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Abstract We prove the validity over R of a commutative differential graded
algebra model of configuration spaces for simply connected closed smooth
manifolds, answering a conjecture of Lambrechts—Stanley. We get as a result
that the real homotopy type of such configuration spaces only depends on the
real homotopy type of the manifold. We moreover prove, if the dimension
of the manifold is at least 4, that our model is compatible with the action of
the Fulton—MacPherson operad (weakly equivalent to the little disks operad)
when the manifold is framed. We use this more precise result to get a complex
computing factorization homology of framed manifolds. Our proofs use the
same ideas as Kontsevich’s proof of the formality of the little disks operads.
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Introduction

Let M be a closed smooth n-manifold and consider the ordered configuration
space of k points in M:

Confy(M):={(x1,...,xx) € M* | x; # x; Vi # j}.

Despite their apparent simplicity, configuration spaces remain intriguing.
One of the most basic questions that can be asked about them is the following:
if a manifold M’ is obtained from M by continuous deformations, then can
Conf(M’) be obtained from Conf (M) by continuous deformations? That is,
does the homotopy type of M determine the homotopy type of Confy (M)?

Without any restriction, this is false: the point {0} is homotopy equivalent
to the line R, but Conf,({0}) = @ is not homotopy equivalent to Conf; (R) #
. One might wonder if the conjecture becomes true if restricted to closed
manifolds. In 2005, Longoni and Salvatore [36] found a counterexample: two
closed 3-manifolds, given by lens spaces, which are homotopy equivalent
but whose configuration spaces are not. This counterexample is not simply
connected however. The question of the homotopy invariance of Confy (—) for
simply connected closed manifolds remains open to this day.

Here, we do not work with the full homotopy type. Rather, we restrict
ourselves to the rational homotopy type. This amounts, in a sense, to forgetting
all the torsion. Rational homotopy theory can be studied from an algebraic point
of view [48]. The rational homotopy type of a simply connected space X is
fully encoded in a “model” of X, i.e. acommutative differential graded algebra
(CDGA) A which is quasi-isomorphic to the CDGA of piecewise polynomial
forms Ap; (X). Due to technical issues, we will in fact work over R. If M is
a smooth manifold, then a real model is a CDGA which is quasi-isomorphic to
the CDGA of de Rham forms 27, (M). While this is slightly coarser than the
rational homotopy type of M, in terms of computations it is often enough.

Thus, our goal is the following: given a model of M, deduce an explicit,
small model of Confy(M). This explicit model only depends on the model of
M. This shows the (real) homotopy invariance of Confy(—) on the class of
manifolds we consider. Moreover, this explicit model can be used to perform
computations, e.g. the real cohomology ring of Confy (M), etc.

We focus on simply connected (thus orientable) closed manifolds. They
satisfy Poincaré duality. Lambrechts and Stanley [32] showed that any
such manifold admits a model A which satisfies itself Poincaré duality, i.e.
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The Lambrechts—Stanley model 3

there is an “orientation” A” > R which induces non-degenerate pairings
A¥ @ A"~k — R for all k. Lambrechts and Stanley [33] built a CDGA G4 (k)
out of such a Poincaré duality model (they denote it F (A, k)). If we view
H*(Confy(R")) as spanned by graphs modulo Arnold relations, then G4 (k)
consists of similar graphs with connected components labeled by A, and the
differential splits edges. Lambrechts and Stanley proved that G4 (k) is quasi-
isomorphic to Ap; (Confy(M)) as a dg-module. They conjectured that this
quasi-isomorphism can be enhanced to give a quasi-isomorphism of CDGAS so
that G4 (k) defines a rational model of Confy (M). We answer this conjecture
by the affirmative in the real setting in the following theorem.

Theorem 1 (Corollary 78) Let M be a simply connected, closed, smooth man-
ifold. Let A be any Poincaré duality model of M. Then for all k > 0, Ga(k) is
a model for the real homotopy type of Conf(M).

Corollary 2 (Corollary 79) For simply connected closed smooth manifolds,
the real homotopy type of M determines the real homotopy type of Confy(M).

Over the past decades, attempts were made to solve the Lambrechts—Stanley
conjecture, and results were obtained for special kinds of manifolds, or for
low values of k. When M is a smooth complex projective variety, Kriz [30]
had previously shown that Gp+(ar) (k) is actually a rational CDGA model for
Confy(M). The CDGA Gy (k) is the E2 page of a spectral sequence of
Cohen-Taylor [9] that converges to H*(Confy(M)). Totaro [51] has shown
that for a smooth complex compact projective variety, the spectral sequence
only has one nonzero differential. When k = 2, then G4 (2) was known to be
a model of Conf, (M) either when M is 2-connected [31] or when dim M is
even [10].

