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Abstract We prove the validity over R of a commutative differential graded
algebra model of configuration spaces for simply connected closed smooth
manifolds, answering a conjecture of Lambrechts–Stanley. We get as a result
that the real homotopy type of such configuration spaces only depends on the
real homotopy type of the manifold. We moreover prove, if the dimension
of the manifold is at least 4, that our model is compatible with the action of
the Fulton–MacPherson operad (weakly equivalent to the little disks operad)
when the manifold is framed. We use this more precise result to get a complex
computing factorization homology of framed manifolds. Our proofs use the
same ideas as Kontsevich’s proof of the formality of the little disks operads.
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Introduction

Let M be a closed smooth n-manifold and consider the ordered configuration
space of k points in M :

Confk(M):={(x1, . . . , xk) ∈ Mk | xi �= x j ∀i �= j}.

Despite their apparent simplicity, configuration spaces remain intriguing.
One of the most basic questions that can be asked about them is the following:
if a manifold M ′ is obtained from M by continuous deformations, then can
Confk(M ′) be obtained from Confk(M) by continuous deformations? That is,
does the homotopy type of M determine the homotopy type of Confk(M)?

Without any restriction, this is false: the point {0} is homotopy equivalent
to the line R, but Conf2({0}) = ∅ is not homotopy equivalent to Conf2(R) �=
∅. One might wonder if the conjecture becomes true if restricted to closed
manifolds. In 2005, Longoni and Salvatore [36] found a counterexample: two
closed 3-manifolds, given by lens spaces, which are homotopy equivalent
but whose configuration spaces are not. This counterexample is not simply
connected however. The question of the homotopy invariance of Confk(−) for
simply connected closed manifolds remains open to this day.

Here, we do not work with the full homotopy type. Rather, we restrict
ourselves to the rational homotopy type. This amounts, in a sense, to forgetting
all the torsion.Rational homotopy theory canbe studied fromanalgebraic point
of view [48]. The rational homotopy type of a simply connected space X is
fully encoded in a “model” of X , i.e. a commutative differential graded algebra
(CDGA) A which is quasi-isomorphic to the CDGA of piecewise polynomial
forms A∗

PL(X). Due to technical issues, we will in fact work over R. If M is
a smooth manifold, then a real model is a CDGA which is quasi-isomorphic to
the CDGA of de Rham forms Ω∗

dR(M). While this is slightly coarser than the
rational homotopy type of M , in terms of computations it is often enough.

Thus, our goal is the following: given a model of M , deduce an explicit,
small model of Confk(M). This explicit model only depends on the model of
M . This shows the (real) homotopy invariance of Confk(−) on the class of
manifolds we consider. Moreover, this explicit model can be used to perform
computations, e.g. the real cohomology ring of Confk(M), etc.

We focus on simply connected (thus orientable) closed manifolds. They
satisfy Poincaré duality. Lambrechts and Stanley [32] showed that any
such manifold admits a model A which satisfies itself Poincaré duality, i.e.
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The Lambrechts–Stanley model 3

there is an “orientation” An ε−→ R which induces non-degenerate pairings
Ak ⊗ An−k → R for all k. Lambrechts and Stanley [33] built a CDGA GA(k)

out of such a Poincaré duality model (they denote it F(A, k)). If we view
H∗(Confk(R

n)) as spanned by graphs modulo Arnold relations, then GA(k)

consists of similar graphs with connected components labeled by A, and the
differential splits edges. Lambrechts and Stanley proved that GA(k) is quasi-
isomorphic to A∗

PL(Confk(M)) as a dg-module. They conjectured that this
quasi-isomorphism can be enhanced to give a quasi-isomorphism of CDGAs so
that GA(k) defines a rational model of Confk(M). We answer this conjecture
by the affirmative in the real setting in the following theorem.

Theorem 1 (Corollary 78) Let M be a simply connected, closed, smooth man-
ifold. Let A be any Poincaré duality model of M. Then for all k ≥ 0, GA(k) is
a model for the real homotopy type of Confk(M).

Corollary 2 (Corollary 79) For simply connected closed smooth manifolds,
the real homotopy type of M determines the real homotopy type of Confk(M).

Over the past decades, attempts weremade to solve the Lambrechts–Stanley
conjecture, and results were obtained for special kinds of manifolds, or for
low values of k. When M is a smooth complex projective variety, Kriz [30]
had previously shown that GH∗(M)(k) is actually a rational CDGA model for
Confk(M). The CDGA GH∗(M)(k) is the E2 page of a spectral sequence of
Cohen–Taylor [9] that converges to H∗(Confk(M)). Totaro [51] has shown
that for a smooth complex compact projective variety, the spectral sequence
only has one nonzero differential. When k = 2, then GA(2) was known to be
a model of Conf2(M) either when M is 2-connected [31] or when dim M is
even [10].

Our approach is different than the ones used in these previous works. We
use ideas coming from the theory of operads. In particular, we consider the
operad of little n-disks, defined by Boardman–Vogt [4], which consists of
configuration spaces of small n-disks (instead of points) embedded inside
the unit n-disk. These spaces of little n-disks are equipped with composition
products, which are basically defined by inserting a configuration of l little
n-disks into the i th little disk of a configuration of k little n-disks, resulting
in a configuration of k + l − 1 little n-disks. The idea is that a configuration
of little n-disks represents an operation acting on n-fold loop spaces, and
the operadic composition products of little n-disks reflect the composition
of such operations. The configuration spaces of little n-disks are homotopy
equivalent to the configurations spaces of points in the Euclidean n-space R

n ,
but the operadic composition structure does not go through this homotopy
equivalence.

In our work, we actually use another model of the little n-disk operads,
defined using the Fulton–MacPherson compactifications FMn(k) of the con-
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4 N. Idrissi

figurations spaces Confk(R
n) [2,19,46]. This compactification allows us to

retrieve, on this collection of spaces FMn = {FMn(k)}, the operadic com-
position products which were lost in the configurations spaces Confk(R

n).
We also use the Fulton–MacPherson compactifications FMM(k) of the con-
figuration spaces Confk(M) associated to a closed manifold M . When M is
framed, these compactifications assemble into an operadic right module FMM
over the Fulton–MacPherson operad FMn , which roughly means that we can
insert a configuration in FMn into a configuration in FMM . We show that the
Lambrechts–Stanley model is compatible with this action of the little disks
operad, as we explain now.

The little n-disks operads are formal [18,28,34,43,49]. Kontsevich’s proof
[28,34] of this theorem uses the spaces FMn . If we temporarily forget about
operads, this formality theorem means in particular that each space FMn(k) is
“formal”, i.e. the cohomologye∨

n (k):=H∗(FMn(k)) (with a trivial differential)
is a model for the real homotopy type of FMn(k). To prove Theorem 1, we
generalize Kontsevich’s approach to prove that GA(k) is a model of FMM(k).

To establish his result, Kontsevich has to consider fiberwise integrations
of forms along a particular class of maps, which are not submersions, but
represent the projection map of “semi-algebraic bundles”. In order to define
such fiberwise integration operations, Kontsevich uses CDGAs of piecewise
semi-algebraic (PA) forms Ω∗

PA(−) instead of the classical CDGAs of de Rham
forms. The theory of PA forms was developed in [23,29]. Any closed smooth
manifold M is a semi-algebraic manifold [39,50], and the CDGA Ω∗

PA(M) is
a model for the real homotopy type of M . For the formality of FMn , a descent
argument [22] is available to show that formality over R implies formality
overQ. However, no such descent argument exists for models with a nontrivial
differential such as GA. Therefore, although we conjecture that our results on
real homotopy types descend to Q, we have no general argument ensuring that
such a property holds.

The cohomology e∨
n = H∗(FMn) inherits a Hopf cooperad structure from

FMn , i.e. it is a cooperad (the dual notion of operad) in the category of CDGAs.
The CDGAs of forms Ω∗

PA(FMn(k)) also inherit a Hopf cooperad structure (up
to homotopy). The formality quasi-isomorphisms between the cohomology
algebras e∨

n (k) and the CDGAs of forms on FMn(k) are compatible in a suitable
sense with this structure. Therefore the Hopf cooperad e∨

n fully encodes the
rational homotopy type of the operad FMn .

In this paper, we also prove that the Lambrechts–Stanley model GA deter-
mines the real homotopy type of FMM as a right module over the operad FMn
when M is a framed manifold. To be precise, our result reads as follows.

Theorem 3 (Theorem 62) Let M be a framed smooth simply connected
closed manifold with dim M ≥ 4. Let A be any Poincaré duality model
of M. Then the collection GA = {GA(k)}k≥0 forms a Hopf right e∨

n -

123



The Lambrechts–Stanley model 5

comodule. Moreover the Hopf right comodule (GA,e∨
n ) is weakly equivalent

to (Ω∗
PA(FMM), Ω∗

PA(FMn)).

For dim M ≤ 3, the proof fails (see Proposition 45). However, in this case,
the only examples of simply connected closed manifolds are spheres, thanks
to Perelman’s proof of the Poincaré conjecture [41,42]. We can then directly
prove that GA(k) is a model for Confk(M) (see Sect. 4.3).

Our proof of Theorem 3, which is inspired by Kontsevich’s proof of the
formality of the little disks operads, is radically different from the proofs
of [33]. It involves an intermediary Hopf right comodule of labeled graphs
GraphsR . This comodule is similar to a comodule recently studied by
Campos–Willwacher [6], which corresponds to the case R = S(H̃∗(M)).
Note however that the approach of Campos–Willwacher differs from ours.
In comparison to their work, our main contribution is the definition of the
quasi-isomorphism between the CDGAsΩ∗

PA(FMM(k)) and the small, explicit
Lambrechts–Stanley model GA(k), which has the advantage of being finite-
dimensional and much more computable than GraphsS(H̃(M))

(k).

Applications. Ordered configuration spaces appear in many places in topology
and geometry. Therefore, thanks to Theorems 1 and 3, the explicitmodelGA(k)

provides an efficient computational tool in many concrete situations.
To illustrate this, we show how to apply our results to compute factorization

homology, an invariant of framed n-manifolds defined from an En-algebra [3].
Let M be a framed manifold with Poincaré duality model A, and B be an n-
Poisson algebras, i.e. an algebra over the operad H∗(En). Our results shows that
we can compute the factorization homology of M with coefficients in B just
from GA and B. As an application, we compute factorization homology with
coefficients in a higher enveloping algebra of a Lie algebra (Proposition 81),
recovering a theorem of Knudsen [27].

The Taylor tower in the Goodwillie–Weiss calculus of embeddings may be
computed in a similar manner [5,21]. It follows from a result of [52, Section
5.1] that FMM may be used for this purpose. Therefore our theorem shows that
GA may also be used for computing this Taylor tower.

Roadmap. In Sect. 1, we lay out our conventions and recall the necessary
background. This includes dg-modules and CDGAs, (co)operads and their
(co)modules, semi-algebraic sets and PA forms. We also recall basic results
on the Fulton–MacPherson compactifications of configuration spaces FMn(k)

and FMM(k), and the main ideas of Kontsevich’s proof of the formality of the
little disks operads using the CDGAs of PA forms on the spaces FMn(k). We
use the formalism of operadic twisting, which we recall, to deal with signs
more easily. Finally, we recollect the necessary background on Poincaré dual-
ity CDGAs and the Lambrechts–Stanley CDGAs. In Sect. 2, we build out of the
Lambrechts–Stanley CDGAs a Hopf right e∨

n -comodule GA.
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6 N. Idrissi

In Sect. 3, we construct the labeled graph complex GraphsR which will be
used to connectGA toΩ∗

PA(FMM). The construction is inspired byKontsevich’s
construction of the unlabeled graph complex Graphsn . It is done in several
steps. The first step is to consider a graded module of labeled graphs, GraR .
In order to be able to map GraR intoΩ∗

PA(FMM), we recall the construction of
what is called a “propagator” in the mathematical physics literature. We then
“twist” GraR to obtain a new object TwGraR , which consists of graphs with
two kinds of vertices: “external” and “internal”. Finally we must reduce our
graphs to obtain a new object, GraphsR , by removing all the connected com-
ponents with only internals vertices in the graphs using a “partition function”
(a function which resembles the Chern–Simons invariants).

In Sect. 4, we prove that the zigzag of Hopf right comodule morphisms
between GA andΩ∗

PA(FMM) is a weak equivalence. We first connect our graph
complex GraphsR to the Lambrechts–Stanley CDGAs GA. This requires van-
ishing results about the partition function. Thenwe end the proof of the theorem
by showing that all the morphisms are quasi-isomorphisms. Finally we study
the cases S2 and S3.

