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Abstract. In this paper, we present a new approach combining topological un-
supervised learning with ontology based reasoning to achieve both : (i) auto-
matic interpretation of clustering, and (ii) scaling ontology reasoning over large
datasets. The interest of such approach holds on the use of expert knowledge to
automate cluster labeling and gives them high level semantics that meets the user
interest. The proposed approach is based on two steps. The first step performs
a topographic unsupervised learning based on the SOM (Self-Organizing Maps)
algorithm. The second step integrates expert knowledge in the map using ontol-
ogy reasoning over the prototypes and provides an automatic interpretation of the
clusters. We apply our approach to the real problem of satellite image classifica-
tion. The experiments highlight the capacity of our approach to obtain a seman-
tically labeled topographic map and the obtained results show very promising
performances.

1 Introduction and Motivations

Clustering is a very important step in the process of knowledge extraction and discovery.
When no labeled instances are available, unsupervised learning aims to discover new
structures and group instances according to similarity, density, and proximity. Cluster-
ing has multiple applications[10]. We are interested in this work in topological clus-
tering which allows clustering and visualization simultanieosly i.e. the Self-Organizing
Map (SOM)[11] algorithm. SOM is an unsupervised artificial neural network that pro-
duces a low-dimensional (generally two-dimensional) map from an unlabeled dataset.
The nodes of the map represents a summarized version of the original dataset via a set of
reference vectors (prototypes) spatially organized. This makes SOM suitable for lot of
practical applications, including data visualization, data summarization and compres-
sion. However, as an unsupervised learning algorithm, the labeling and interpretation



of the resulting map have to be performed manually, which can be difficult and time
consuming. For example, in the field of remote sensing images analysis, where domain
expertise of the user have to be very high, the interpretation of the results is not an easy
task and only experts can handle it. In addition, the fact that images are encoded using
low level features (numerical data) makes the interpretation even harder. This issue is
known in the literature as the semantic gap[7].

The field of knowledge representation has been subject to lot of researches last
years. These researches, supported by the emergence of the semantic Web[18], have
lead to the development of the OWL 2[6] as a standard language of ontology modelling.
Based on description logics[1], OWL offers a standardized way to represent rich and
complex knowledge. It comes with standard elements with precise meaning and formal
semantics. This formal basis gives reasoners[20, 5] the possibility to automatically pro-
cess the ontologies and propose a set of inferences services that deduce new knowledge
by calculating the logical consequences of the present facts, like the instances classes.
However, when it comes to use ontology to classify a large number of instances, the
reasoners fail to scale[8]. This issue can be very problematic when dealing with real
world problems.

One of the motivations of our work is to use ontology reasoning to automate the la-
beling of a topological map. In our approach, the clusters are labeled using the concepts
defined in the ontology. The use of an ontology as a support of the expert knowledge
introduces also a modularity to our approach. The reasoning is a procedural process and
the results change automatically when the concepts of the ontology change. This allow
our approach to give interpretations that automatically meet the interest of the user fol-
lowing the expressed concepts in the ontology. Another motivation is the possibility to
scale reasoning over large datasets. The SOM algorithm represents the input data using
a finite set of prototypes. By reasoning over the prototypes and not all the input data,
the reasoning can be performed over large datasets and in a shorter time.

The next sections are organized as following, we will first present related work in
Section 2, followed by some preliminaries about ontology and reasoning in section 3.
The description of the different steps of our approach are given in section 4. Section
5 highlights the experiments we made on the UCI wine dataset, it also shows the ap-
plication of our approach on the real problem of remote sensing images classification.
Conclusion and future work conclude the paper in Section 6.