Our approach is different than the ones used in these previous works. We
use ideas coming from the theory of operads. In particular, we consider the
operad of little n-disks, defined by Boardman—Vogt [4], which consists of
configuration spaces of small n-disks (instead of points) embedded inside
the unit n-disk. These spaces of little n-disks are equipped with composition
products, which are basically defined by inserting a configuration of [ little
n-disks into the ith little disk of a configuration of & little n-disks, resulting
in a configuration of k + [ — 1 little n-disks. The idea is that a configuration
of little n-disks represents an operation acting on n-fold loop spaces, and
the operadic composition products of little n-disks reflect the composition
of such operations. The configuration spaces of little n-disks are homotopy
equivalent to the configurations spaces of points in the Euclidean n-space R",
but the operadic composition structure does not go through this homotopy
equivalence.

In our work, we actually use another model of the little n-disk operads,
defined using the Fulton—MacPherson compactifications FM, (k) of the con-
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4 N. Idrissi

figurations spaces Confy (R") [2,19,46]. This compactification allows us to
retrieve, on this collection of spaces FM, = {FM,(k)}, the operadic com-
position products which were lost in the configurations spaces Confy(R").
We also use the Fulton—-MacPherson compactifications FMyy (k) of the con-
figuration spaces Confy (M) associated to a closed manifold M. When M is
framed, these compactifications assemble into an operadic right module FMy,
over the Fulton—-MacPherson operad FM,,, which roughly means that we can
insert a configuration in FM,, into a configuration in FM;s. We show that the
Lambrechts—Stanley model is compatible with this action of the little disks
operad, as we explain now.

The little n-disks operads are formal [18,28,34,43,49]. Kontsevich’s proof
[28,34] of this theorem uses the spaces FM,. If we temporarily forget about
operads, this formality theorem means in particular that each space FIM,, (k) is
“formal”, i.e. the cohomology e,/ (k):=H*(FM, (k)) (with a trivial differential)
is a model for the real homotopy type of FM, (k). To prove Theorem 1, we
generalize Kontsevich’s approach to prove that G4 (k) is a model of FMy, (k).

To establish his result, Kontsevich has to consider fiberwise integrations
of forms along a particular class of maps, which are not submersions, but
represent the projection map of “semi-algebraic bundles”. In order to define
such fiberwise integration operations, Kontsevich uses CDGAs of piecewise
semi-algebraic (PA) forms £25, (—) instead of the classical CDGAs of de Rham
forms. The theory of PA forms was developed in [23,29]. Any closed smooth
manifold M is a semi-algebraic manifold [39,50], and the CDGA §25, (M) is
a model for the real homotopy type of M. For the formality of FM,,, a descent
argument [22] is available to show that formality over R implies formality
over Q. However, no such descent argument exists for models with a nontrivial
differential such as G 4. Therefore, although we conjecture that our results on
real homotopy types descend to (@, we have no general argument ensuring that
such a property holds.

The cohomology e, = H*(FM,) inherits a Hopf cooperad structure from
FM,, i.e. it is a cooperad (the dual notion of operad) in the category of CDGAs.
The CDGAs of forms $2f5, (FM,, (k)) also inherit a Hopf cooperad structure (up
to homotopy). The formality quasi-isomorphisms between the cohomology
algebras e’ (k) and the CDGAs of forms on FM, (k) are compatible in a suitable
sense with this structure. Therefore the Hopf cooperad e, fully encodes the
rational homotopy type of the operad F1,.

In this paper, we also prove that the Lambrechts—Stanley model G4 deter-
mines the real homotopy type of FM), as a right module over the operad FM,
when M is a framed manifold. To be precise, our result reads as follows.

Theorem 3 (Theorem 62) Let M be a framed smooth simply connected
closed manifold with dim M > 4. Let A be any Poincaré duality model
of M. Then the collection Ga = {Ga(k)}x>0 forms a Hopf right e, -

@ Springer



The Lambrechts—Stanley model 5

comodule. Moreover the Hopf right comodule (Ga, ) is weakly equivalent
to (Q;A(FMM) ) QEFA(FMn))

For dim M < 3, the proof fails (see Proposition 45). However, in this case,
the only examples of simply connected closed manifolds are spheres, thanks
to Perelman’s proof of the Poincaré conjecture [41,42]. We can then directly
prove that G4 (k) is a model for Conf (M) (see Sect. 4.3).

Our proof of Theorem 3, which is inspired by Kontsevich’s proof of the
formality of the little disks operads, is radically different from the proofs
of [33]. It involves an intermediary Hopf right comodule of labeled graphs
Graphspg. This comodule is similar to a comodule recently studied by
Campos—Willwacher [6], which corresponds to the case R = § (IEI *(M)).
Note however that the approach of Campos—Willwacher differs from ours.
In comparison to their work, our main contribution is the definition of the
quasi-isomorphism between the CDGAs §2]5, (FMy (k)) and the small, explicit
Lambrechts—Stanley model G4 (k), which has the advantage of being finite-
dimensional and much more computable than Graphs SCH (M) k).

