calibrated by the standard Renin-inhibitor solution (ABSciex, Framingham, MA) 

on the intact molecular ion [M+2H]
2+

 (879.97 Da) and its fragment [M+H]
1+

 (110.07 Da). Data 

were acquired with ion spray voltage 1,200 V and declustering potential 80 V, and were 

averaged over 2-min acquisitions. The interface was kept at room temperature (interface heater 

off). Pure preparations of the NTAIL and PXD protein fragments in 10 mM ammonium acetate pH 

6.5 were stored at -20 °C and diluted to the indicated final concentrations in the same buffer 
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before analyses. Samples were incubated at room temperature for 10 minutes before 

measurements. 

 

Mass spectra from Figure 1A and Figure 2A were transformed from x = m/z to x = z  as abscissa 

axis and data point were fitted by Gaussian functions. The analysis was performed by the 

software Origin7 (Originlab, Northampton,MA,USA) [43, 44]. 

 

Nano-ESI-IM-MS analyses were performed on a Synapt G2 HDMS instrument (Waters, Milford, 

MA, USA) by direct infusion, under non-denaturing conditions. The samples were injected at the 

indicated protein concentrations in 10 mM ammonium acetate pH 6.5 at room temperature. 

Instrument parameters were carefully optimized to minimize disruption of non-covalent 

interactions. The following instrumental settings were applied: spray voltage 1,400 V, sampling 

cone voltage 50 V, trap collision energy 4 V, transfer collision energy 0 V, trap DC bias 45 V, 

backing pressure 2.98 mbar, trap pressure 5 × 10
-2 

mbar, IMS pressure 3.09 mbar. Instrument 

calibration for CCS measurements was performed using concanavalin A, albumin, β-

lactoglobulin and cytochrome c as standards while referring to the absolute CCS values 

determined on a modified Synapt G1 as described by Bush et al. [45] 

 

Structural modeling. Homology modeling was performed to build an initial structure of the 

NTAIL-PXD complex for molecular simulations. The folded core was modeled on the 

crystallographic structure of the chimeric protein (PDB 1T6O) [35]. The missing regions 

(residues 401-485 and 505-525 of NTAIL) were split into fragments and used to screen the 

structure database searching for suitable templates, following the approach by Bowie et al. [46, 
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47]. Ten templates (Figure S1), showing from a minimum of 28% sequence identity over 41 

residues to a maximum of 56% over 17 residues to the target, were identified, reaching a 

cumulative 96.5% sequence coverage of the NTAIL disordered arms. These homology-derived 

restraints were used to generate 2000 models of the NTAIL-PXD complex by the MODELLER 9v9 

package [48]. Most (94.5%) of the resulting structures have favourable backbone conformations 

[49] for more than 80% of the residues, according to the Procheck program [50]. The lowest-

DOPE (discrete optimized protein energy) score [51] model was selected as the starting structure 

for the following molecular simulations. 

 

Replica-exchange Monte Carlo (REMC) simulations were carried out by the PROFASI package 

(PROtein Folding and Aggregation SImulator) [52-54], with 8 replicas performed at distinct 

temperatures between 298K and 348K. The energy distributions at these temperatures (Figure 

S2) show optimal overlap between consecutive temperatures of the explored range (Figure S2). 

Such an observation is relevant in order to guarantee a sufficient number of replica exchanges 

between neighbouring replicas, thus allowing an efficient sampling of the conformational space 

of the protein [55]. Dihedral and distance restraints [56] were applied to the regions represented 

in the crystallographic structure [35]. A total of 5.0  10
6
 cycles of simulations were performed, 

according to a previously described protocol [25]. Models obtained at 298K were extracted, 

constituting an ensemble of 2831 conformations. 

 

The chemical shifts (CSs) of the NTAIL moiety for each conformation of the ensemble were 

calculated using the SHIFTX package [57] (Figure S3). The values of solvent accessible surface 

area (SASA) were calculated by the tools implemented in GROMACS 4.5.5 [58]. The structures 
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showing the best correlation with either experimental CSs or experimental SASA were 

identified. The circular dichroism (CD) spectra for each conformation were calculated by the 

DichroCalc webserver [59], using the parameters derived from both ab initio [60] and semi-

empirical calculations [61]. All the figures for structures visualization were drawn using PyMOL 

(Molecular Graphics System, Version 1.3, Schrödinger LLC). 