In Sect. 5, we use our model to compute factorization homology of framed
manifolds and we compare the result to a complex obtained by Knudsen. In
Sect. 6 we work out a variant of our theorem for the only simply connected
surface using the formality of the framed little 2-disks operad, and we present
a conjecture about higher dimensional oriented manifolds.

For convenience, we provide a glossary of our main notations at the end of
this paper.

1 Background and recollections

1.1 DG-modules and CDGAs

We consider differential graded modules (dg-modules) over the base field R.
Unless otherwise indicated, (co)homology of spaces is considered with real
coefficients. All our dg-modules will have a cohomological grading, V =⊕

n∈Z
V n . All the differentials raise degrees by one: deg(dx) = deg(x) + 1.

We say that a dg-module is of finite type if it is finite dimensional in each
degree. Let V [k] be the desuspension, defined by (V [k])n = V n+k . For
dg-modules V, W and homogeneous elements v ∈ V, w ∈ W , we let
(v ⊗ w)21:=(−1)(deg v)(degw)w ⊗ v and we extend this linearly to the ten-
sor product. Moreover, given an element X ∈ V ⊗ W , we will often use a
variant of Sweedler’s notation to express X as a sum of elementary tensors,
X :=∑

(X) X ′ ⊗ X ′′ ∈ V ⊗ W .
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The Lambrechts–Stanley model 7

We call CDGAs the (graded) commutative unital algebras in dg-modules. In
general, for a CDGA A, we let μA : A⊗2 → A be its product. For a dg-module
V , we let S(V ) be the free unital symmetric algebra on V .

We will need a model category structure on the category of CDGAs. We use
themodel category structure given by the general result of [24] for categories of
algebras over operads. Theweak equivalences are the quasi-isomorphisms, the
fibrations are the surjective morphisms, and the cofibrations are characterized
by the left lifting property with respect to acyclic fibrations. A path object for
the initial CDGA R is given by A∗

PL(Δ1) = S(t, dt), the CDGA of polynomials

forms on the interval. It is equipped with an inclusion R ↪
∼−→ A∗

PL(Δ1), and

two projections ev0, ev1 : A∗
PL(Δ1)

∼−→ R given by setting t = 0 or t = 1.
Two morphisms f, g : A → B with cofibrant source are homotopic if there
exists a homotopy h : A → B ⊗ A∗

PL(Δ1) such that the following diagram
commutes:

A

B B ⊗ A∗
PL(Δ1) B

f
h

g

id⊗ ev0

∼
id⊗ ev1

∼
.

Many of the CDGAs that appear in this paper are Z-graded. However, to
deserve the name “model of X”, a CDGA should be connected to A∗

PL(X) only
by N-graded CDGAs. The next proposition shows that considering this larger
category does not change our statement.

Proposition 4 Let A, B be two N-graded CDGAs which are homologically
connected, i.e. H0(A) = H0(B) = R. If A and B are quasi-isomorphic as
Z-graded CDGAs, then they also are as N-graded CDGAs.

Proof This follows from the results of [17, §II.6.2]. Let us temporarily denote
cdgaN the category of N-graded CDGAs (dg∗Com in [17]) and cdgaZ the
category of Z-graded CDGAs (dgCom in [17]). Note that in [17], Z-graded
CDGAs are homologically graded, but we can use the usual correspondence
Ai = A−i to keep our convention that all dg-modules are cohomologically
graded. There is an obvious inclusion ι : cdgaN → cdgaZ, which clearly
defines a full functor that preserves and reflects quasi-isomorphisms.

Let B
m be the dg-module R concentrated in degree m, let E

m be the dg-
module given by two copies of R in respective degree m − 1 and m such
that dEm is the identity of R in these degrees (hence E

m is acyclic), and let
i : B

m → E
m be the obvious inclusion. Themodel category cdgaN is equipped

with a set of generating cofibrations given by the morphisms S(i) : S(Bm) →
S(Em) and of the morphism ε : S(B0) → R. Recall that a cellular complex
of generating cofibrations is a CDGA obtained by a sequential colimit R =
colimk R〈k〉, where R〈0〉 = R and R〈k+1〉 is obtained from R〈k〉 by a pushout
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8 N. Idrissi

of generating cofibrations along attaching maps h : S(Bm) → R〈k〉. In [17,
§II.6.2], the expression “connected generating cofibrations” is used for the
generating cofibrations of the form S(i) : S(Bm) → S(Em) with m > 0.

In the proof of [17, Proposition II.6.2.8], it is observed that, if A is homo-
logically connected, then the attaching map h : S(B0) → A associated to a
generating cofibration ε : S(B0) → R necessarily reduces to the augmenta-
tion ε : S(B0) → R followed by the inclusion as the unit R ⊂ A. Thus a
pushout of the generating cofibration ε : S(B0) → R reduces to a neutral
operation in this case. In the proof of [17, Proposition II.6.2.8], it is deduced
from this observation that any homologically connected algebra admits a res-
olution RA

∼−→ A such that RA is a cellular complex of connected generating
cofibrations. Connected generating cofibrations are also cofibrations in cdgaZ

after applying ι. Moreover ι preserves colimits. It follows that ιRA is cofibrant
in cdgaZ too.

By hypothesis, ιA and ιB areweakly equivalent in cdgaZ, hence ιRA and ιB
are also weakly equivalent (because ι clearly preserves quasi-isomorphisms),
through a zigzag ιRA

∼←− · ∼−→ ιB. As ιRA is cofibrant (and all CDGAs are
fibrant), we can find a direct quasi-isomorphism ιRA

∼−→ ιB and therefore a
zigzag ιA

∼←− ιRA
∼−→ ιB which only involves N-graded CDGAs. ��

1.2 (Co)operads and their right (co)modules

We assume basic proficiency with Hopf (co)operads and (co)modules over
(co)operads, see e.g. [16,17,35].We indexour (co)operads byfinite sets instead
of integers to ease the writing of some formulas. If W ⊂ U is a subset, we
write the quotient U/W = (U\W ) � {∗}, where ∗ represents the class of
W ; note that U/∅ = U � {∗}. An operad in dg-modules, for instance, is
given by a functor from the category of finite sets and bijections (a symmetric
collection) P : U �→ P(U ) to the category of dg-modules, together with a unit
k → P({∗}) and composition maps ◦W : P(U/W )⊗P(W ) → P(U ) for every
pair of sets W ⊂ U , satisfying the usual associativity, unity and equivariance
conditions. Dually, a cooperad C is given by a symmetric collection, a counit
C({∗}) → k, and cocomposition maps ◦∨

W : C(U ) → C(U/W ) ⊗ C(W ) for
every pair W ⊂ U .

Let k = {1, . . . , k}. We recover the usual notion of a cooperad indexed by
the integers by considering the collection {C(k)}k≥0, and the cocomposition
maps ◦∨

i : C(k + l − 1) → C(k) ⊗ C(l) corresponds to ◦∨{i,...,i+l−1}.
Following Fresse [17, §II.9.3.1], a “Hopf cooperad” is a cooperad in the

category of CDGAs. We do not assume that (co)operads are trivial in arity zero,
but they will satisfy P(∅) = k (resp. C(∅) = k). Therefore we get (co)operad
structures equivalent to the structure of Λ-(co)operads considered by Fresse
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The Lambrechts–Stanley model 9

[17, §II.11], which he uses to model rational homotopy types of operads in
spaces satisfying P(0) = ∗ (but we do not use this formalism in the sequel).

The result of Proposition 4 extends to Hopf cooperads (and to Hopf Λ-
cooperads). To establish this result, we still use a description of generating
cofibrations of N -graded Hopf cooperads, which are given by morphisms of
symmetric algebras of cooperads S(i) : S(C) → S(D), where i : C →
D is a dg-cooperad morphism that is injective in positive degrees (see [17,
§II.9.3] for details). In the context of homologically connected cooperads,
we can check that the pushout of such a Hopf cooperad morphism along an
attaching map reduces to a pushout of a morphism of symmetric algebras of
cooperads S(C/ ker(i)) → S(D), where we mod out by the kernel of the map
i : C → D in degree 0.Wededuce from this observation that any homologically
connected N -graded Hopf cooperad admits a resolution by a cellular complex
of generating cofibrations of the form S(i) : S(C) → S(D), where themap i is
injective in all degrees (we again call such a generating cofibration connected).
The category of Z-graded Hopf cooperads inherits a model structure, like the
category of N-graded Hopf cooperads considered in [17, §II.9.3]. Cellular
complexes of connected generating cofibrations of N-graded Hopf cooperads
define cofibrations in the model category of Z-graded Hopf cooperads yet, as
in the proof of Proposition 4.

Given an operad P, a right P-module is a symmetric collection M equipped
with composition maps ◦W : M(U/W ) ⊗ P(W ) → M(U ) satisfying the usual
associativity, unity and equivariance conditions. A right comodule over a coop-
erad is defined dually. If C is a Hopf cooperad, then a right Hopf C-comodule
is a C-comodule N such that all the N(U ) are CDGAs and all the maps ◦∨

W are
morphisms of CDGAs.

Definition 5 Let C (resp. C′) be a Hopf cooperad and N (resp. N′) be a Hopf
right comodule over C (resp. C′). A morphism of Hopf right comodules is a
pair ( fN, fC) consisting of a morphism of Hopf cooperads fC : C → C′, and
a map of Hopf right C′-comodules fN : N → N′, where N has the C-comodule
structure induced by fC. It is a quasi-isomorphism if both fC and fN are quasi-
isomorphisms in each arity. A Hopf right C-module N is said to be weakly
equivalent to a Hopf right C′-module N′ if the pair (N,C) can be connected to
the pair (N′,C′) through a zigzag of quasi-isomorphisms.

The next very general lemma can for example be found in [6, Section 5.2].
Let C be a cooperad, and see the CDGA A as an operad concentrated in arity
1. Recall that C ◦ A = ⊕

i≥0 C(i) ⊗Σi A⊗i denotes the composition product
of operads, where we view A as an operad concentrated in arity 1. Then the
commutativity of A implies the existence of a distributive law t : C◦A → A◦C,
given in each arity by the morphism t : C(n) ⊗ A⊗n → A ⊗ C(n) given by
x ⊗ a1 ⊗ · · · ⊗ an �→ a1 . . . an ⊗ x .
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10 N. Idrissi

Lemma 6 Let N be a right C-comodule, and see A as an operad concentrated
in arity 1. Then N ◦ A is a right C-comodule through the map:

N ◦ A
ΔN◦1−−−→ N ◦ C ◦ A

1◦t−→ N ◦ A ◦ C. ��

1.3 Semi-algebraic sets and forms

Kontsevich’s proof of the formality of the little disks operads [28] uses the
theory of semi-algebraic sets, as developed in [23,29]. A semi-algebraic set
is a subset of R

N defined by finite unions of finite intersections of zero sets
of polynomials and polynomial inequalities. By the Nash–Tognoli Theorem
[39,50], any closed smooth manifold is algebraic hence semi-algebraic.

There is a functor Ω∗
PA of “piecewise semi-algebraic (PA) differential

forms”, analogous to deRham forms. If X is a compact semi-algebraic set, then
Ω∗

PA(X) � A∗
PL(X) ⊗Q R, i.e. the CDGA Ω∗

PA(X) models the real homotopy
type of X [23, Theorem 6.1].

A key feature of PA forms is that it is possible to compute integrals of
“minimal forms” along fibers of “PA bundles”, i.e. maps with local semi-
algebraic trivializations [23, Section 8]. Aminimal form is of the type f0d f1∧
· · · ∧ d fk where fi : M → R are semi-algebraic maps. Given such a minimal
form λ and a PA bundle p : M → B with fibers of dimension r , there is a
new form (which is not minimal in general), also called the pushforward of λ

along p:

p∗λ:=
∫

p:M→B
λ ∈ Ωk−r

PA (B).

In what follows, we use an extension of the fiberwise integration of minimal
forms to the sub-CDGA of “trivial forms” given in [6, Appendix C]. Briefly
recall that trivial forms are integrals of minimal forms along fibers of a trivial
PA bundle (see [6, Definition 81]). In fact, in Sect. 3.3, we consider a certain
form, the “propagator”, which is not minimal but trivial in this sense, and we
apply the extension of the fiberwise integration to this form.