Applications. Ordered configuration spaces appear in many places in topology
and geometry. Therefore, thanks to Theorems 1 and 3, the explicit model G4 (k)
provides an efficient computational tool in many concrete situations.

To illustrate this, we show how to apply our results to compute factorization
homology, an invariant of framed n-manifolds defined from an E,-algebra [3].
Let M be a framed manifold with Poincaré duality model A, and B be an n-
Poisson algebras, i.e. an algebra over the operad H,.(E,). Our results shows that
we can compute the factorization homology of M with coefficients in B just
from G4 and B. As an application, we compute factorization homology with
coefficients in a higher enveloping algebra of a Lie algebra (Proposition 81),
recovering a theorem of Knudsen [27].

The Taylor tower in the Goodwillie~Weiss calculus of embeddings may be
computed in a similar manner [5,21]. It follows from a result of [52, Section
5.1] that FMj; may be used for this purpose. Therefore our theorem shows that
G4 may also be used for computing this Taylor tower.

Roadmap. In Sect. 1, we lay out our conventions and recall the necessary
background. This includes dg-modules and CDGAs, (co)operads and their
(co)modules, semi-algebraic sets and PA forms. We also recall basic results
on the Fulton—-MacPherson compactifications of configuration spaces FM,, (k)
and FMy, (k), and the main ideas of Kontsevich’s proof of the formality of the
little disks operads using the CDGAs of PA forms on the spaces FM, (k). We
use the formalism of operadic twisting, which we recall, to deal with signs
more easily. Finally, we recollect the necessary background on Poincaré dual-
ity CDGAs and the Lambrechts—Stanley CDGAs. In Sect. 2, we build out of the
Lambrechts—Stanley CDGAs a Hopf right e -comodule G 4.
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6 N. Idrissi

In Sect. 3, we construct the labeled graph complex Graphs g which will be
used to connect G4 to .QI’,“A (FMyy). The construction is inspired by Kontsevich’s
construction of the unlabeled graph complex Graphs,,. It is done in several
steps. The first step is to consider a graded module of labeled graphs, Grarg.
In order to be able to map Grag into .QI’,“A (FMyy), we recall the construction of
what is called a “propagator” in the mathematical physics literature. We then
“twist” Grap to obtain a new object Tw Grag, which consists of graphs with
two kinds of vertices: “external” and “internal”. Finally we must reduce our
graphs to obtain a new object, Graphsy, by removing all the connected com-
ponents with only internals vertices in the graphs using a “partition function”
(a function which resembles the Chern—Simons invariants).

In Sect. 4, we prove that the zigzag of Hopf right comodule morphisms
between G4 and £25, (FMyy) is a weak equivalence. We first connect our graph
complex Graphsyp to the Lambrechts—Stanley CDGAs G 4. This requires van-
ishing results about the partition function. Then we end the proof of the theorem
by showing that all the morphisms are quasi-isomorphisms. Finally we study
the cases S2 and S°.

In Sect. 5, we use our model to compute factorization homology of framed
manifolds and we compare the result to a complex obtained by Knudsen. In
Sect. 6 we work out a variant of our theorem for the only simply connected
surface using the formality of the framed little 2-disks operad, and we present
a conjecture about higher dimensional oriented manifolds.

For convenience, we provide a glossary of our main notations at the end of
this paper.

1 Background and recollections
1.1 DG-modules and CDGAs

We consider differential graded modules (dg-modules) over the base field R.
Unless otherwise indicated, (co)homology of spaces is considered with real
coefficients. All our dg-modules will have a cohomological grading, V =
D,z V". All the differentials raise degrees by one: deg(dx) = deg(x) + 1.
We say that a dg-module is of finite type if it is finite dimensional in each
degree. Let V[k] be the desuspension, defined by (V[k])" = vtk For
dg-modules V, W and homogeneous elements v € V, w € W, we let
(v @ w)?l:=(—1)Wegv)degw)y; @ y and we extend this linearly to the ten-
sor product. Moreover, given an element X € V ® W, we will often use a
variant of Sweedler’s notation to express X as a sum of elementary tensors,
X=X ®X" eVRW.
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The Lambrechts—Stanley model 7

We call CDGAs the (graded) commutative unital algebras in dg-modules. In
general, for a CDGA A, we let g : A®? — A be its product. For a dg-module
V, we let S(V) be the free unital symmetric algebra on V.