2 Related Work

The problem of cluster labeling has been subject to different interesting researches
in the literature[12, 4, 15–17]. These researches have explored different techniques to
achieve cluster labeling. A version of SOM dedicated to textual data, called Label-
SOM[17] was proposed by Rauber and Merkl. The authors labeled the trained map
with a set of features of the data input. In another research, Treeratpituk et al.[21] pro-
posed a method to label hierarchical text clustering. The presented algorithm assigns
few labels to the clusters based on the cluster analysis information, the parent cluster
and statistics about the corpus. Recently, Li et al.[12] proposed an hybrid approach,
combining linguistic and statistical techniques to achieve an automated labeling of the



clusters. Although these approaches are very interesting, they are all dedicated to textual
data and cannot work on quantitative data.

When it comes to methods that deal with numerical data, most of the approaches
use a priori knowledge on the data to propose candidate labels of the clusters[3][4]. The
work presented in this paper is focused in proposing an hybrid approach producing a
semantic interpretation of the SOM’s map based on the ontology reasoning. This makes
our approach different from the other approaches present in the literature. Only few
approaches are capable to propose a high level labels on quantitative data, and these
methods are usually not adapted for topological clustering.

3 Preliminaries about Ontology and Reasoning

Before we present the proposed approach, we introduce in this section some core con-
cepts related to ontology and description logics reasoning. We adopt in our work the
Web Ontology Language (OWL 2)[6] as a standard language for ontology formaliza-
tion. OWL was introduced and is now maintained by the World Wide Web Consortium.
The aim of OWL is to give users a simple way to represent rich and complex knowl-
edge. OWL introduces standardized elements with precise meaning and formal seman-
tics. The formal part of OWL is mainly based on description logics[1], which is a family
of knowledge representation.

In the following, we define an ontology O as a set of axioms (facts) describing
a particular situation in the world from a specific domain point-of-view4. Formally,
an ontology consists of three sets: the set of classes (concepts) denoted NC , the set
of properties (roles) denoted NP , and the set of instances (individuals) denoted NI .
Conceptually, it is often divided into two parts: TBox T and ABox A, where the TBox
contains axioms about classes (Domain knowledge) and ABox contains axioms about
instances (data), such as:

O = < T ,A > = < NC ,NP ,NI > (1)

The formalization of the knowledge using formal semantics allows automatic inter-
pretation. This is done by computing the logical consequences of the explicitly stated
axioms inO to infer new knowledge [9]. An interpretation I of an ontologyO consists
of (∆I ,.I ), where ∆I is the domain of I , and .I the interpretation function of I that
maps every class to a subset of ∆I , every property to a subset of ∆I ×∆I , and every
instance a to an element aI ∈ ∆I .

The interpretation of the ontology is computed using DL reasoners, which provides
a set of inference services. Each inference service represents a specific reasoning task.
This capability makes OWL very powerful for both knowledge modeling and knowl-
edge processing. One of the inference services proposed by the reasoner is instance
checking. This task can be performed to check if an instance ai belongs to a concept
C ∈ T based on the definition of the later. By empowering the OWL 2 modelling ca-
pacities, the concepts of the ontology can exploit qualified number restrictions over data
properties[13] and logical operators to bridge the semantic gap and permit an efficient
instance labeling.

4 In DL literature, an ontology is considered to be equivalent to a Knowledge Base.



4 Hybrid approach : SOM Ontology based Labeling

In this paper, we present a new hybrid approach using the available expert knowledge to
semantically label the generated SOM map. Given an unlabeled dataset X and a TBox
T of the ontologyO, our goal is, to build a labeled map that reduces data dimension and
at the same time gives them a semantic labeling. This can bring an understandable view
of the results based on the users point of interest. To achieve this automatic labeling,
we propose a two steps approach. The first step performs an unsupervised learning
based on the SOM algorithm and generate a spatially organized map that summarizes
the data in terms of a set of prototypes. In the second step, we use a dedicated process
that transforms the prototypes of the map to OWL instances, inject them in a reasoner
with the TBox (formalized expert knowledge) and performs a deductive reasoning that
produces a semantic labeling of the prototypes based on the concepts present in the
ontology. The rest of this section will detail the two steps of our approach.