 

 

Results and discussion 

 

NTAIL. The MeV NTAIL protein was analyzed by nano-ESI-MS under non-denaturing conditions 

(Figure 1A). The spectrum shows a very broad, bimodal charge-state distribution (CSD), 

indicating structural heterogeneity consistent with the intrinsically disordered nature of this 

protein. Nonetheless, a compact conformation can be identified in the high m/z region of the 

spectrum, centered on the 9+ charge state. Such an extent of ionization approaches the behavior 

of normally folded proteins of the same size. The rest of the spectrum is characterized by a broad 

peak envelope that spans the region between the 10+ and the 24+ ions, with main charge state 

16+. This component corresponds to disordered conformations, characterized by low 

compactness. Deconvolution by Gaussian fitting is shown in Figure 1B. The results indicate that, 

in addition to the compact and disordered conformations, a third component of intermediate 

compactness can be identified. Although the relative amounts of the distinct components depend 

somewhat on the type of instrument and the parameter settings (as generally true), the 

intermediate species was detected with good reproducibility under the conditions described here. 
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The compact and the intermediate conformations are depleted under acidic conditions (Figure 

1C) and disappear upon further addition of 50% acetonitrile (Figure 1D), while the disordered 

component slightly shifts to higher charge states. This response to denaturing conditions suggests 

that the NTAIL protein populates collapsed and partially folded states that can be destabilized by 

acids and organic solvents. The isotopically averaged molecular weight by mass deconvolution 

(data not shown) yields a value of 14,630.94 ± 0.17 Da, in close agreement with the value 

calculated on the basis of the amino acid sequence, including the initial methionine (14631.7 

Da). 

 

PXD. Figure 2 shows the nano-ESI-MS spectra of PXD preparations. Although PXD folds into a 

helical domain, it displays a bimodal CSD under non-denaturing conditions, with main charge 

states 6+ and 8+ (Figure 2A). Gaussian fitting of the two components is reported in Figure 2B. 

This result suggests that the three-helix bundle of the isolated PXD fragment tends to open to a 

less compact structure, at least under the here employed conditions. The 8+ component does not 

represent the fully denatured state, since it converts progressively into a more highly charged 

component (9+) by the addition of formic acid and acetonitrile (Figures 3C and 3D). The 

experimental mass (6,554.28 ± 0.04 Da) corresponds to the value calculated from the amino acid 

sequence of the protein without the initial methionine (6,555.66 Da). The conformational 

heterogeneity adopted by MeV PXD is in agreement with previous biophysical and structural 

studies on the homologous phosphoprotein X domains from members of the closely related 

Rubulavirus genus, indicating that these domains span a structural continuum, ranging from 

compact to largely disordered states in solution [62, 63]. 
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NTAIL-PXD. The interaction between NTAIL and PXD was investigated by mixing equimolar 

amounts of the two proteins and infusing the sample after 10-min incubation at room temperature 

without agitation. The results obtained with concentrations of either 10 M or 20 M of both 

proteins are shown in Figure 3. The spectra are dominated by the peaks of the free proteins, but 

signals specific to the NTAIL-PXD complex become evident at the higher protein concentration. 

The measured mass of the complex (21187.4 ± 0.61 Da) corresponds closely to the sum of the 

theoretical values expected for NTAIL with the initial methionine and PXD without the initial 

methionine (21,187.46 Da), indicating a 1:1 stoichiometry. 

 

The complex disappears upon applying denaturing solvent conditions or high declustering 

potentials (data not shown). These results show that the MeV NTAIL-PXD complex, which is 

stabilized in solution by hydrophobic interactions, is preserved, at least partially, during the 

electrospray process and gas-phase ion separation, allowing detection by ESI-MS in a 

concentration-dependent manner. The expected fraction of bound protein at the concentrations 

shown in Figure 3B, based on solution affinity data [33, 37, 38], is 93%. Although relative 

amounts of different species cannot be quantified by ESI-MS, and although the buffer conditions 

are not identical to previous solution studies, these results suggest that significant dissociation of 

the complex occurs under electrospray conditions.  