The functorΩ∗
P A is monoidal, but not stronglymonoidal, and contravariant.

Thus, given an operad P in semi-algebraic sets, Ω∗
PA(P) is an “almost” Hopf

cooperad and satisfies a slightly modified version of the cooperad axioms,
as explained in [34, Definition 3.1]. Cooperadic structure maps are replaced

by zigzags Ω∗
PA(P(U ))

◦∗
W−→ Ω∗

PA(P(U/W ) × P(W ))
∼←− Ω∗

PA(P(U/W )) ×
Ω∗

PA(P(W )) (where the second map is the Künneth morphism). If C is a Hopf
cooperad, an “almost” morphism f : C → Ω∗

PA(P) is a collection of CDGA
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The Lambrechts–Stanley model 11

morphisms fU : C(U ) → Ω∗
PA(P(U )) for all U , such that the following

diagrams commute:

C(U ) C(U/W ) ⊗ C(W )

Ω∗
PA(P(U )) Ω∗

PA(P(U/W ) × P(W )) Ω∗
PA(P(U/W )) ⊗ Ω∗

PA(P(W ))

◦∨
W

fU fU/W ⊗ fW◦∗
W ∼

Similarly, ifM is aP-module, thenΩ∗
PA(M) is an “almost” Hopf right comodule

overΩ∗
PA(P). If N is a Hopf right C-comodule, where C is a cooperad equipped

with an “almost” morphism f : C → Ω∗
PA(P), then an “almost” morphism g :

N → Ω∗
PA(M) is a collection of CDGA morphisms gU : N(U ) → Ω∗

PA(M(U ))

that make the following diagrams commute:

N(U ) N(U/W ) ⊗ C(W )

Ω∗
PA(M(U )) Ω∗

PA(M(U/W ) × P(W )) Ω∗
PA(M(U/W )) ⊗ Ω∗

PA(P(W ))

◦∨
W

gU gU/W ⊗ fW◦∗
W ∼

We will generally omit the adjective “almost”, keeping in mind that some
commutative diagrams are a bit more complicated than at first glance.

Remark 7 There is a construction Ω∗

 that turns a simplicial operad P into a

Hopf cooperad and such that a morphism of Hopf cooperads C → Ω∗

 (P)

is the same thing as an “almost” morphism C → A∗
PL(P), where A∗

PL is the
functor of Sullivan forms [17, Section II.10.1]. Moreover there is a canonical
collection of maps (Ω∗


 (P))(U ) → A∗
PL(P(U )), which are weak equivalences

if P is a cofibrant operad. This functor is built by considering the right adjoint
of the functor on operads induced by the Sullivan realization functor, which
is monoidal. A similar construction can be extended to Ω∗

PA and to modules
over operads. This construction allows us to make sure that the cooperads and
comodules we consider truly encode the rational or real homotopy type of the
initial operad or module (see [17, §II.10.2]).

1.4 Little disks and related objects

The little disks operad En is a topological operad initially introduced by May
and Boardman–Vogt [4,37] to study iterated loop spaces. Its homology en :=
H∗(En) is described by a theoremofCohen [8]: it is either the operad governing
associative algebras for n = 1, or n-Poisson algebras for n ≥ 2. We also
consider the linear dual e∨

n :=H∗(En), which is a Hopf cooperad.
In fact, we use the Fulton–MacPherson operad FMn , which is an operad

in spaces weakly equivalent to the little disks operad En . The components
FMn(k) are compactifications of the configuration spaces Confk(R

n), defined
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12 N. Idrissi

by using a real analogue due to Axelrod–Singer [2] of the Fulton–MacPherson
compactifications [19]. The idea of this compactification is to allow configu-
rations where points become “infinitesimally close”. Then one uses insertion
of such infinitesimal configurations to define operadic composition products
on the spaces FMn(k). We refer to [46] for a detailed treatment and to [34,
Sections 5.1–5.2] for a clear summary. In both references, the name C[k] is
used for what we call FMn(k).

The first two spaces FMn(∅) = FMn(1) = ∗ are singletons, and FMn(2) =
Sn−1 is a sphere. We let the volume form of FMn(2) be:

voln−1 ∈ Ωn−1
PA (Sn−1) = Ωn−1

PA (FMn(2)) (1)

The spaceFMn(k) is a semi-algebraic stratifiedmanifold, of dimension nk−
n − 1 for k ≥ 2, and of dimension 0 otherwise. For u �= v ∈ U , we can
define the projection maps that forget all but two points in the configuration,
puv : FMn(U ) → FMn(2). These projections are semi-algebraic bundles.
If M is a manifold, the configuration space Confk(M) can similarly be

compactified to give a space FMM(k). By forgetting points, we again obtain
projection maps, for u, v ∈ U :

pu : FMM(U ) � FMM(1) = M, puv : FMM(U ) � FMM(2). (2)

The two projections p1 and p2 are equal when restricted ∂FMM(2), and they
define a sphere bundle of rank n − 1,

p : ∂FMM(2) � M. (3)

When M is framed, the collection of spaces FMM assemble to form a
topological right module over FMn , with composition products defined by
insertion of infinitesimal configurations. Moreover in this case, the sphere
bundle p : ∂FMM(2) → M is trivialized by:

M × Sn−1 ∼= FMM(1) × FMn(2)
◦1−→ ∂FMM(2). (4)

Recall fromSect. 1.3 thatwe can endow M with a semi-algebraic structure. It
is immediate that FMM(k) is a stratified semi-algebraic manifold of dimension
nk. Moreover, the proofs of [34, Section 5.9] can be adapted to show that the
projections pU : FMM(U � V ) → FMM(U ) are PA bundles.
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The Lambrechts–Stanley model 13

1.5 Operadic twisting

We will make use of the “operadic twisting” procedure in what follows [11].
Let us now recall this procedure, in the case of cooperads.

Let Lien be the operad governing shifted Lie algebras. A Lien-algebra is
a dg-module g equipped with a Lie bracket [−, −] : g⊗2 → g[1−n] of degree
1 − n, i.e. we have [gi , g j ] ⊂ gi+ j+(1−n).

Remark 8 The degree convention is such that there is an embedding of operads
Lien → H∗(FMn), i.e. Poisson n-algebras are Lien-algebras. The usual Lie
operad is Lie1. This convention is consistent with [53]. However in [54], the
notation is Lie(n) = Lien+1. In [11], only the unshifted operad Lie = Lie1
is considered.

The operad Lien is quadratic Koszul (see e.g. [35, Section 13.2.6]), and
as such admits a cofibrant resolution hoLien:=Ω(K (Lien)), where Ω is
the cobar construction and K (Lien) is the Koszul dual cooperad of Lie.
Algebras over hoLien are (shifted) L∞-algebras, also known as homotopy
Lie algebras, i.e. dg-modules g equipped with higher brackets [−, . . . , −]k :
g⊗k → g[3 − k − n] (for k ≥ 1) satisfying the classical L∞ equations.

Let C be a cooperad (with finite-type components in each arity) equipped
with a map to the dual of hoLien . This map can equivalently be seen as a
Maurer–Cartan element in the following dg-Lie algebra [35, Section 6.4.2]:

HomΣ(K (Lien),C
∨):=

(∏

i≥0

(
C∨(i) ⊗ R[−n]⊗i)Σi [n], ∂, [−, −]

)

, (5)

where we used the explicit description of theKoszul dual K (Lien) as a shifted
version of the cooperad encoding cocommutative coalgebras. Given f, g ∈
HomΣ(K (Lien),C∨), their bracket is [ f, g] = f � g ∓ g � f , where � is
given by:

f � g : K (Lien)
cooperad−−−−−→ K (Lien) ◦ K (Lien)

f ◦g−−→ C∨ ◦ C∨ operad−−−→ C∨.

An element μ ∈ HomΣ(K (Lien),C∨) is said to satisfy the Maurer–Cartan
equation if ∂μ + μ � μ = 0. Such an element is called a twisting morphism in
[35, Section 6.4.3], and the equivalence with morphisms hoLien → C∨ (or
dually C → hoLie∨

n ) is [35, Theorem 6.5.7]. In the sequel, we will alternate
between the two points of view, morphisms or Maurer–Cartan elements.

There is an action of the symmetric groupΣi on i = {1, . . . , i}. As a graded
module, the twist of C with respect to μ is given by:

TwC(U ) :=
⊕

i≥0

(
C(U � i) ⊗ R[n]⊗i)

Σi
. (6)
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14 N. Idrissi

The symmetric collection TwC inherits a cooperad structure from C. The
differential of TwC is the sumof the internal differential ofCwith a differential
coming from the action ofμ that we now explain. The action ofμ is threefold,
and the total differential of TwC(U ) can be expressed as:

dTwC:=dC + (− · μ) + (− · μ1) + (μ1 · −). (7)

Let us now explain these notations. Let i ≥ 0 be some fixed integer and let us
describe the action of μ on C(U � i) ⊂ TwC(U ) (up to degree shifts). In what
follows, for a set J ⊂ i , we let j :=#J , and i/J ∼= i + j − 1.

Recall that μ is a formal sum of elements C( j)∨ for j ≥ 0. The first action
(− · μ) is the sum over all subsets J ⊂ i of the following cocompositions:

C(U � i)
◦∨

J−→ C(U � i/J )

⊗C(J )
id⊗μ−−−→ C(U � i/J ) ⊗ R ∼= C(U � i + j − 1). (8)

For the two other terms, we need the element μ1 ∈ ∏
j≥0 C( j � {∗})∨. It is

the sum over all possible ways of distinguishing one input of μ in each arity.
(Distinguishing one input does not respect the invariants in the definition of
Eq. (5), but taking the sum over all possible ways does.)

The second action (−·μ1) is then the sum of the following cocompositions,
over all subsets J ⊂ i and over all ∗ ∈ U (where we use the obvious bijection
U/{∗} ∼= U ):

C(U � i)
◦∨{u}�J−−−→ C

(
(U � i)/({∗} � J )

)

⊗C({∗} � J )
id⊗μ1−−−−→ C(U � i + j − 1), (9)

Finally, the third action (μ1 · −) is the sum over all subsets J ⊂ i of the
cocompositions (where we use the obvious bijection (U � I )/(U � J ) =
{∗} � I\J ):

C(U � i)
◦∨

U�J−−−→ C({∗} � i\J ) ⊗ C(U � J )
μ1⊗id−−−→ C(U � J ), (10)

Lemma 9 If C is a Hopf cooperad satisfying C(∅) = k, then TwC inherits a
Hopf cooperad structure.

Proof To multiply an element of C(U � I ) ⊂ TwC(U ) with an element of

C(U � J ) ⊂ TwC(U ), we use the maps C(V )
◦∨

∅−→ C(V/∅) ⊗ C(∅) ∼=
C(V � {∗}) iterated several times, to obtain elements in C(U � I � J ) and the
product. ��
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The Lambrechts–Stanley model 15

Moreover, we will need to twist right comodules over cooperads. This con-
struction is found (for operads) in [54, Appendix C.1]. Let us fix a cooperad C
and a twist TwC with respect to μ as above. Given a right C-comodule M, we
can also twist it with respect to μ, as follows. As a graded module, the object
TwM(U ) is defined by:

TwM(U ):=
∏

i≥0

(
M(U � i) ⊗ (R[n])⊗i)

Σi
.

The comodule structure is inherited from M. The total differential is the sum:

dTwM:=dM + (− · μ) + (− · μ1), (11)

where (− · μ) and (− · μ1) are as in Eqs. (8) and (9) but using the comodule
structure. Note that M is only a right module, so there can be no term (μ1 · −)

in this differential. Lemma 9 has an immediate extension:

Lemma 10 If C is a Hopf cooperad satisfying C(∅) = k and M is a Hopf right
C-comodule, then TwM inherits a Hopf right (TwC)-comodule structure. ��

1.6 Formality of the little disks operad

Kontsevich’s proof of the formality of the little disks operads [28, Section 3],
can be summarized by the fact that Ω∗

PA(FMn) is weakly equivalent to e∨
n as a

Hopf cooperad. For detailed proofs, we refer to [34].
We outline this proof here as we will mimic its pattern for our theorem. The

idea of the proof is to construct a Hopf cooperad Graphsn . The elements of
Graphsn are formal linear combinations of special kinds of graphs, with two
types of vertices, numbered “external” vertices and unnumbered “internal”
vertices. The differential is defined combinatorially by edge contraction. It is
built in such a way that there exists a zigzag e∨

n
∼←− Graphsn

∼−→ Ω∗
PA(FMn).