4.1 Topological Unsupervised Learning Step

The first step of our approach performs an unsupervised learning over the input dataset
using the Self-organizing maps. We used the basic model proposed by Kohonen. It con-
sists of a discrete set C of cells called “map”. This map has a discrete topology defined
by an undirected graph, which usually is a regular grid in two dimensions. For each pair
of cells (j,k) on the map, the distance δ(j, k) is defined as the length of the shortest
chain linking cells j and k on the grid. For each cell j this distance defines a neighbor
cell; in order to control the neighborhood area, we introduce a kernel positive function
K (K ≥ 0 and lim

|y|→∞
K(y) = 0). We define the mutual influence of two cells j and k by

Kj,k. In practice, as for traditional topological maps we use a smooth function to con-
trol the size of the neighborhood as Kj,k = exp(−δ(j,k)T ). Using this kernel function, T
becomes a parameter of the model. As in the Kohonen algorithm, we decrease T from
an initilal value Tmax to a final value Tmin.

Let Rd be the euclidean data space and X = {xi; i = 1, . . . , N} a set of observa-
tions, where each observation xi = (x1i , x

2
i , ..., x

d
i ) is a vector in Rd. For each cell j of

the grid (map), we associate a referent vector (prototype) wi = (w1
i , w

2
i , ..., w

d
i ) which

characterizes one cluster associated to cell i. We denote byW = {wj ,wj ∈ Rd}|W|j=1

the set of the referent vectors. The set of parameterW has to be estimated iteratively by
minimizing the classical objective function defined as follows:

R(χ,W) =

N∑
i=1

|W|∑
j=1

Kj,χ(xi)‖xi −wj‖2 (2)

where χ assigns each observation xi to a single cell in the map C. This cost function
can be minimized using both stochastic and batch techniques [11].

4.2 Ontology Based Map Labeling

Once we obtain the SOM’s map, we extract the set of referent vectorsW (prototypes),
and transform them to OWL instances. In fact, before injecting the prototypes in the



reasoner. They have to be transformed to OWL axioms, where each prototype is pre-
sented as an OWL instance and described using the properties present in the TBox of the
Ontology O. We have designed and implemented a semi-automatic process (Algorithm
1) that performs this projection. As shown in the algorithm, our process takes as inputs
the TBox of the ontology (formalized expert knowledge), and the prototypes obtained
by SOMW . Based on the propertiesNP of the TBox and the set of variables (features)
V describing the data, the process suggests a mapping between the inputs (Algorithm
1, line : 2). Once the mapping is established, our process generates OWL axioms that
represent the data. Each prototype wj is represented as an OWL instance ai (Algorithm
1), where ai is described by the properties available in TBox (Algorithm 1, line : 9-11),
and where these properties get their values from the prototypes vector (Algorithm 1,
line : 12). At this point, all the required components to perform reasoning are available.
Once we transform the prototypes using our algorithm, we obtain an ABox containing

Algorithme 1 : Semi-Automatic Projection of the prototypes in the ontology
Inputs:

Set of prototypes W = {wi,wi ∈ Rd}|W|
i=1 described by V = {vj}dj=1

Domain Knowledge : T =< NC ,NP >
Output:

ABox : A = {ai}ni=1

Method:
1: for all pk in NP and vj in V do
2: Boolean Query = Does pk correspond to vj
3: if Query.isTrue() then
4: map(NP , V ).add(pk,vj)
5: end if
6: end for
7: for all wi in W do
8: ai := createOWLInstance();
9: for all pk in map(NP , V ) do

10: ai.addProperty(pk)
11: ai.setPropertyType(pk, T .getPropertyType(pk))
12: ai.setPropertyV alue(pk,wi.getV alueOf(vk))
13: end for
14: return ai : OWL representation of wi

A.add(ai)
15: end for

all the OWL instances ai ∈ ABox representing the prototypes wi ∈ W of the SOM’s
map. We inject the ABox with the TBox in a DL reasoner to obtain our knowledge
base. We use the Pellet[20] reasoner in our approach because it effectively implements
the instance checking task and supports OWL 2 specifications. As mentioned above,
instance checking consists in finding the most specific concept which a given instance
belongs to. Performing this reasoning task over the constructed knowledge base will
label the SOM’s map with the concepts formalized in the TBox of the ontology.