 

The CSD of the complex-specific peaks is quite broad and, itself, bimodal, suggesting 

coexistence of at least two distinct conformational states of the bound species. This 

conformational heterogeneity likely reflects the persistence of a conspicuous degree of disorder 

in the complex [30, 31, 33]. The high-charge component of the complex (18+) would then 
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correspond to an “open” conformation, in which the disordered arms of NTAIL, upstream and 

downstream to the -MoRE, fluctuate maintaining high solvent accessibility. The low-charge 

component (11+), instead, likely represents a compact or “closed” conformation of the complex, 

in which the NTAIL arms collapse onto the surface of the folded partner, as suggested by the low 

extent of ionization, which approaches the expected value for folded globular proteins of the 

same mass (9.46+) [19]. The average SASA value of the “open” and “closed” states can be 

calculated from the empiric relation with the average charge state [19], resulting in estimated 

values of 16100 Å
2
 and 9500 Å

2
, respectively.  

 

It is worth noting that this dual nature of the NTAIL-PXD complex did not emerge from previous 

experimental studies Habchi and Longhi, Mol Biosysts 2012. Thus, the question arises as to 

whether this result reflects a real conformational heterogeneity in solution, captured only by the 

exquisite sensitivity of native MS, or an altered conformational ensemble induced by the 

electrospray conditions. To this regard, it should be noted that CSDs generally reflect structural 

compactness and conformational heterogeneity in solution, before or during the transfer to the 

gas phase. Thus, hypothetical conformational rearrangements leading to the low-charge 

component in the CSDs should take place at the level of ESI droplets. The fact that CSDs of 

IDPs detected by nano-ESI-MS and their response to solvent conditions are protein specific, as 

for instance indicated by opposite pH dependence and distinct effects of organic solvents, [19, 

64-66] Lambrughi Sic1 suggests that they reflect real conformational properties rather than 

artifacts induced by the experimental conditions. However, it could not be ruled out [14] spostare 

in intro that poorer kinetic trapping of disordered conformations compared to folded structures 

expose IDPs to more significant conformational changes inside ESI droplets, affecting in turn 



13 

 

CSDs. Even more relevant structural rearrangements could be expected to take place in the gas 

phase, after electrospray and downstream to protonation reactions. Such structural 

rearrangements would not affect the CSDs but could be captured by ion-mobility measurements. 

(Rebecca Beveridge, Kamila Parcholarz, Jason Kalapothakis, Cait MacPhee, Perdita Barran, 

2014. “The Use of Mass Spectrometry to Determine the Disordered Content of Proteins”. The 

Biophysical Society Meeting on Disordered Motifs and Domains in Cell Control. Dublin, 

Ireland).  

 

In order to get further insight on the compact state of the complex, we further investigated the 

conformational space of the complex by ion mobility on a Waters Synapt G2 HDMS instrument 

under non-denaturing conditions comparable to the MS measurements reported above. The IM-

MS spectrum obtained with a mixture of 20 M NTAIL and 20 M PXD is reported in Figure 4. 

The CSDs are similar to those observed on the QSTAR Elite instrument, although with higher 

relative amounts of the compact form. The additional separation of analytes by IM allows 

detection of distinct structural species even at the same charge state. In this case, two slightly 

different conformations are found to populate the compact state of the NTAIL-PXD complex 

(charge states 8+ to 10+). Average CCS of 1326 and 1422 Å
2
 can be derived for the two main 

peaks detectable for the 8+ charge state. This result suggests that the compact state of the 

complex is characterized by further structural heterogeneity. Thus, while its overall ionization 

suggests a collapsed structure, its arrival-time distribution reveals distinct peaks rather than the 

single peak typically observed for normally folded proteins. The presence of multiple 

conformers, although with different CCS values, is observed also for the 9+ and 10+ ions. The 

predominant conformer displays progressively larger CCS values (1422, 1466, 1607 Å
2
) as the 
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charge state increases from 8+ to 10+. This trend is consistent with the lowest charge state (8+ in 

this case) corresponding to the most compact species in the original ensemble and to the species 

with lowest interference of Coulomb repulsions upon transfer to the gas phase. Interestingly, at 

higher charge states (figure 4C), the structurally heterogenous nature of the complex is 

maintained, whereas for a fully disordered protein such as alpha-synuclein this converges into a 

single arrival time distribution for the higher charge states [ref]. Altogether, these results suggest 

that both the open and closed states of the complex should be described as conformational 

ensembles. The high variability of CCS values revealed by the IM profiles could represent a 

distinct feature of IDPs compared to normally folded, globular structures. Further studies will be 

needed to clarify to which extent this variability reflects solution and/or gas-phase properties. 