The first map is the quotient by the ideal of graphs containing internal ver-
tices. The second map is defined using integrals along fibers of the PA bundles
FMn(U � I ) → FMn(U ) which forget some points in the configuration. An
induction argument shows that the first map is a quasi-isomorphism, and the
second map is easily seen to be surjective on cohomology.

In order to deal with signs more easily, we use (co)operadic twisting
(Sect. 1.5). Thus the Hopf cooperad Graphsn is not the same as the Hopf
cooperad D from [34], see Remark 13.

The cohomology of En . The cohomologye∨
n (U ) = H∗(En(U )) has a classical

presentation due to Arnold [1] and Cohen [8]. We have

e∨
n (U ) = S(ωuv)u,v∈U /I, (12)
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16 N. Idrissi

where the generators ωuv have cohomological degree n − 1, and the ideal I
encoding the relations is generated by the polynomials (called Arnold rela-
tions):

ωuu = 0; ωvu = (−1)nωuv; ω2
uv = 0; ωuvωvw + ωvwωwu + ωwuωuv = 0. (13)

The cooperadic structure maps are given by (where [u], [v] ∈ U/W are the
classes of u and v in the quotient):

◦∨
W : e∨

n (U ) → e∨
n (U/W ) ⊗ e∨

n (W ), ωuv �→
{
1 ⊗ ωuv, if u, v ∈ W ;
ω[u][v] ⊗ 1, otherwise.

(14)

Graphs with only external vertices. The intermediary cooperad of graphs,
Graphsn , is built in several steps. In the first step, define a cooperad of graphs
with only external vertices, with generators euv of degree n − 1:

Gran(U ) = (
S(euv)u,v∈U /(e2uv = euu = 0, evu = (−1)neuv), d = 0

)
.

(15)

The definition of Gran(U ) is almost identical to the definition of e∨
n (U ),

except that we do not kill the Arnold relations.
The CDGA Gran(U ) is spanned by words of the type eu1v1 . . . eur vr . Such

a word can be viewed as a graph with U as the set of vertices, and an edge
between ui and vi for each factor eui vi . For example, euv is a graphwith a single
edge from u to v (see Eq. (16) for another example). Edges are oriented, but
for even n an edge is identified with its mirror (so we can forget orientations),
while for odd n it is identified with the opposite of its mirror. In pictures, we do
not draw orientations, keeping in mind that for odd n, they are necessary to get
precise signs. Graphs with double edges or edges between a vertex and itself
are set to zero. Given such a graph, its set of edges EΓ ⊂ (U

2

)
is well-defined.

The vertices of these graphs are called “external”, in contrast with the internal
vertices that are going to appear in the next part.

e12e13e56 =
1 2

3 4

5

6

∈ Gran(6) (16)

The multiplication of the CDGA Gran(U ), from this point of view, consists
of gluing two graphs along their vertices. The cooperadic structure map ◦∨

W :
Gran(U ) → Gran(U/W ) ⊗ Gran(W ) maps a graph Γ to ±ΓU/W ⊗ ΓW
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The Lambrechts–Stanley model 17

such that ΓW is the full subgraph of Γ with vertices W and ΓU/W collapses
this full subgraph to a single vertex. On generators, ◦∨

W is defined by a formula
which is in fact identical to Eq. (14), replacing ωuv by euv. This implies that
the cooperad Gran maps to e∨

n by sending euv to ωuv .
There is a morphism ω′ : Gran → Ω∗

PA(FMn) given on generators by:

ω′ : Gran(U ) → Ω∗
PA(FMn(U )), Γ �→

∧

(u,v)∈EΓ

p∗
uv(voln−1), (17)

where puv : FMn(U ) → FMn(2) is the projection map defined in Sect. 1.4,
and voln−1 is the volume form of FMn(2) ∼= Sn−1 from Eq. (1).

Twisting. The second step of the construction is cooperadic twisting, using the
procedure outlined in Sect. 1.5. The Hopf cooperad Gran maps into Lie∨

n as
follows. The cooperad Lie∨

n is cogenerated by Lie∨
n (2), and on cogenerators

the cooperad map is given by sending e12 ∈ Gran(2) to the cobracket in
Lie∨

n (2) and all the other graphs to zero. This map to Lie∨
n yields a map to

hoLie∨
n by composition with the canonical map Lie∨

n
∼−→ hoLie∨

n . In the
dual basis, the corresponding Maurer–Cartan element μ is given by:

μ:=e∨
12 = 1 2 ∈ Gra∨

n (2) (18)

The cooperad Gran satisfies Gran(∅) = R. Thus by Lemma 9, TwGran
inherits a Hopf cooperad structure, which we now explicitly describe.

The dg-module TwGran(U ) is spanned by graphs with two types of ver-
tices: external vertices, which correspond to elements of U and that we will
picture as circles with the name of the label in U inside, and indistinguishable
internal vertices, corresponding to the elements of i in Eq. (6) and that we will
draw as black points. For example, the graph inside the differential in the left
hand side of Fig. 1 represents an element of TwGran(U ) with U = {1, 2, 3}
and i = 1. The degree of an edge is still n −1, the degree of an external vertex
is still 0, and the degree of an internal vertex is −n.

The product of TwGran(U ) glues graphs along their external vertices only.
Compared to Lemma 9, this coincides with adding isolated internal vertices
(by iterating the cooperad structure map ◦∨

∅
) and gluing along all vertices.

Let us now describe the differential adapted from [34, Section 6.4] (see
Remark 12 for the differences). We first give the final result, then we explain
how it is obtained from the description in Sect. 1.5. An edge is said to be
contractible if it connects any vertex to an internal vertex, except if it connects
a univalent internal vertices to a vertex which is not a univalent internal vertex.
The differential of a graph Γ is the sum:
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18 N. Idrissi

1

2 3

1

2 3

±

1

2 3

±

1

2 3

d

Fig. 1 The differential of TwGran . This particular example shows that the Arnold relation
(the RHS) is killed up to homotopy

dΓ =
∑

e∈EΓ
contractible

±Γ/e,

where Γ/e is Γ with e collapsed, and e ranges over all contractible edges.
Let us now explain how to compare this with the description in Sect. 1.5,

see also [53, Appendix I.3] for a detailed description. Recall that the Maurer–
Cartan elementμ (Eq. (18)) is equal to 1 on the graph with exactly two vertices
and one edge, and vanishes on all other graphs. Recall from Eq. (7) that the
differential of TwGran has three terms: (− · μ) + (− · μ1) + (μ1 · −), plus
the differential of Gran which vanishes. Let Γ be some graph. Then dΓ =
Γ · μ + Γ · μ1 + μ1 · Γ where:

– The elementΓ ·μ is the sumover all ways of collapsing a subgraphΓ ′ ⊂ Γ

with only internal vertices, the result being μ(Γ ′)Γ/Γ ′. This is nonzero
only if Γ ′ has exactly two vertices and one edge. Thus this summand cor-
responds to contracting all edges between two (possibly univalent) internal
vertices in Γ .

– The elementΓ ·μ1 is the sumover allways of collapsing a subgraphΓ ′ ⊂ Γ

with exactly one external vertex (and any number of internal vertices), with
result μ(Γ ′)Γ/Γ ′. This summands corresponds to contracting all edges
between one external vertex and one internal (possibly univalent) vertex.

– The element μ1 · Γ is the sum over all ways of collapsing a subgraph
Γ ′ ⊂ Γ containing all the external vertices, with result μ1(Γ/Γ ′)Γ ′.
The coefficient μ1(Γ/Γ ′) can only be nonzero if Γ is obtained from Γ ′
by adding a univalent internal vertex. A careful analysis of the signs [53,
Appendix I.3] shows that this cancels out with the contraction of edges con-
nected to univalent internal vertices from the other two summands, unless
both endpoints of the edge are univalent and internal (and hence discon-
nected from the rest of the graph), in which cases the same term appears
three times, and only two cancel out (see [53, Fig. 3] for the dual picture).

Definition 11 A graph is internally connected if it remains connected when
the external vertices are deleted. It is easily checked that as a commutative
algebra, TwGran(U ) is freely generated by such graphs.

The morphisms e∨
n ← Gran

ω′−→ Ω∗
PA(FMn) extend along the inclusion

Gran ⊂ TwGran as follows. The extended morphism TwGran → e∨
n sim-
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The Lambrechts–Stanley model 19

ply sends a graph with internal vertices to zero. We need to check that this
commutes with the differential. We thus need to determine when a graph with
internal vertices (sent to zero) can have a differential with no internal ver-
tices (possibly sent to a nonzero element in e∨

n ). The differential decreases
the number of internal vertices by exactly one. So by looking at generators
(internally connected graphs) we can look at the case of graphs with a single
internal vertex connected to some external vertices. Either the internal vertex
is univalent, but then the edge is not contractible and the differential vanishes.
Or the internal vertex is connected to more than one external vertices. In this
case, one check that the differential of the graph is zero modulo the Arnold
relations, (see [34, Introduction] and Fig. 1 for an example).

The extended morphism ω : TwGran → Ω∗
PA(FMn) (see [28, Defini-

tion 14] and [34, Chapter 9] where the analogous integral is denoted Î ) sends
a graph Γ ∈ Gran(U � I ) ⊂ TwGran(U ) to:

ω(Γ ):=
∫

FMn(U�I )
pU−→FMn(U )

ω′(Γ ) = (pU )∗(ω′(Γ )), (19)

where pU is the projection that forgets the points of the configuration corre-
sponding to I , and the integral is an integral along the fiber of this PA bundle
(see Sect. 1.3). Note that the volume form on the sphere is minimal, hence
ω′(Γ ) is minimal and therefore we can compute this integral.

Remark 12 This Hopf cooperad is different from the module of diagrams D̂
introduced in [34, Section 6.2]: TwGran is the quotient of D̂ by graphs with
multiple edges and loops. The analogous integral Î : D̂ → Ω∗

PA(FMn) is from
[34, Chapter 9]. It vanishes on graphs with multiple edges and loops by [34,
Lemmas 9.3.5, 9.3.6], soω is well-defined.Moreover the differential is slightly
different. In [34] some kind of edges, called “dead ends” [34, Definition 6.1.1],
are not contractible.When restricted to graphswithoutmultiple edges or loops,
these are edges connected to univalent internal vertices. But in TwGran , edges
connecting two internal vertices that are both univalent are contractible (see
[53, Fig. 3] for the dual picture). This does not change Î , which vanishes on
graphs with univalent internal vertices anyway [34, Lemma 9.3.8]. Note that
D̂ is not a Hopf cooperad [34, Example 7.3.2] due to multiple edges.

Reduction. The cooperad TwGran does not have the homotopy type of the
cooperad Ω∗

PA(FMn). It is reduced by quotienting out all the graphs with con-
nected components consisting exclusively of internal vertices. This is a bi-ideal
generated by TwGran(∅), thus the resulting quotient is a Hopf cooperad:

Graphsn:=TwGran/
(
TwGran(∅)

)
.
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20 N. Idrissi

Remark 13 This Hopf cooperad is not isomorphic to the Hopf cooperad D
from [34, Section 6.5].We allow internal vertices of any valence, whereas inD
internal verticesmust be at least trivalent. There is a quotientmapGraphsn →
D,which is a quasi-isomorphismby [53, Proposition3.8]. The statement of [53,
Proposition 3.8] is actually about the dual operads, but as we work over a field
and the spaces we consider have finite-type cohomology, this is equivalent.
The notation is also different: the couple (Graphsn,fGraphsn,c) in [53]
denotes (D∨,Graphs∨

n ) in [34].

One checks that the two morphisms e∨
n ← TwGran → Ω∗

PA(FMn) factor
through the quotient (the first one because graphswith internal vertices are sent
to zero, the second one becauseω vanishes on graphswith only internal vertices
by [34, Lemma 9.3.7]). The resulting zigzag e∨

n ← Graphsn → Ω∗
PA(FMn)

is then a zigzag of weak equivalence of Hopf cooperads thanks to the proof of
[28, Theorem 2] (or [34, Theorem 8.1] and the discussion at the beginning of
[34, Chapter 10]), combined with the comparison between D and Graphsn
from [53, Proposition 3.8] (see Remark 13).