5 Experiments

In this section, we present the conducted experimentations and the results we obtained.
The purpose of our evaluation is to highlight the effectiveness of our approach to auto-
matically label the SOM’s map based on ontology reasoning. We apply our method on
two datasets.

The first one is the UCI wine dataset5, which consists of 178 instances. Each in-
stance is described with 13 variables that represent the quantities of 13 constituents
(e.g. alcohol, Mg...) found in each of the wines. The inputs used in our method are the
unlabeled dataset, and an ontology about three concepts, those concepts have been con-
structed following a similar approach to the one proposed by Sheeren et al.[19]. Each
concept is defined in OWL 2 using qualified number restrictions over the properties.
We apply the different steps described in our approach. First, we applied the SOM al-
gorithm to obtain the map. We fixed the size to 6 x 11. Then we extract the prototypes,
transform them using the algorithm 1 and perform an instance checking with the Her-
mit[5] reasoner to label them based on the three concepts. We evaluate the results using
purity and the labeling percentage. The labeling percentage is important as it shows the
efficiency of our ontology to give automatic interpretation of the results. The purity of
our map is 96,62% and 61 (92,42%) prototypes were correctly labeled.

5.1 Satellite images classification

We also apply our approach to a real-world problem of satellite image classification.
The image we used is an extract of a Landsat 5 TM image. The Landsat program is
a joint NASA/USGS program6 that freely provides satellite images covering all the
earth surface. The image can be downloaded from the USGS Earth Explorer7. The
Landsat 5 TM have a spatial resolution of 30 meters and seven spectral bands. The
size of our image is of 760x680 pixels. The images concern the region of the river
Rio Tapajos in the Amazon, Brazil. The input TBox of our ontology contains 2 the-
matic concepts: Water and Vegetation. To build the corresponding TBox, several spec-
tral bands and indices were used. The concepts were defined using the seven bands
: TM1,...,TM7 and the spectral indices NDVI(Normalized Difference Vegetation In-
dex)[2] and NDWI(Normalized Difference Water Index)[14]. For example, the water
concept is defined as follows:
Water P ixel ≡ Pixel ∧ ((∃TM4. < 0.05 ∧ ∃ndvi. < 0.01) ∨ (∃TM4. < 0.11 ∧
∃ndvi. < 0.001))
We applied our approach as described before with a fixed map of 20 x 20. The figure

1 shows visually the the obtained results projected using the satellite image. We evalu-
ated the purity of the results using a reference classification made by a domain expert.
We obtained 98,45% for the purity index, with 76% of the prototypes correctly labeled
using ontology reasoning. This experiment illustrates how using SOM helped the rea-
soning to scale as it was performed only on the 400 prototypes instead of the 460.000

5 Wine dataset : http://archive.ics.uci.edu/ml/datasets/Wine
6 Landsat Science : http://landsat.gsfc.nasa.gov/
7 USGS Earth Explorer : http://earthexplorer.usgs.gov/



Fig. 1. Application of our approach for the classification of a landsat satellite image

pixels of the image. If we had to reason over all the dataset, the reasoner would not have
been able to scale[8].

6 Conclusion and Future Work

We have presented in this paper a new hybrid approach combining the unsupervised
topographic learning with ontology reasoning in order to semantically label clustering
results. Combining both deductive and inductive reasoning, our method can automate
the interpretation of clustering based on the ontology and in the same time scales and
speed up the reasoning process by exploiting the proposed prototype label propagation.
We have applied our approach to multiple datasets and evaluate the results. We have
also shown how our approach can be used in the real-world problem of satellite images
classification. As future work, we plan to extend our approach by using a constraints
based on the ontology reasoning results to modify the obtained maps and improve its
semantic coherence.
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