 

Modeling the NTAIL-PXD complex. The structural models of the NTAIL-PXD complex were 

generated by combining homology modeling and an all-atom Monte Carlo based simulation tool, 

PROFASI [52-54], which allows exploring the conformational ensemble of the complex in 

implicit solvent (see Methods for details). The quality of the conformational sampling was 

established by the agreement with available experimental data, namely NMR CSs of NTAIL 

bound to PXD  [30] and CD of the NTAIL-PXD complex [37]. Quite good agreement can be 

observed between calculated CSs and those measured by solution NMR measurements [30] 

(Figure S3).  

  

The calculated CD spectra of the conformational ensemble are similarly close to the 

experimental ones [37], reproducing the minimum at 208 nm, a shoulder at 222 nm and a 

positive maximum at 192 nm for the complex, although a well-defined local minimum at 222 nm 
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is missing (Figure S4). Finally, the SASA mean value calculated from the models is 17920  690 

Å
2
, indicating that the conformational ensemble well describes the open state of the complex 

detected by ESI-MS.  

 

Three models, namely Model 1, Model 2 and Model 3, were selected from the conformational 

ensemble, based on best agreement with the CSs from NMR or the SASA from ESI-MS (Figure 

5, see Methods for selection criteria). Although these models are not representative of the entire 

NTAIL-PXD conformational ensemble, they are useful to inspect distinct interaction networks that 

could drive protein compaction and can also provide hints for targeting the complex in a 

conformation-specific manner by small molecules. Thus, contact analysis was performed, in 

order to investigate the nature of the interactions involving either the α-MoRE or the disordered 

regions that were missing from the crystallographic structure. Schematic diagrams of the 

interface between NTAIL and PXD are shown in Figure S5. The interface between the α-MoRE and 

PXD shows minor rearrangements relative to the X-ray structure, which could reflect structure 

dynamics in solution and/or differences between the chimeric protein and the intermolecular 

complex. Nevertheless, the interface within the four-helix bundle remains almost exclusively 

hydrophobic in Model 1 and Model 2, while it shows some additional electrostatic interactions in 

Model 3. Analysis of the contacts established by the fuzzy regions (see Figure S5) unveiled their 

prevalently hydrophobic nature, suggesting that the interactions between PXD and NTAIL are 

dominated by hydrophobic interactions, even outside the folded, globular core. A few hydrogen 

bonds and salt-bridges seem to give additional contribution to the binding of the two proteins. 

Thus, it seems that not only the helical core of the complex, but also the surrounding disordered 

cloud is dominated by hydrophobic interactions, although hydrogen bonding and electrostatic 
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interactions seem to play a role in stabilizing the more compact states. The prevalently 

hydrophobic nature of the NTAIL-PXD complex is in agreement with previous reports highlighting 

that, although IDPs are characterized by a low content in hydrophobic residues, not sufficient to 

drive formation of a hydrophobic core, hydrophobic residues often play a dominant role in 

mediating physiologically relevant protein-protein interactions [67]. 

 

 

Conclusions 

 

This study combines information derived from biophysical investigation and molecular 

simulations, in order to develop high-resolution structural models for the fuzzy complex between 

NTAIL and PXD. The results show that the staccato-type interactions characterizing this molecular 

ensemble are mainly of hydrophobic nature. While previous atomic models focused only on the 

α-MoRE region of NTAIL, this study combines experimental data and computational modeling to 

generate models of the entire NTAIL-PXD complex at atomic resolution. By including the 

disordered arms in the molecular modeling, it was possible to extend interaction analysis to the 

dynamic regions of the complex, which are likely involved in biological function. The 

information that can be derived from this analysis sheds light onto the nature of the interactions 

that drive protein compaction and sets the basis for targeting specific conformations of the 

complex by small-molecules inhibitors. 