We will need a model category structure on the category of CDGAs. We use
the model category structure given by the general result of [24] for categories of
algebras over operads. The weak equivalences are the quasi-isomorphisms, the
fibrations are the surjective morphisms, and the cofibrations are characterized
by the left lifting property with respect to acyclic fibrations. A path object for
the initial CDGA R is given by A} (A!) = S(z, dt), the CDGA of polynomials
forms on the interval. It is equipped with an inclusion R < A;;L(Al), and
two projections evg, evy : A}";L(Al) SR given by settingt = O or¢ = 1.
Two morphisms f, g : A — B with cofibrant source are homotopic if there
exists a homotopy 7 : A - B ® A;‘,L(Al) such that the following diagram

commutes:
A
Z M&
BE _— B®A, (A —> B

id ® evg id®evy

Many of the CDGAs that appear in this paper are Z-graded. However, to
deserve the name “model of X, a CDGA should be connected to Ap; (X) only
by N-graded CDGAs. The next proposition shows that considering this larger
category does not change our statement.

Proposition 4 Let A, B be two N-graded CDGAs which are homologically
connected, i.e. H'(A) = H°(B) = R. If A and B are quasi-isomorphic as
Z-graded CDGAs, then they also are as N-graded CDGAs.

Proof This follows from the results of [17, §11.6.2]. Let us temporarily denote
cdgay the category of N-graded CDGAs (dg*Com in [17]) and cdgay the
category of Z-graded CDGAs (dgCom in [17]). Note that in [17], Z-graded
CDGAs are homologically graded, but we can use the usual correspondence
Al = A_; to keep our convention that all dg-modules are cohomologically
graded. There is an obvious inclusion ¢ : cdgay — cdgay, which clearly
defines a full functor that preserves and reflects quasi-isomorphisms.

Let B™ be the dg-module R concentrated in degree m, let E” be the dg-
module given by two copies of R in respective degree m — 1 and m such
that dgm is the identity of R in these degrees (hence E™ is acyclic), and let
i : B™ — E™ be the obvious inclusion. The model category cdgay is equipped
with a set of generating cofibrations given by the morphisms S(i) : S(B™) —
S(IE™) and of the morphism ¢ : § (B%) — R. Recall that a cellular complex
of generating cofibrations is a CDGA obtained by a sequential colimit R =
colimg Ry, where Rigy = R and R 1) is obtained from Ry by a pushout
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8 N. Idrissi

of generating cofibrations along attaching maps 4 : S(B™) — Ryy. In [17,
§I1.6.2], the expression “connected generating cofibrations” is used for the
generating cofibrations of the form S(i) : S(B™) — S(E™) with m > 0.

In the proof of [17, Proposition 11.6.2.8], it is observed that, if A is homo-
logically connected, then the attaching map 4 : S(B% — A associated to a
generating cofibration ¢ : S(B®) — R necessarily reduces to the augmenta-
tion ¢ : S(B’) — R followed by the inclusion as the unit R € A. Thus a
pushout of the generating cofibration ¢ : S(B®) — R reduces to a neutral
operation in this case. In the proof of [17, Proposition I1.6.2.8], it is deduced
from this observation that any homologically connected algebra admits a res-
olution R4 — A such that Ry is a cellular complex of connected generating
cofibrations. Connected generating cofibrations are also cofibrations in cdga
after applying . Moreover ¢ preserves colimits. It follows that t R 4 is cofibrant
in cdgay, too.

By hypothesis, tA and ¢ B are weakly equivalent in cdgay, hence tR 4 and (B
are also weakly equivalent (because ¢ clearly preserves quasi-isomorphisms),

through a zigzag (R4 < - 5 (B. As (Ry is cofibrant (and all CDGAs are
fibrant), we can find a direct quasi-isomorphism (R4 = (B and therefore a
zigzag LA < (R4 = (B which only involves N-graded CDGAs. O

1.2 (Co)operads and their right (co)modules

We assume basic proficiency with Hopf (co)operads and (co)modules over
(co)operads, seee.g.[16,17,35]. We index our (co)operads by finite sets instead
of integers to ease the writing of some formulas. If W C U is a subset, we
write the quotient U/ W = (U\W) U {x}, where * represents the class of
W; note that U/@ = U U {x}. An operad in dg-modules, for instance, is
given by a functor from the category of finite sets and bijections (a symmetric
collection) P : U + P(U) to the category of dg-modules, together with a unit
k — P({*}) and composition maps oy : P(U/ W)@ P(W) — P(U) for every
pair of sets W C U, satisfying the usual associativity, unity and equivariance
conditions. Dually, a cooperad C is given by a symmetric collection, a counit
c({*}) — k, and cocomposition maps oﬁ, :Cc(U) - c(U/ W) ® Cc(W) for
every pair W C U.