1.7 Poincaré duality CDGA models

The model forΩ∗
PA(FMM) relies on a Poincaré duality model of M . We mostly

borrow the terminology and notation from [32].
Fix an integer n and let A be a connected CDGA (i.e. A = R ⊕ A≥1). An

orientation on A is a linear map An → R satisfying ε ◦d = 0 (which we often
view as a chain map A → R[−n]) such that the induced pairing

〈−, −〉 : Ak ⊗ An−k → R, a ⊗ b �→ ε(ab) (20)

is non-degenerate for all k. This implies that A = A≤n , and that ε : An → R

is an isomorphism. The pair (A, ε) is called a Poincaré duality CDGA. If A
is such a Poincaré duality CDGA, then so is its cohomology. The following
“converse” has been shown by Lambrechts–Stanley.

Theorem 14 (Direct corollary of Lambrechts–Stanley [32, Theorem 1.1]) Let
M be a simply connected semi-algebraic closed oriented manifold. Then there
exists a zigzag of quasi-isomorphisms of CDGAs

A
ρ←− R

σ−→ Ω∗
PA(M),

such that A is a Poincaré duality CDGA of dimension n, R is a quasi-free CDGA

generated in degrees ≥ 2, σ factors through the sub-CDGA of trivial forms.

Proof We refer to Sect. 1.3 for a reminder on trivial forms. We pick a minimal
model R of the manifold M (over R) and a quasi-isomorphism from R to the
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sub-CDGA of trivial forms in Ω∗
P A(M), which exists because the sub-CDGA

of trivial forms is quasi-isomorphic to Ω∗
P A(M) (see Sect. 1.3), and hence, is

itself a real model for M . We compose this new quasi-isomorphism this the
inclusion to eventually get a quasi-isomorphism σ : R → Ω∗

P A(M) which
factors through the sub-CDGA of trivial forms, and we set ε = ∫

M σ(−) :
R → R[−n]. The CDGA R is of finite type because M is a closed manifold.
Hence, we can apply the Lambrechts–Stanley Theorem [32, Theorem 1.1] to
the pair (R, ε) to get the Poincaré duality algebra A of our statement. ��

Let A be a Poincaré duality CDGA of finite type and let {ai } be a homo-
geneous basis of A. Consider the dual basis {a∗

i } with respect to the duality
pairing, i.e. ε(ai a∗

j ) = δi j is given by the Kronecker symbol. Then the diag-
onal cocycle is defined by the following formula and is independent of the
chosen homogeneous basis (see e.g. [14, Definition 8.16]:

ΔA:=
∑

i

(−1)|ai |ai ⊗ a∗
i ∈ A ⊗ A. (21)

The element ΔA is a cocycle of degree n (this follows from ε ◦ d = 0). It
satisfies Δ21

A = (−1)nΔA (where (−)21 is defined in Sect. 1.1). For all a ∈ A
it satisfies the equation (a ⊗ 1)ΔA = (1 ⊗ a)ΔA. There is a volume form,

volA:=ε−1(1R) ∈ An.

The product μA : A ⊗ A → A sends ΔA to χ(A) · volA, where χ(A) is the
Euler characteristic of A. We will need the following technical result later.

Proposition 15 One can choose the zigzag of Theorem 14 such there exists a
symmetric cocycle ΔR ∈ R ⊗ R of degree n satisfying (ρ ⊗ ρ)(ΔR) = ΔA. If
χ(M) = 0 we can moreover choose it so that μR(ΔR) = 0.

Proof We follow closely the proof of [32] to obtain the result. Recall that the
proof of [32] has two different cases: n ≤ 6, where the manifold is automati-
cally formal and hence A = H∗(M), and n ≥ 7, where the CDGA is built out
of an inductive argument. We split our proof along these two cases.

Let us first deal with the case n ≥ 7. When n ≥ 7, the proof of Lambrechts

and Stanley builds a zigzag of weak equivalences A
ρ←− R ← R′ → Ω∗

PA(M),
where R′ is the minimal model of M , the CDGA R is obtained from R′ by
successively adjoining generators of degree≥ n/2+1, and thePoincaré duality
CDGA A is a quotient of R by an ideal of “orphans”. We let ε : R′ → R[−n]
be the composite R′ → Ω∗

PA(M)

∫
M−→ R[−n].

The minimal model R′ is quasi-free, and since M is simply connected it
is generated in degrees ≥ 2. The CDGA R is obtained from R′ by a cofibrant
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cellular extension, adjoining cells of degree greater than 2. It follows that
R is cofibrant and quasi-freely generated in degrees ≥ 2. Composing with
R′ → Ω∗

PA(M) yields a morphism σ : R → Ω∗
PA(M) and we therefore get a

zigzag A ← R → Ω∗
PA(M).

The morphism ρ is a quasi-isomorphism, so there exists some cocycle Δ̃ ∈
R ⊗ R such that ρ(Δ̃) = ΔA + dα for some α. By surjectivity of ρ (it is a
quotient map) there is some β such that ρ(β) = α; we let Δ′ = Δ̃ − dβ, and
now ρ(Δ′) = ΔA.

Let us assume for themoment thatχ(M) = 0.Then the cocycleμR(Δ′) ∈ R
satisfies ρ(μR(Δ′)) = μA(ΔA) = 0, i.e. it is in the kernel of ρ. It follows that
the cocycle Δ′′ = Δ′ − μR(Δ′) ⊗ 1 is still mapped to ΔA by ρ, and satisfies
μR(Δ′′) = 0. If χ(M) �= 0 we just let Δ′′ = Δ′. Finally we symmetrize Δ′′
to get the ΔR of the lemma, which satisfies all the requirements.

Let us now deal with the case n ≤ 6. The CDGA Ω∗
PA(M) is formal [40,

Proposition 4.6]. We choose A = (H∗(M), dA = 0), and R to be the minimal
model of M , which maps into both A and Ω∗

PA(M) by quasi-isomorphisms.
The rest of the proof is now identical to the previous case. ��

1.8 The Lambrechts–Stanley CDGAs

We now give the definition of the CDGA GA(k) from [33, Definition 3.4], where
it is called F(A, k).

Let A be a Poincaré duality CDGA of dimension n and let k be an integer. For
1 ≤ i �= j ≤ k, let ιi : A → A⊗k be defined by ιi (a) = 1⊗i−1⊗a ⊗1⊗k−i−1,
and let ιi j : A ⊗ A → A⊗k be given by ιi j (a ⊗ b) = ιi (a) · ι j (b). Recalling
the description of e∨

n in Eq. (12), the CDGA GA(k) is defined by:

GA(k):=(
A⊗k ⊗ e∨

n (k)/(ιi (a) · ωi j = ι j (a) · ωi j ), dωi j = ιi j (ΔA)
)
. (22)

The fact that this is well-defined is proved in [33, Lemma 3.2]. We will
call these CDGAs the Lambrechts–Stanley CDGAs, or LS CDGAs for short. For
example GA(0) = R, GA(1) = A, and GA(2) is isomorphic to:

GA(2)∼=(
(A⊗ A)⊕(A⊗ω12), d(a⊗ω12)=(a ⊗ 1) · ΔA =(1⊗a) · ΔA).

Recall that there always exists a Poincaré duality model of M (Sect. 1.7).
When M is a simply connected closed manifold, a theorem of Lambrechts–
Stanley [33, Theorem 10.1] implies that for any such A,

H∗(GA(k); Q) ∼= H∗(FMM(k); Q) as graded modules. (23)
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2 The Hopf right comodule model GA

In this section we describe the Hopf right e∨
n -comodule derived from the LS

CDGAs of Sect. 1.8. From now on we fix a simply connected smooth closed
manifold M . Following Sect. 1.4, we endow M with a fixed semi-algebraic
structure. Note that for now, we do not impose any further conditions on M ,
but a key argument (Proposition 45) will require dim M ≥ 4. We also fix
a arbitrary Poincaré duality CDGA model A of M . We then define the right
comodule structure of GA as follows, using the cooperad structure of e∨

n given
by Eq. (14):

Proposition 16 If χ(M) = 0, then the following maps are well-defined on
GA = {GA(k)}k≥0 and endow it with a Hopf right e∨

n -comodule structure:

◦∨
W : A⊗U ⊗ e∨

n (U ) → (
A⊗(U/W ) ⊗ e∨

n (U/W )
) ⊗ e∨

n (W ),

(au)u∈U ⊗ ω �→ ((au)u∈U\W ⊗ ∏
w∈W aw)

︸ ︷︷ ︸
∈A⊗(U/W )

⊗ ◦∨
W (ω)
︸ ︷︷ ︸

∈e∨
n (U/W )⊗e∨

n (W )

. (24)

In informal terms, ◦∨
W multiplies together all the elements of A indexed by

W on the A⊗U factor and indexes the result by ∗ ∈ U/W , while it applies the
cooperadic structure map of e∨

n on the other factor. Note that if W = ∅, then
◦∨

W adds a factor of 1A (the empty product) indexed by ∗ ∈ U/∅ = U � {∗}.
Proof We split the proof in three parts: factorization of the maps through the
quotient, compatibility with the differential, and compatibility of the maps
with the cooperadic structure of e∨

n .
Let us first prove that the comodule structure maps we wrote factor through

the quotient. Since A is commutative and e∨
n is a Hopf cooperad, the maps

of the proposition commute with multiplication. The ideals defining GA(U )

are multiplicative ideals. Hence it suffices to show that the maps (24) take the
generators (ιu(a) − ιv(a)) · ωuv of the ideal to elements of the ideal in the
target. We simply check each case, using Eqs. (14) and (24):

• If u, v ∈ W , then ◦∨
W (ιu(a)ωuv) = ι∗(a) ⊗ ωuv, which is also equal to

◦∨
W (ιv(a)ωuv).

• Otherwise, we have ◦∨
W (ιu(a)ωuv) = ι[u](a)ω[u][v] ⊗ 1, which is equal to

ι[v](a)ω[u][v] ⊗ 1 = ◦∨
W (ιv(a)ωuv) modulo the relations.

Let us nowprove that they are compatiblewith the differential. It is again suf-
ficient to prove this on generators. The equality ◦∨

W (d(ιu(a))) = d(◦∨
W (ιu(a)))

is immediate. For ωuv we again check the three cases. Recall that since our
manifold has vanishing Euler characteristic, μA(ΔA) = 0.

• If u, v ∈ W , then ◦∨
W (dωuv) = ι∗(μA(ΔA)) = 0, while by definition

d(◦∨
W (ωuv)) = d(1 ⊗ ωuv) = 0.
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24 N. Idrissi

• Otherwise, ◦∨
W (dωuv) = ι[u][v](ΔA) ⊗ 1, which is equal to d(◦∨

W (ωuv)) =
d(ω[u][v] ⊗ 1).

We finally prove that the structure maps are compatible with the coop-
erad structure of e∨

n . Let Com
∨ be the cooperad governing cocommutative

coalgebras. It follows from Lemma 6 that Com∨ ◦ A = {A⊗k}k≥0 inher-
its a Com∨-comodule structure. Therefore the arity-wise tensor product (see
[35, Section 5.1.12], where this operation is called the Hadamard product)
(Com∨◦ A)�e∨

n :={A⊗k ⊗e∨
n (k)}k≥0 is a (Com∨�e∨

n )-comodule. The coop-
erad Com∨ is the unit of �. Hence the (Com∨ ◦ A) � e∨

n is an e∨
n -comodule.

It remains to make the easy check that the resulting comodule maps are given
by Eq. (24). ��

3 Labeled graph complexes

In this section we construct the intermediary comodule, GraphsR , used to
prove our theorem, where R is a suitable cofibrant CDGA quasi-isomorphic to
A and Ω∗

PA(M) (Theorem 14). We will construct a zigzag of CDGAs of the
form:

GA ← GraphsR → Ω∗
PA(FMM).

The construction of GraphsR follows the same pattern as the construction
ofGraphsn in Sect. 1.6, but with the vertices of the graph labeled by elements
of R. The differential moreover mimics the definition of the differential of GA,
together with a differential that mimics the one of Graphsn .

If χ(M) = 0, then the collections GA and GraphsR are Hopf right
comodules respectively overe∨

n andoverGraphsn , and the left arrow is amor-
phism of comodules between (GA,e∨

n ) and (GraphsR,Graphsn). When M
is moreover framed, Ω∗

PA(FMM) is a Hopf right comodule over Ω∗
PA(FMn),

and the right arrow is then a morphism from (GraphsR,Graphsn) to
(Ω∗

PA(FMM), Ω∗
PA(FMn)).

In order to deal with signs more easily and make sure that the differential
squares to zero, we want to use the formalism of operadic twisting, as in the
definition ofGraphsn . Butwhenχ(M) �= 0 there is no comodule structure, so
wemake a detour through graphs with loops (Sect. 3.1 below), see Remark 31.