 

The good agreement between SASA values derived from CSD analysis and solution models for 

the open state of the NTAIL/PXD complex suggests that the high-charge component of MS spectra 
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reflects structural properties of the heterogeneous conformational ensemble and gives, in turn, 

further support to the structural details derived from the models. The MS results reported here 

also point out, for the first time, a compact state of the complex. IM/MS data indicate that this 

component is characterized by high structural heterogeneity in the gas phase. The broad arrival 

time distributions observed for the low charge-state component could be a distinct feature of 

collapsed states of IDPs, as opposed to natively folded, globular structures. Since compact 

conformations were not detected by previous experimental investigation, further studies will be 

required to tell whether they represent a minor population of the solution ensemble or a collapsed 

species induced by the electrospray process. Normally, charge states and CCS are closely linked 

to each other, but, if the protein can re-structure after the charge states are generated (i.e. after 

ESI), there can be a discrepancy between the two. Systematic comparison of solution and gas-

phase conformational ensembles of IDPs will be needed to clarify this point. 
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Figure legends 

 

Figure 1. Nano-ESI-MS spectra of MeV NTAIL (ABSciex QSTAR Elite instrument).  

(A) 10 µM MeV NTAIL in 10 mM ammonium acetate, pH 6.5. (B) Gaussian fitting of the 

spectrum reported in panel A. (C) 10 µM MeV NTAIL in 10 mM ammonium acetate, 1% formic 

acid (pH ~3). (D) 10 µM MeV NTAIL in 10 mM ammonium acetate, 50% acetonitrile, 1% formic 

acid  (pH ~3). 

 

Figure 2. Nano-ESI-MS spectra of MeV PXD. (ABSciex QSTAR Elite instrument).  

(A) 10 µM MeV PXD in 10 mM ammonium acetate, pH 6.5. (B) Gaussian fitting of the spectrum 

reported in panel A. (C) 10 µM MeV PXD in 10 mM ammonium acetate, 1% formic acid  (pH~ 

3). (D) 10 µM MeV PXD in 10 mM ammonium acetate, 50% acetonitrile, 1% formic acid  (pH 

~3). 

 

Figure 3. Nano-ESI-MS spectra of MeV NTAIL and PXD mixtures. (ABSciex QSTAR Elite 

instrument)  Equimolar mixtures in 10 mM ammonium acetate, pH 6.5. (A) 10 µM of each 

protein. (B) 20 µM of each protein. Squares, PXD; circles, NTAIL; stars, complex. 

 

Figure 4. Nano-ESI-IM-MS spectrum of a MeV NTAIL and PXD mixture (Waters Synapt G2 

HDMS instrument) (A) Excerpt of the higher m/z region showing complex formation of PXD-

NTAIL for an equimolar ratio of 20 µM protein in 10 mM ammonium acetate (pH 6.5). (B) The 

PXD-NTAIL complex displays a significant degree of structural heterogeneity, based on the arrival 
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times of the low charge (8-10+) states. The 8-10+ charge states of the PXD-NTAIL complex show 

at least two different conformations, with corresponding CCSs values that vary over a wide 

range. (C) Experimentally determined collision cross sections of the PXD-NTAIL complex reveal 

that it maintains its structurally heterogeneous character over a broad range of charge states. 

Coloured lines indicate the theoretical collision cross sections for the structural models obtained 

from MD simulations as discussed in fig 5, with model 1, 2 and 3 represented as red, blue and 

green lines, respectively. 

 

Figure 5. Structural models of the MeV NTAIL- PXD complex.  

Cartoon representation of selected models obtained by PROFASI (Model 1, Model 2, and Model 

3) for the disordered component. Blue, NTAIL; orange, PXD; grey, superimposed X-ray structure 

(PDB ID: 1T6O) [35]. The comparison between the calculated and experimental CSs  of the N, 

C, Cα, and Cβ atoms of NTAIL bound to PXD in each selected models is shown in Figure S3. (B) 

Schematic diagrams of the NTAIL- PXD interface for the X-ray structure (PDB ID: 1T6O) [35] and 

for each of the three models shown in panel A generated by the LIGPLOT package  [68] which 

produces schematic 2D representations of protein-ligand complexes. Hydrophobic interactions 

are indicated by spokes (color code) and hydrogen bonds by dashed green lines. Bond lengths 

(Å) are shown. The NTAIL residues belonging to the -MoRE (488-499) are labeled by stars. 
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