Letk = {1, ..., k}. We recover the usual notion of a cooperad indexed by
the integers by considering the collection {C(k)}¢>0, and the cocomposition

Following Fresse [17, §11.9.3.1], a “Hopf cooperad” is a cooperad in the
category of CDGAs. We do not assume that (co)operads are trivial in arity zero,
but they will satisfy P(&) = k (resp. C(&) = k). Therefore we get (co)operad
structures equivalent to the structure of A-(co)operads considered by Fresse
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The Lambrechts—Stanley model 9

[17, §I1.11], which he uses to model rational homotopy types of operads in
spaces satisfying P(0) = x (but we do not use this formalism in the sequel).

The result of Proposition 4 extends to Hopf cooperads (and to Hopf A-
cooperads). To establish this result, we still use a description of generating
cofibrations of N-graded Hopf cooperads, which are given by morphisms of
symmetric algebras of cooperads S(i) : S(C) — S(D), wherei : C —
D is a dg-cooperad morphism that is injective in positive degrees (see [17,
§I1.9.3] for details). In the context of homologically connected cooperads,
we can check that the pushout of such a Hopf cooperad morphism along an
attaching map reduces to a pushout of a morphism of symmetric algebras of
cooperads S(C/ ker(i)) — S(D), where we mod out by the kernel of the map
i : C — Dindegree 0. We deduce from this observation that any homologically
connected N-graded Hopf cooperad admits a resolution by a cellular complex
of generating cofibrations of the form S(i) : S(C) — S(D), where the map i is
injective in all degrees (we again call such a generating cofibration connected).
The category of Z-graded Hopf cooperads inherits a model structure, like the
category of N-graded Hopf cooperads considered in [17, §11.9.3]. Cellular
complexes of connected generating cofibrations of N-graded Hopf cooperads
define cofibrations in the model category of Z-graded Hopf cooperads yet, as
in the proof of Proposition 4.

Given an operad P, a right P-module is a symmetric collection M equipped
with composition maps oy : M(U/ W) ® P(W) — M(U) satisfying the usual
associativity, unity and equivariance conditions. A right comodule over a coop-
erad is defined dually. If C is a Hopf cooperad, then a right Hopf C-comodule
is a C-comodule N such that all the N(U) are CDGAs and all the maps O\v/v are
morphisms of CDGAs.

Definition 5 Let C (resp. C’) be a Hopf cooperad and N (resp. N') be a Hopf
right comodule over C (resp. C'). A morphism of Hopf right comodules is a
pair (fx, fc) consisting of a morphism of Hopf cooperads fc : C — C’, and
a map of Hopf right C’-comodules fy : N — N, where N has the C-comodule
structure induced by fc. Itis a quasi-isomorphism if both fc and fyy are quasi-
isomorphisms in each arity. A Hopf right C-module N is said to be weakly
equivalent to a Hopf right C’-module N’ if the pair (N, C) can be connected to
the pair (NN, C’) through a zigzag of quasi-isomorphisms.

The next very general lemma can for example be found in [6, Section 5.2].
Let C be a cooperad, and see the CDGA A as an operad concentrated in arity
l.Recall that Co A = ;. C(i) @, A® denotes the composition product
of operads, where we view A as an operad concentrated in arity 1. Then the
commutativity of A implies the existence of adistributivelaw ¢ : CoA — AoC,
given in each arity by the morphism ¢ : C(n) ® A®" — A ® C(n) given by
XA Q@ --Ra,—ay...ay x.
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10 N. Idrissi

Lemma 6 Let Nbe a right C-comodule, and see A as an operad concentrated
in arity 1. Then No A is a right C-comodule through the map:

Apnol 1
NOALO>N0C'0A—OI>N0AOC’. O

1.3 Semi-algebraic sets and forms

Kontsevich’s proof of the formality of the little disks operads [28] uses the
theory of semi-algebraic sets, as developed in [23,29]. A semi-algebraic set
is a subset of RY defined by finite unions of finite intersections of zero sets
of polynomials and polynomial inequalities. By the Nash—Tognoli Theorem
[39,50], any closed smooth manifold is algebraic hence semi-algebraic.

There is a functor £25, of “piecewise semi-algebraic (PA) differential
forms”, analogous to de Rham forms. If X is a compact semi-algebraic set, then
25, (X) = Ap (X) ®g R, i.e. the CDGA §25, (X) models the real homotopy
type of X [23, Theorem 6.1].

A key feature of PA forms is that it is possible to compute integrals of
“minimal forms” along fibers of “PA bundles”, i.e. maps with local semi-
algebraic trivializations [23, Section §]. A minimal form is of the type fod f1 A
--- Adfr where f; : M — R are semi-algebraic maps. Given such a minimal
form A and a PA bundle p : M — B with fibers of dimension r, there is a
new form (which is not minimal in general), also called the pushforward of A
along p:

p*x:=/ A e Q2857 (B).
p:M—B

In what follows, we use an extension of the fiberwise integration of minimal
forms to the sub-CDGA of “trivial forms” given in [6, Appendix C]. Briefly
recall that trivial forms are integrals of minimal forms along fibers of a trivial
PA bundle (see [6, Definition 81]). In fact, in Sect. 3.3, we consider a certain
form, the “propagator”’, which is not minimal but trivial in this sense, and we
apply the extension of the fiberwise integration to this form.