3.1 Graphs with loops and multiple edges

We first define a variant Graphs�
n of Graphsn , where graphs are allowed to

have “loops” (also sometimes known as “tadpoles”) and multiple edges, see
[53, Section 3]. For a finite set U , the CDGA Gra�

n (U ) is presented by (where
the generators have degree n − 1):
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Gra�
n (U ):=(

S(euv)u,v∈U /(evu = (−1)neuv), d = 0
)
.

The difference with Eq. (15) is that we no longer set euu = e2uv = 0. Note
that Gra�

n (U ) is actually free as a CDGA: given an arbitrary linear order on U ,
Gra�

n (U ) is freely generated by the generators {euv}u≤v∈U .

Remark 17 When n is even, e2uv = 0 since deg euv = n − 1 is odd; and when
n is odd, the relation euu = (−1)neuu implies euu = 0. In other words, for
even n, there are no multiple edges, and for odd n, there are no loops [53,
Remark 3.1].

The dg-modules Gra�
n (U ) form a Hopf cooperad, like Gran , with cocom-

position given by a formula similar to the definition of Eq. (14):

◦∨
W : Gra�

n (U ) → Gra�
n (U/W ) ⊗ Gra�

n (W ),

euv �→
{

e∗∗ ⊗ 1 + 1 ⊗ euv, if u, v ∈ W ;
e[u][v] ⊗ 1, otherwise.

(25)

This new cooperad has a graphical description similar to Gran . The coop-
erad Gran is the quotient of Gra�

n by the ideal generated by the loops and
the multiple edges. The difference in the cooperad structure is that when we
collapse a subgraph, we sum over all ways of choosing whether edges are in
the subgraph or not; if they are not, then they yield a loop. For example:

1 2

3 ◦∨{1,2}�−−−→
⎛

⎝

∗
3

⊗ 1 2

⎞

⎠ +
⎛

⎝

∗
3

⊗ 1 2

⎞

⎠ (26)

The element μ:=e∨
12 ∈ (Gra�

n )∨(2) still defines a morphism Gra�
n →

hoLie∨
n , which allows us to define the twisted Hopf cooperad TwGra�

n .
It has a graphical description similar to TwGran with internal and external
vertices. Finally we can quotient by graphs containing connected component
consisting exclusively of internal vertices to get a Hopf cooperad:

Graphs�
n :=TwGra�

n /(connected components with only internal vertices).

Remark 18 TheHopf cooperadTwGra�
n is slightly different from D̂ from [34,

Section 6]. First the cocomposition is different, and the first term of the RHS
in Eq. (26) would not appear in D̂. The differential is also slightly different: an
edge connected to two univalent internal vertices – hence disconnected from
the rest of the graph – is contractible here (see [53, Section 3] and Remark 12).
This fixes the failure of D̂ to be a cooperad [34, Example 7.3.2].
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3.2 Labeled graphs with only external vertices: GraR

We construct a collection of CDGAs GraR , corresponding to the first step in the
construction ofGraphsn of Sect. 1.6.We first apply the formalism of Sect. 1.7
to Ω∗

PA(M) in order to obtain a Poincaré duality CDGA out of M , thanks to

Theorem14.We thus fix a zigzag of quasi-isomorphisms A
ρ←− R

σ−→ Ω∗
PA(M),

where A is a Poincaré duality CDGA, R is a cofibrant CDGA, and σ factors
through the sub-CDGA of trivial forms (see Sect. 1.3).

Recall the definition of the diagonal cocycleΔA ∈ (A ⊗ A)n from Eq. (21).
Recall also Proposition 15, where we fixed a symmetric cocycle ΔR ∈ (R ⊗
R)n such that (ρ ⊗ ρ)(ΔR) = ΔA. Moreover recall that if χ(M) = 0, then
μA(ΔA) = 0, and we choose ΔR such that μR(ΔR) = 0 too.

Definition 19 Let CDGA of labeled graphs with loops on the set U be:

Gra�
R(U ):=(

R⊗U ⊗ Gra�
n (U ), deuv = ιuv(ΔR)

)
.

This CDGA is well-defined because Gra�
n (U ) is free as a CDGA, hence

Gra�
R(U ) is a relative Sullivan algebra in the terminology of [13, Section 14].

Remark 20 This definition is valid for any CDGA R and any symmetric cocycle
ΔR . We need R as in Proposition 15 to connectGra�

R withGA andΩ∗
PA(FMM).

Remark 21 It follows that the differential of a loop is deuu = ιuu(ΔR) =
ιu(μR(ΔR)), which is zero when χ(M) = 0.

Proposition 22 The collectionGra�
R(U ) forms a Hopf rightGra�

n -comodule.

This is true even if χ(M) �= 0 thanks to the introduction of the loops..

Proof The proof of this proposition is almost identical to the proof of Proposi-
tion 16. If we forget the extra differential (keeping only the internal differential
of R), thenGra�

R is the arity-wise tensor product (Com∨◦R)�Gra�
n , which is

automatically a Hopf Gra�
n -right comodule. Checking the compatibility with

the differential involves almost exactly the same equations as Proposition 16,
except that when u, v ∈ W we have:

◦∨
W (d(euv)) = ι∗(μR(ΔR)) ⊗ 1 = d(e∗∗ ⊗ 1 + 1 ⊗ euv) = d(◦∨

W (euv)),

where de∗∗ = ι∗(μR(ΔR)) by Remark 21, and d(1 ⊗ euv) = 0 by definition.
��

We now give a graphical interpretation of Definition 19, in the spirit of
Sect. 3.1. We view Gra�

R(U ) as spanned by graphs with U as set of vertices,
and each vertex has a label which is an element of R. The Gra�

n -comodule
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structure collapses subgraphs as before, and the label of the collapsed vertex is
the product of all the labels in the subgraph. An example of graph in Gra�

R(3)
is given by (where x, y, z ∈ R):

1

x1

2

x2

3

x3

(27)

The product glues two graphs along their vertices, multiplying the labels in the
process. The differential ofΓ , as defined in Definition 19, is the sum of dR , the
internal differential of R acting on each label (one at a time), together with the
sum over the edges e ∈ EΓ of the graph Γ \e with that edge removed and the
labels of the endpoints multiplied by the factors of ΔR = ∑

(ΔR) Δ′
R ⊗ Δ′′

R ∈
R ⊗ R, where we use Sweedler’s notation (Sect. 1.1). We will often write dsplit
for this differential, to contrast it with the differential that contracts edges
which will occur in the complex TwGra�

R defined later on. If e is a loop, then
in the corresponding term of dΓ the vertex incident to e has its label multiplied
by μR(ΔR), while the loop is removed. For example, we have (gray vertices
can be either internal or external and x, y ∈ R):

x y d�−→
∑

(ΔR)

xΔ′
R yΔ′′

R
.

If χ(M) �= 0, we cannot directly map Gra�
R to Ω∗

PA(FMM), as the Euler
class in Ω∗

PA(M) would need to be the boundary of the image of the loop
e11 ∈ Gra�

R(1). We thus define a sub-CDGA which will map to Ω∗
PA(FMM)

whether χ(M) vanishes or not.

Definition 23 For a given finite set U , let GraR(U ) be the submodule of
Gra�

R(U ) spanned by graphs without loops.

One has to be careful with the notation. While Gra�
R(U ) = R⊗U ⊗ Gra�

n ,
it is not true that GraR(U ) = R⊗U ⊗ Gran(U ): in Gran(U ), multiple edges
are forbidden, whereas they are allowed in GraR(U ).

Proposition 24 The spaceGraR(U ) is a sub-CDGA ofGra�
R(U ). If χ(M) = 0

the collection GraR assembles to form a Hopf right Gran-comodule.

Proof Clearly, neither the splitting part of the differential nor the internal
differential coming from R can create new loops, nor can the product of two
graphs without loops contain a loop, thus GraR(U ) is indeed a sub-CDGA of
Gra�

R(U ). If χ(M) = 0, the proof that GraR is a Gran-comodule is almost
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identical to the proof of Proposition 22, except thatwe need to useμR(ΔR) = 0
to check that d(◦∨

W (euv)) = ◦∨
W (d(euv)) when u, v ∈ W . ��

3.3 The propagator

To define ω′ : GraR → ΩPA(FMM), we need a “propagator” ϕ ∈
Ωn−1

PA (FMM(2)), for which a reference is [7, Section 4].
Recall from Eq. (2) the projections pu : FMM(U ) → M and puv :

FMM(U ) → FMM(2). Recall moreover the sphere bundle p : ∂FMM(2) → M
defined in Eq. (3), which is trivial when M is framed, with the isomorphism
M × Sn−1 ◦1−→ ∂FMM(2) from Eq. (4). We denote by (p1, p2) : FMM(2) →
M × M the product of the two canonical projections.

Proposition 25 ([6, Propositions 7 and 87]) There exists a form ϕ ∈
Ωn−1

PA (FMM(2)) such that ϕ21 = (−1)nϕ, dϕ = (p1, p2)∗((σ ⊗ σ)(ΔR))

and such that the restriction of ϕ to ∂FMM(2) is a global angular form, i.e.
it is a volume form of Sn−1 when restricted to each fiber. When M is framed
one can moreover choose ϕ|∂FMM (2) = 1× volSn−1 ∈ Ωn−1

P A (M × Sn−1). This
propagator can moreover be chosen to be a trivial form (see Sect. 1.3).

The proofs of [6] relies on earlier computations given in [7], where this
propagator is studied in detail. One can see from the proofs of [7, Section 4]
that dϕ can in fact be chosen to be any pullback of a form cohomologous to
the diagonal class ΔM ∈ Ωn

PA(M × M). We will make further adjustments to
the propagator ϕ in Proposition 42. Recall pu , puv from Eq. (2).

Proposition 26 There is a morphism of collections of CDGAs given by:

ω′ : GraR → ΩPA(FMM),

{⊗
u∈U xu ∈ R⊗U �→ ∧

u∈U p∗
u(σ (xu)),

euv �→ p∗
uv(ϕ).

Moreover, if M is framed, then ω′ defines a morphism of comodules, where
ω′ : Gran → Ω∗

PA(FMn) was defined in Sect. 1.6:

(GraR,Gran)
(ω′,ω′)−−−−→ (Ω∗

PA(FMM), Ω∗
PA(FMn))

Proof The property dϕ = (p1, p2)∗((σ ⊗ σ)(ΔR)) shows that the map ω′
preserves the differential. Let us now assume that M is framed to prove that
this is a morphism of right comodules. Cocomposition commutes with ω′ on
the generators coming from A⊗U , since the comodule structure of Ω∗

PA(FMM)

multiplies together forms that are pullbacks of forms on M :
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◦∨
W (p∗

u(x)) =
{

p∗
u(x) ⊗ 1 if u /∈ W ;

p∗∗(x) ⊗ 1 if u ∈ W.

We now check the compatibility of the cocomposition ◦∨
W with ω′ on the

generator ωuv, for some W ⊂ U .

– If one of u, v, or both, is not in W , then the equality ◦∨
W (ω′(euv)) =

(ω′ ⊗ ω′)(◦∨
W (euv)). is clear.

– Otherwise suppose {u, v} ⊂ W . We may assume that U = W = 2 (it
suffices to pull back the result along puv to get the general case), so that
we are considering the insertion of an infinitesimal configuration M ×
FMn(2) → FMM(2). This insertion factors through the boundary ∂FMM(2).
We have (see Definition 25):

◦∨
2 (ϕ) = 1 ⊗ volSn−1 ∈ Ω∗

PA(M) ⊗ Ω∗
PA(FMn(2))

= Ω∗
PA(M) ⊗ Ω∗

PA(Sn−1).

Going back to the general case, we find:

◦∨
W (ω′(euv)) = ◦∨

W (p∗
uv(ϕ)) = 1 ⊗ p∗

uv(volSn−1),

which is indeed the image of ◦∨
W (ωuv) = 1 ⊗ ωuv by ω′ ⊗ ω′. ��

3.4 Labeled graphs with internal and external vertices: Tw GraR

The general framework of operadic twisting, recalled in Sect. 1.5, shows that
to twist a right (co)module, one only needs to twist the (co)operad. Since
our cooperad is one-dimensional in arity zero, the comodule inherits a Hopf
comodule structure too (Lemma 10).