The functor §2} , is monoidal, but not strongly monoidal, and contravariant.
Thus, given an operad P in semi-algebraic sets, 255, (P) is an “almost” Hopf
cooperad and satisfies a slightly modified version of the cooperad axioms,
as explained in [34, Definition 3.1]. Cooperadic structure maps are replaced

by zigzags 25, (P(U)) — 25, (P(U/W) x P(W)) < 25, (P(U/W)) x
25, (P(W)) (where the second map is the Kiinneth morphism). If C is a Hopf
cooperad, an “almost” morphism f : C — 25, (P) is a collection of CDGA
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The Lambrechts—Stanley model 11

morphisms fy : C(U) — 25, (P(U)) for all U, such that the following
diagrams commute:

() W C(U/W) ® C(W)
+fu o o w® fw
25, (PU)) — 25 (BU/W) x P(W)) < 25, (B(U/W)) ® 2555 ((W))

Similarly, if Mis a P-module, then £25, (M) is an “almost” Hopf right comodule
over £2p, (P). If N'is a Hopf right C-comodule, where C is a cooperad equipped
with an “almost” morphism f : C — £25, (P), then an “almost” morphism g :
N — $£2p, (M) is a collection of CDGA morphisms gy : N(U) — 25, M(U))
that make the following diagrams commute:
N(U) v N(U/ W) ® C(W)
8u o $8u/w® fw
QEAQUU)) — 2 (UU/W) x (W) — 25, MU/ W) ® 2555 (P(W))

We will generally omit the adjective “almost”, keeping in mind that some
commutative diagrams are a bit more complicated than at first glance.

Remark 7 There is a construction Q;‘ that turns a simplicial operad P into a
Hopf cooperad and such that a morphism of Hopf cooperads C — .Q;‘(P)
is the same thing as an “almost” morphism C — A, (P), where Af; is the
functor of Sullivan forms [17, Section I1.10.1]. Moreover there is a canonical
collection of maps (.Qﬁk (P))(U) — Ay (P(U)), which are weak equivalences
if P is a cofibrant operad. This functor is built by considering the right adjoint
of the functor on operads induced by the Sullivan realization functor, which
is monoidal. A similar construction can be extended to 25, and to modules
over operads. This construction allows us to make sure that the cooperads and
comodules we consider truly encode the rational or real homotopy type of the
initial operad or module (see [17, §11.10.2]).

1.4 Little disks and related objects

The little disks operad E, is a topological operad initially introduced by May
and Boardman—Vogt [4,37] to study iterated loop spaces. Its homology e, :=
H,(E,) is described by a theorem of Cohen [8]: it is either the operad governing
associative algebras for n = 1, or n-Poisson algebras for n > 2. We also
consider the linear dual e, :=H*(E,), which is a Hopf cooperad.

In fact, we use the Fulton—-MacPherson operad FM,, which is an operad
in spaces weakly equivalent to the little disks operad E,. The components
FM, (k) are compactifications of the configuration spaces Confy (R"), defined
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12 N. Idrissi

by using a real analogue due to Axelrod—Singer [2] of the Fulton—MacPherson
compactifications [19]. The idea of this compactification is to allow configu-
rations where points become “infinitesimally close”. Then one uses insertion
of such infinitesimal configurations to define operadic composition products
on the spaces FM, (k). We refer to [46] for a detailed treatment and to [34,
Sections 5.1-5.2] for a clear summary. In both references, the name C[k] is
used for what we call FM,, (k).

The first two spaces FM, (&) = FM, (1) = * are singletons, and FM, (2) =
s"1isa sphere. We let the volume form of FM, (2) be:

vol,—1 € 2p (8" = 287 (71, (2)) (1)

The space FI, (k) is a semi-algebraic stratified manifold, of dimension nk —
n — 1 for k > 2, and of dimension O otherwise. For u # v € U, we can
define the projection maps that forget all but two points in the configuration,
Puv : FM,(U) — FM,(2). These projections are semi-algebraic bundles.