Definition 27 The twisted labeled graph comodule TwGra�
R is a Hopf right

(TwGra�
n )-comodule obtained from Gra�

R by twisting with respect to the
Maurer–Cartan element μ ∈ (Gra�

n )∨(2) of Sect. 1.6.

Wenowexplicitly describe this comodule in terms of graphs. The dg-module
TwGra�

R(U ) is spanned by graphswith two kinds of vertices, external vertices
corresponding to elements of U , and indistinguishable internal vertices (usu-
ally drawn in black). The degree of an edge is n − 1, the degree of an external
vertex is 0, while the degree of an internal vertex is −n. All the vertices are
labeled by elements of R, and their degree is added to the degree of the graph.

The Hopf structure glues two graphs along their external vertices, multiply-
ing labels in the process. The differential is a sum of three terms

d = dR + dsplit + dcontr.
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The first part is the internal differential coming from R, acting on each label
separately. The second part comes from Gra�

R and splits edges, multiplying
byΔR the labels of the endpoints. The third part is similar to the differential of
TwGra�

n : it contracts all contractible edges, i.e. edges connecting an internal
vertex to another vertex of either kind. When an edge is contracted, the label
of the resulting vertex is the product of the labels of of the endpoints of the
former edge (see Fig. 1). This result comes from the twisting construction (see
the definition in Eq. (11)). For example, we have:

(

1
x
)

d�−→
(

1
dR x

)

±
∑

(ΔR)

(

1

Δ′
R xΔ′′

R
)

± 1
x

(x ∈ R). (28)

Remark 28 An edge connected to a univalent internal vertex is contractible in
TwGra�

R , though this is not the case in TwGra�
n . Indeed, if we go back to

the definition of the differential in a twisted comodule (Eq. (11)), we see that
the Maurer–Cartan element μ (Eq. (18)) only acts on the right of the graph.
Therefore, there is no term to cancel out the contraction of such edges, as was
the case in TwGran (see the discussion in Sect. 1.6 about the differential). In
Eq. (28), the only edge would not be considered as contractible in TwGran if
we forgot the labels, but it is in TwGraR .

Finally, the comodule structure is similar to the cooperad structure of
TwGra�

n : for Γ ∈ Gra�
R(U � I ) ⊂ TwGra�

R(U ), the cocomposition ◦∨
W (Γ )

is the sumover tensors of the type±ΓU/W ⊗ΓW ,whereΓU/W ∈ Gra�
R(U/W�

J ), ΓW ∈ Gran(W � J ′), J � J ′ = I , and there exists a way of inserting ΓW in
the vertex ∗ of ΓU/W and reconnecting edges to get Γ back. See the following
example of cocomposition◦∨{1} : TwGraR(1) → TwGraR(1)⊗TwGraR(1),
where x, y ∈ R:

1
x

y

◦∨{1}�−−→

⎛

⎜
⎜
⎝

∗
x

y

⊗ 1

⎞

⎟
⎟
⎠ ±

⎛

⎝ ∗
xy

⊗
1

⎞

⎠ ±
⎛

⎝ ∗
xy

⊗
1

⎞

⎠

Lemma 29 The subspace TwGraR(U ) ⊂ TwGra�
R(U ) spanned by graphs

with no loops is a sub-CDGA.

Proof It is clear that this defines a subalgebra. We need to check that it is
preserved by the differential, i.e. that the differential cannot create new loops
if there are none in a graph. This is clear for the internal differential coming
from R and for the splitting part of the differential. The contracting part of
the differential could create a loop from a double edge. However for even
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The Lambrechts–Stanley model 31

n multiple edges are zero for degree reasons, and for odd n loops are zero
because of the antisymmetry relation (see Remark 21). ��

Note that despite the notation, TwGraR is a priori not defined as the twisting
of the Gran-comodule GraR: when χ(M) �= 0, the collection GraR is not
even aGran-comodule. However, the following proposition is clear and shows
that we can get away with this abuse of notation:

Proposition 30 If χ(M) = 0, then TwGraR assembles to a right Hopf
(TwGran)-comodule, isomorphic to the twisting of the right Hopf Gran-
comodule GraR of Definition 23. ��
Remark 31 We could have defined the algebra TwGraR explicitly in terms of
graphs, and defined the differential d using an ad-hoc formula. The difficult
part would have then been to check that d2 = 0 (involving difficult signs),
which is a consequence of the general operadic twisting framework.

3.5 The map ω : Tw GraR → Ω∗
PA(FMM)

This section is dedicated to the proof of the following proposition.

Proposition 32 There is a morphism of collections of CDGAs ω : TwGraR →
Ω∗

PA(FMM) extending ω′, given on a graph Γ ∈ GraR(U � I ) ⊂ TwGraR(U )

by:

ω(Γ ):=
∫

pU :FMM (U�I )→FMM (U )

ω′(Γ ) = (pU )∗(ω′(Γ )).

Moreover, if M is framed, then this defines a morphism of Hopf right comod-
ules:

(ω, ω) : (TwGraR,TwGran) → (Ω∗
PA(FMM), Ω∗

PA(FMn)).

Recall that in general, it is not possible to consider integrals along fibers
of arbitrary PA forms, see [23, Section 9.4]. However, here, the image of σ is
included in the sub-CDGA of trivial forms in Ω∗

PA(M), and the propagator is a
trivial form (see Proposition 25), therefore the integral (pU )∗(ω′(Γ )) exists.

The proof of the compatibility with the Hopf structure and, in the framed
case, the comodule structure, is formally similar to the proof of the same facts
about ω : TwGran → Ω∗

PA(FMn). We refer to [34, Sections 9.2, 9.5]. The
proof is exactly the same proof, but writing FMM or FMn instead of C[−] and
ϕ instead of volSn−1 in every relevant sentence, and recalling that when M is
framed, we choose ϕ such that ◦∨

2 (ϕ) = 1 ⊗ volSn−1 .
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The proof that ω is a chain map is different albeit similar. We recall Stokes’
formula for integrals along fibers of semi-algebraic bundles. If π : E → B is
a semi-algebraic bundle, the fiberwise boundary π∂ : E∂ → B is the bundle
with

E∂ :=
⋃

b∈B

∂π−1(b).

Remark 33 The space E∂ is neither ∂ E nor
⋃

b∈B π−1(b) ∩ ∂ E in general.
(Consider for example the projection on the first coordinate [0, 1]×2 → [0, 1].)

Stokes’ formula, in the semi-algebraic context, is [23, Proposition 8.12]:

d

(∫

π :E→B
α

)

=
∫

π :E→B
dα ±

∫

π∂ :E∂→B
α|E∂ .

If we apply this formula to compute dω(Γ ), we find that the first term is:

∫

pU

dω′(Γ ) =
∫

pU

ω′(dRΓ + dsplitΓ ) = ω(dRΓ + dsplitΓ ), (29)

sinceω′ was a chainmap. It thus remain to check that the second term satisfies:

∫

p∂
U :FM∂

M (U�I )→FMM (U )

ω′(Γ ) =
∫

pU

ω′(dcontrΓ ) = ω(dcontrΓ ).

The fiberwise boundary of the projection pU : FMn(U � I ) → FMn(U ) is
rather complex [34, Section 5.7], essentially due to the quotient by the affine
group in the definition of FMn which lowers dimensions. We will not repeat
its explicit decomposition into cells as we do not need it here.

The fiberwise boundary of pU : FMM(U � I ) → FMM(U ) is simpler. Our
definitions mimick the description of [34, Section 5.7]. Let V = U � I . The
interior of FMM(U ) is the space ConfU (M), and thus FM∂

M(V ) is the closure
of (∂FMM(V )) ∩ π−1(ConfU (M)). Let the set of “boundary faces” be given
by:

BFM(V, U ) = {W ⊂ V | #W ≥ 2 and #W ∩ U ≤ 1}.

This set indexes the strata of the fiberwise boundary of pU . The idea is that
a configuration is in the fiberwise boundary iff it is obtained by an insertion
map ◦W with W ∈ BFM(V, U ). In the description of FM∂

n(V ), similar bound-
ary faces, denoted BF(V, U ), appear. But there, there was an additional part
which corresponds to U ⊂ W . Unlike the case of FMn , for FMM the image of
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The Lambrechts–Stanley model 33

pU (− ◦W −) is always included in the boundary of FMM(U ) when U ⊂ W .
We follow a pattern similar to the one used in the proof of [34, Proposition
5.7.1].

Lemma 34 The subspace FM∂
M(V ) ⊂ FMM(V ) is equal to:

⋃

W∈BFM (V,U )

im
(◦W : FMM(V/W ) × FMn(W ) → FMM(V )

)
.

Proof Let cls denote the closure operator. Since ConfU (M) is the interior of
FMM(U ) and p : FMM(V ) → FMM(U ) is a bundle, it follows that the fiberwise
boundary FM∂

M is obtained as the closure of the preimage of the interior (see
the corresponding statement in the proof of [34, Proposition 5.7.1]), i.e.:

FM∂
M(V ) = cls

(
FM∂

M(V ) ∩ p−1(ConfU (M))
)

= cls
(
∂FMM(V ) ∩ p−1(ConfU (M))

)
.

The boundary ∂FMM(V ) is the union of the subsets im(◦W ) for #W ≥ 2
(note that the case W = V is included, unlike for FMn). If #W ∩U ≥ 2, which
is equivalent to W /∈ BFM(V, U ), then im(pU (− ◦W −)) ⊂ ∂FMM(U ),
because if a configuration belongs to this image then at least two points of U
are infinitesimally close. Therefore:

cls
(
∂FMM(V ) ∩ p−1(ConfU (M))

) = cls

(⋃

#W≥2

im(◦W ) ∩ p−1(ConfU (M))

)

= cls

(⋃

#W∈BFM (V,U )

im(◦W ) ∩ p−1(ConfU (M))

)

=
⋃

W∈BFM (V,U )

cls
(
im(◦W ) ∩ p−1(ConfU (M))

)

=
⋃

W∈BFM (V,U )

im(◦W ).
��

Lemma 35 For a given graph Γ ∈ TwGraR(U ), the integral over the fiber-
wise boundary is given by:

∫

p∂
U

ω′(Γ )|FM∂
M (V ) = ω(dcontrΓ ).
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34 N. Idrissi

Proof The maps ◦W : FMM(V/W ) × FMn(W ) → FMM(V ) are smooth
injective maps and their domains are compact, thus they are homeomor-
phisms onto their images. Recall that #W ≥ 2 for W ∈ BFM(V, U ); hence
dim FMn(W ) = n#W − n − 1. The dimension of the image of ◦W is then:

dim im(◦W ) = dim FMM(V/W ) + dim FMn(W )

= n#(V/W ) + (n#W − n − 1)

= n#V − 1,

i.e. the image is of codimension 1 in FMM(V ). It is also easy to check that if
W �= W ′, then im(◦W ) ∩ im(◦W ′) is of codimension strictly bigger than 1.

We now fix W ∈ BFM(V, U ). Since #W ∩ U ≤ 1, the composition U ⊂
V → V/W is injective and identifies U with a subset of V/W . There is then
a forgetful map p′

U : FMM(V/W ) → FMM(U ). We then have a commutative
diagram:

FMM(V/W ) × FMn(W ) FMM(V/W )

FMM(V ) FMM(U )

◦W

p1

p′
U

pU

. (30)

It follows that pU (− ◦W −) = p′
U ◦ p1 is the composite of two semi-

algebraic bundles, hence it is a semi-algebraic bundle itself [23, Proposition
8.5]. Combined with the fact about codimensions above, we can therefore
apply the summation formula [23, Proposition 8.11]:

∫

p∂
U

ω′(Γ ) =
∑

W∈BFM (V,U )

∫

pU (−◦W −)

ω′(Γ )|FMM (V/W )×FMn(W ). (31)

Nowwe can directly adapt the proof of Lambrechts andVolic. For a fixedW ,
by [23, Proposition 8.13], the corresponding summand is equal to±ω(ΓV/W )·∫
FMn(W )

ω′(ΓW ), where

– ΓV/W ∈ TwGraR(U ) is the graph with W collapsed to a vertex and
U ↪→ V/W is identified with its image;

– ΓW ∈ TwGran(W ) is the full subgraph of Γ with vertices W and the
labels removed.