If M is a manifold, the configuration space Conf;(M) can similarly be
compactified to give a space FMy, (k). By forgetting points, we again obtain
projection maps, for u, v € U:

pu i FMy(U) - FMy (D) =M,  puy : FMy(U) — FMy Q).  (2)

The two projections p; and p, are equal when restricted dFMy(2), and they
define a sphere bundle of rank n — 1,

p:OFMy(2) - M. 3)

When M is framed, the collection of spaces FMj, assemble to form a
topological right module over FM,, with composition products defined by
insertion of infinitesimal configurations. Moreover in this case, the sphere
bundle p : 9FMys(2) — M is trivialized by:

M x 8" = FMy (1) x FM,(2) > 9FMy (2). @)

Recall from Sect. 1.3 that we can endow M with a semi-algebraic structure. It
is immediate that FMy (k) is a stratified semi-algebraic manifold of dimension
nk. Moreover, the proofs of [34, Section 5.9] can be adapted to show that the
projections py : FMp (U U'V) — FMys(U) are PA bundles.
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The Lambrechts—Stanley model 13

1.5 Operadic twisting

We will make use of the “operadic twisting” procedure in what follows [11].
Let us now recall this procedure, in the case of cooperads.

Let Lie, be the operad governing shifted Lie algebras. A Lie,-algebra is
adg-module g equipped with a Lie bracket [—, —] : g®> — g[1—n] of degree
1 —n,ie. we have [¢/, g/] C g/ T/+(1—),

Remark 8 The degree convention is such that there is an embedding of operads
Lie, — H.(FM,), i.e. Poisson n-algebras are L.ie,-algebras. The usual Lie
operad is Lie;. This convention is consistent with [53]. However in [54], the
notationis Lie™ = Liep+1. In[11], only the unshifted operad Lie = Lie
is considered.

The operad Lie, is quadratic Koszul (see e.g. [35, Section 13.2.6]), and
as such admits a cofibrant resolution hoLie,: = (K (Lie,)), where £2 is
the cobar construction and K (Lie,) is the Koszul dual cooperad of Lie.
Algebras over hoLie, are (shifted) Lo-algebras, also known as homotopy
Lie algebras, i.e. dg-modules g equipped with higher brackets [—, ..., —] :
g® — g[3 — k — n] (for k > 1) satisfying the classical Lo, equations.

Let C be a cooperad (with finite-type components in each arity) equipped
with a map to the dual of hoLie,. This map can equivalently be seen as a
Maurer—Cartan element in the following dg-Lie algebra [35, Section 6.4.2]:

Homy (K (Liey), cV):=(]"[(cV<i) ® R[-n1®)* [n], 3, [~ —]), 5)

i>0

where we used the explicit description of the Koszul dual K (Liie,) as a shifted
version of the cooperad encoding cocommutative coalgebras. Given f, g €
Homyx (K (Liey,), CY), their bracket is [f, g] = f x g F g x f, where x is
given by:

cooperad

Fag: K@Liey) P k(Lie,) o K(Liey) 125 ¥ ooy 2 v
An element © € Homy (K (Lie,), CY) is said to satisfy the Maurer—Cartan
equation if d + p * . = 0. Such an element is called a twisting morphism in
[35, Section 6.4.3], and the equivalence with morphisms hoLie, — CY (or
dually C — hoLie,)) is [35, Theorem 6.5.7]. In the sequel, we will alternate
between the two points of view, morphisms or Maurer—Cartan elements.

There is an action of the symmetric group X; oni = {1, ..., i}. Asagraded
module, the twist of C with respect to u is given by:

Twc(U) == P(cU uid) @R . (6)

i>0
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14 N. Idrissi

The symmetric collection Tw C inherits a cooperad structure from C. The
differential of Tw C is the sum of the internal differential of C with a differential
coming from the action of u that we now explain. The action of u is threefold,
and the total differential of Tw C(U) can be expressed as:

drwc:=dc + (— - ) + (= - 1) + (g - —). (7N

Let us now explain these notations. Let i > 0 be some fixed integer and let us
describe the action of p on C(U Ui) C Tw C(U) (up to degree shifts). In what
follows, foraset J C i, welet j:=#J,andi/J =i+ j — 1.

Recall that u is a formal sum of elements C(j) for j > 0. The first action
(— - 1) is the sum over all subsets J C i of the following cocompositions:

WD W Ui
®C()) L cULi/H®RZCW Ui+ j—1). (8

For the two other terms, we need the element ) € szo c(yju {(xhHV.Itis
the sum over all possible ways of distinguishing one input of & in each arity.
(Distinguishing one input does not respect the invariants in the definition of
Eq. (5), but taking the sum over all possible ways does.)

The second action (— - 1) is then the sum of the following cocompositions,
over all subsets J C i and over all x € U (where we use the obvious bijection

U/} =U)

(U L) c((Uud/{=ud))
@c(x) U J) L2 cu i+ j—1), 9)

Finally, the third action (w1 - —) is the sum over all subsets J C i of the
cocompositions (where we use the obvious bijection (U U I)/(U U J) =
{x} L I\J):

C(UI_Iz)—>C({>|<}|_ll\J)®C(U|_|J) C(UI_IJ) (10)
Lemma 9 If Cis a Hopf cooperad satisfying C(&) = Kk, then Tw C inherits a
Hopf cooperad structure.

Proof To multiply an element of C(U U I) C TwC(U) with an element of

C(U U J) C TwC(U), we use the maps C(V) —> C(V/2) ® C(2) =
C(V u {x}) iterated several times, to obtain elements in C(U U I U J) and the
product. O
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The Lambrechts—Stanley model 15

Moreover, we will need to twist right comodules over cooperads. This con-
struction is found (for operads) in [54, Appendix C.1]. Let us fix a cooperad C
and a twist Tw C with respect to w as above. Given a right C-comodule M, we
can also twist it with respect to u, as follows. As a graded module, the object
TwM(U) is defined by:

TwuU):=] [MU U ® RI2D) . .

i>0
The comodule structure is inherited from M. The total differential is the sum:

drwui=dy + (= - 1) + (= - 1), (1D

where (— - ) and (— - 1) are as in Eqgs. (8) and (9) but using the comodule
structure. Note that M is only a right module, so there can be no term (g - —)
in this differential. Lemma 9 has an immediate extension:

Lemma 10 If Cis a Hopf cooperad satisfying C() = k and Mis a Hopf right
C-comodule, then Tw M inherits a Hopf right (Tw C)-comodule structure. O

1.6 Formality of the little disks operad

Kontsevich’s proof of the formality of the little disks operads [28, Section 3],
can be summarized by the fact that 25, (FM, ) is weakly equivalent to e/ asa
Hopf cooperad. For detailed proofs, we refer to [34].

We outline this proof here as we will mimic its pattern for our theorem. The
idea of the proof is to construct a Hopf cooperad Graphs,,. The elements of
Graphs,, are formal linear combinations of special kinds of graphs, with two
types of vertices, numbered “external” vertices and unnumbered ““internal”
vertices. The differential is defined combinatorially by edge contraction. It is
built in such a way that there exists a zigzag e, < Graphs, = 25, (FM,).
The first map is the quotient by the ideal of graphs containing internal ver-
tices. The second map is defined using integrals along fibers of the PA bundles
FM,(U ul) — FM,(U) which forget some points in the configuration. An
induction argument shows that the first map is a quasi-isomorphism, and the
second map is easily seen to be surjective on cohomology.

In order to deal with signs more easily, we use (co)operadic twisting
(Sect. 1.5). Thus the Hopf cooperad Graphs,, is not the same as the Hopf
cooperad D from [34], see Remark 13.

The cohomology of E,. The cohomology e,/ (U) = H*(E,(U)) has a classical
presentation due to Arnold [1] and Cohen [8]. We have

e, (U) = S(@u)u,vev /1, (12)
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16 N. Idrissi

where the generators w,, have cohomological degree n — 1, and the ideal /
encoding the relations is generated by the polynomials (called Arnold rela-
tions):

. _ .2 _ - —
Oy =05 wyy = (—1)" wyo; Wy, = 0; wyy@yw + Oyyw®ywy + Oyywyy = 0. (13)

The cooperadic structure maps are given by (where [u], [v] € U/ W are the
classes of # and v in the quotient):

1 ® wyy, ifu,veWw;
o] ® 1, otherwise.
(14)

oy e, (U)—> e/ (U/W)Re, (W), wyt>

Graphs with only external vertices. The intermediary cooperad of graphs,
Graphs,, is built in several steps. In the first step, define a cooperad of graphs
with only external vertices, with generators e, of degree n — 1:

Gran(U) = (S(eun)uvev/(€py = €un = 0, ey = (—1)"euy), d = 0).
(15)

The definition of Gra,(U) is almost identical to the definition of e (U),
except that we do not kill the Arnold relations.

The CDGA Gra, (U) is spanned by words of the type ey, ... €y, . Such
a word can be viewed as a graph with U as the set of vertices, and an edge
between u; and v; for each factor e, ,, . For example, e, is a graph with a single
edge from u to v (see Eq. (16) for another example). Edges are oriented, but
for even n an edge is identified with its mirror (so we can forget orientations),
while for odd n it is identified with the opposite of its mirror. In pictures, we do
not draw orientations, keeping in mind that for odd n, they are necessary to get
precise signs. Graphs with double edges or edges between a vertex and itself
are set to zero. Given such a graph, its set of edges Ef C ([2]) is well-defined.
The vertices of these graphs are called “external”, in contrast with the internal
vertices that are going to appear in the next part.

@ ©

erne13ese = € Gra, (6) (16)

The multiplication of the CDGA Gra, (U), from this point of view, consists
of gluing two graphs along their vertices. The cooperadic structure map oy, :
Gra,(U) — Gra,(U/W) ® Gra,(W) maps a graph I" to =Iy;w ® I'w
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The Lambrechts—Stanley model 17

such that I'yy is the full subgraph of I" with vertices W and I'y,w collapses
this full subgraph to a single vertex. On generators, oy, is defined by a formula
which is in fact identical to Eq. (14), rep