The vanishing lemmas in the proof of Lambrechts and Volic then imply that
the integral

∫
FMn(W )

ω′(ΓW ) is zero unless ΓW is the graph with exactly two
vertices and one edge, in which case the integral is equal to 1. In this case,
ΓV/W is the graph Γ with one edge connecting an internal vertex to some
other vertex collapsed. The sum runs over all such edges, and dealing with
signs carefully we see that Eq. (31) is precisely equal to ω(dcontrΓ ). ��
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The Lambrechts–Stanley model 35

We can now finish proving Proposition 32. We combine Eq. (29) and
Lemma 35, and apply Stokes’ formula to dω(Γ ) to show that it is equal
to ω(dΓ ) = ω(dRΓ + dsplitΓ ) + ω(dcontrΓ ).

3.6 Reduced labeled graphs: GraphsR

The last step in the construction of GraphsR is the reduction of TwGraR
so that it has the right cohomology. We borrow the terminology of Campos–
Willwacher [6] for the next two definitions.

Definition 36 The full graph complex fGCR is the CDGA TwGraR(∅). It
consists of labeled graphswith only internal vertices, and the product is disjoint
union of graphs.

Remark 37 The adjective “full” refers to the fact that graphs are possibly
disconnected and have vertices of any valence in fGCR .

As an algebra, fGCR is free and generated by connected graphs. In gen-
eral we will call internal components the connected components of a graph
that only contain internal vertices. The full graph complex naturally acts on
TwGraR(U ) by adding extra internal components.

Definition 38 The partition function Zϕ : fGCR → R is the restriction of
ω : TwGraR → Ω∗

PA(FMM) to fGCR = TwGraR(∅) → Ω∗
PA(FMM(∅)) =

Ω∗
PA(pt) = R.

Remark 39 The expression “partition function” comes from the mathematical
physics literature, more specifically Chern–Simons invariant theory, where it
refers to the partition function of a quantum field theory.

By the double-pushforward formula [23, Proposition 8.13] and Fubini’s
theorem [23, Proposition 8.15], Zϕ is an algebra morphism and

∀γ ∈ fGCR, ∀Γ ∈ TwGraR(U ), ω(γ · Γ ) = Zϕ(γ ) · ω(Γ ). (32)

Definition 40 Let Rϕ be the fGCR-module of dimension 1 induced by Zϕ :
fGCR → R. The reduced graph comodule Graphsϕ

R is the tensor product:

Graphsϕ
R(U ):=Rϕ ⊗fGCR TwGraR(U ).

In other words, a graph of the type Γ � γ containing an internal component
γ ∈ fGCR is identified with Zϕ(γ ) ·Γ . It is spanned by representative classes
of graphs with no internal connected component; we call such graphs reduced.
The notation ismeant to evoke the fact thatGraphsϕ

R depends on the choice of
the propagator ϕ, unlike the collection Graphsε

R that will appear in Sect. 4.1.
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Proposition 41 The map ω : TwGraR(U ) → Ω∗
PA(FMM(U )) defined in

Proposition 32 factors through the quotient defining Graphsϕ
R.

If χ(M) = 0, then Graphsϕ
R forms a Hopf right Graphsn-comodule.

If moreover M is framed, then the map ω defines a Hopf right comodule
morphism.

Proof Equation (32) immediately implies that ω factors through the quotient.
The vanishing lemmas shows that if Γ ∈ TwGran(U ) has internal com-

ponents, then ω(Γ ) vanishes by [34, Lemma 9.3.7], so it is straightforward
to check that if χ(M) = 0, then Graphsϕ

R becomes a Hopf right comodule
over Graphsn . It is also clear that for M framed, the quotient map ω remains
a Hopf right comodule morphism. ��
Proposition 42 ([7, Lemma 3]) The propagator ϕ can be chosen such that
the following additional property (P4) holds:

∫

p1:FMM (2)→FMM (1)=M
p∗
2(σ (x)) ∧ ϕ = 0, ∀x ∈ R. (P4)

From now on and until the end, we assume that ϕ satisfies (P4).

Remark 43 The additional property (P5) of the paper mentioned above would
be helpful in order to get a direct morphism Graphsϕ

R → GA, because then
the partition function would vanish on all connected graphs with at least two
vertices. However we run into difficulties when trying to adapt the proof in
the setting of PA forms, mainly due to the lack of an operator dM acting on
Ω∗

PA(M × N ) differentiating “only in the first slot”.

Corollary 44 The morphism ω vanishes on graphs containing univalent inter-
nal vertices.

Proof Let Γ ∈ GraR(U � I ) ⊂ TwGraR(U ) be a graph with a univalent
internal vertex u ∈ I , labeled by x , and let v be the only vertex connected to u.
Let Γ̃ be the full subgraph of Γ on the set of vertices U � I\{u}. Then using
[23, Propositions 8.10 and 8.15] (in a way similar to the end of the proof of
[34, Lemma 9.3.8]), we find:

ω(Γ ) =
∫

FMM (U�I )→FMM (U )

ω′(Γ )

=
∫

FMM (U�I )→FMM (U )

ω′(Γ̃ )p∗
uv(ϕ)p∗

u(σ (x))

=
∫

FMM (U�I\{u})→FMM (U )

ω′(Γ̃ )

∧ p∗
v

(∫

FMM ({u,v})→FMM ({v})
p∗

uv(ϕ)p∗
u(σ (x))

)

,
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which vanishes by (P4) in Proposition 42. ��
Almost everything we have done so far works in full generality. We now

prove a fact which sets a class of manifolds apart.

Proposition 45 Assume that M is simply connected and that dim M ≥ 4. Then
the partition function Zϕ vanishes on any connected graph with no bivalent
vertices labeled by 1R and containing at least two vertices.

Remark 46 If γ ∈ fGCR has only one vertex, labeled by x , then Zϕ(γ ) =∫
M σ(x) which can be nonzero.

Proof Let γ ∈ fGCR be a connected graph with at least two vertices and no
bivalent vertices labeled by 1R . By Corollary 44, we can assume that all the
vertices of γ are at least bivalent. By hypothesis, if a vertex is bivalent then it
is labeled by an element of R>0 = R≥2.

Let k = i + j be the number of vertices of γ , with i vertices that are at least
trivalent and j vertices that are bivalent and labeled by R≥2. It follows that γ
has at least 1

2 (3i + 2 j) edges, all of degree n − 1. Since bivalent vertices are
labeled by R≥2, their labels contribute by at least 2 j to the degree of γ . The
(internal) vertices contribute by −kn to the degree, and the other labels have
a nonnegative contribution. Thus:

deg γ ≥
(
3

2
i + j

)

(n − 1)+2 j −kn =
(
3

2
k − 3

2
j + j

)

(n − 1)+2 j − kn

= 1

2

(
k(n − 3) − j (n − 5)

)
.

This last number is always positive for 0 ≤ j ≤ k: it is an affine function
of j , and it is positive when j = 0 and j = k (recall that n ≥ 4). The
degree of γ ∈ fGCR must be zero for the integral defining Zϕ(γ ) to be the
integral of a top form of FMM(k) and hence possibly nonzero. But by the above
computation, deg γ > 0 �⇒ Zϕ(γ ) = 0. ��
Remark 47 When n = 3, the manifold M is the 3-sphere S3 by Perelman’s
proof of the Poincaré conjecture [41,42]. The partition function Zϕ is conjec-
tured to be trivial on S3 for a proper choice of framing, thus bypassing the
need for the above degree counting argument. See also Proposition 80.

We will also need the following technical property of fGCR .

Lemma 48 The CDGA fGCR is cofibrant.

Proof We filter fGCR by the number of edges, defining FsfGCR to be the
submodule of fGCR spanned by graphs of γ such that all the connected compo-
nents γ have at most s edges. The differential of fGCR can only decrease (dsplit
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and dcontr) or leave constant (dR) the number of edges. Moreover FsfGCR is
clearly stable under products (disjoint unions), hence FsfGCR is a sub-CDGA
of fGCR . It is also clear that fGCR = colims FsfGCR . We will prove that
F0fGCR is cofibrant, and that each FsfGCR ⊂ Fs+1fGCR is a cofibration.
The CDGA F0fGCR is the free CDGA on graphs with a single vertex labeled

by R. In other words, F0fGCR = S(R, dR) is the free symmetric algebra on
the dg-module R, and any free symmetric algebra on a dg-module is cofibrant.

Let us now show that FsfGCR ⊂ Fs+1fGCR is a cofibration for any s ≥ 0.
We will show that it is in fact a “relative Sullivan algebra” [13, Section 14].
As a CDGA, we have Fs+1fGCR = (FsfGCR ⊗ S(Vs+1), d), where Vs+1 is
the graded module of connected graphs with exactly s + 1 edges. Let us now
show the Sullivan condition.

Recall that R is obtained from the minimal model of M by a relative Sul-
livan extension, hence it is itself a Sullivan algebra [13, Section 12]. In other
words, R = (S(W ), d) where W is increasingly and exhaustively filtered by
W (−1) = 0 ⊂ · · · ⊂ W (t) ⊂ · · · ⊂ W such that d(W (t)) ⊂ S(W (t − 1)).
This induces a filtration on R by defining R(t):=⊕

t1+···+tr =t

(
V (t1) ⊗ · · · ⊗

V (tr )
)
Σr
.

This in turns induces an increasing and exhaustive filtration on Vs+1 by
submodules Vs+1(t) as follows. A connected graph γ ∈ Vs+1 is in Vs+1(t)
if each label xi ∈ R of a vertex of γ belongs to the filtration R(ti ) such that∑

ti = t . It is then immediate to check that d(Vs+1(t +1)) ⊂ Vs ⊗S(Vs+1(t)).
Indeed, if γ ∈ Vs+1(t + 1), then dsplitγ and dcontrγ ∈ Vs , because both
strictly decrease the number of edges. And dRγ ∈ Vs+1(t) because the internal
differential of R decreases the filtration of R. ��

4 From the model to forms via graphs

In this section we connect GA to Ω∗
PA(FMM) and we prove that the connecting

morphisms are quasi-isomorphisms. We assume that M is a simply connected
closed smooth manifold with dim M ≥ 4 (see Proposition 45).

4.1 Construction of the morphism to GA

Proposition 49 For each finite set U, there is a CDGA morphism ρ′∗ :
GraR(U ) → GA(U ) given by ρ on the R⊗U factor and sending the gen-
erators euv to ωuv on the Gran factor. When χ(M) = 0, this defines a Hopf
right comodule morphism (GraR,Gran) → (GA,e∨

n ). ��
If we could find a propagator for which property (P5) held (see Remark 43),

then we could just send all graphs containing internal vertices to zero and
obtain an extension Graphsϕ

R → GA. Since we cannot assume that (P5)
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holds, the definition of the extension is more complex. However we still have
Proposition 45, and homotopically speaking, graphs with bivalent vertices are
irrelevant.

Definition 50 Let fGC0
R be the quotient of fGCR defined by identifying a

disconnected vertex labeled by x with the number εA(ρ(x)).

Lemma 51 The subspace I ⊂ fGC0
R spanned by graphs with at least one

univalent vertex, or at least one bivalent vertex labeled by 1R, or at least one
label in ker(ρ : R → A), is a CDGA ideal.

Proof It is clear that I is an algebra ideal. Let us prove that it is a differential
ideal. If one of the labels of Γ is in ker ρ, then so do all the summands of dΓ ,
because ker ρ is a CDGA ideal of R.

IfΓ contains a bivalent vertex u labeled by 1R , then so does dRΓ . In dsplitΓ ,
splitting one of the two edges connected to u produces a univalent vertex and
hence vanishes in fGC0

R because the label is 1R . In dcontrΓ , the contraction of
the two edges connected to u cancel each other.

Finally let us prove that if Γ has a univalent vertex u, then dΓ lies in I .
It is clear that dRΓ ∈ I . Contracting or splitting the only edge connected to
the univalent vertex could remove the univalent vertex. Let us prove that these
two summands cancel each other up to ker ρ.

It is helpful to consider the case pictured in Eq. (28). Let y be the
label of the univalent vertex u, and let x be the label of the only ver-
tex incident to u. Contracting the edge yields a new vertex labeled by
xy. Due to the definition of fGC0

R , splitting the edge yields a new ver-
tex labeled by α:=∑

(ΔR) ε(ρ(xΔ′′
R))yΔ′

R . We thus have ρ(α) = ρ(x) ·
∑

(ΔA) ±εA(ρ(y)Δ′′
A)Δ′

A.
It is a standard property of the diagonal class that

∑
(ΔA) ±εA(aΔ′′

A)Δ′
A = a

for all a ∈ A (this property is a direct consequence of the definition in Eq. (21)).
Applied to a = ρ(y), it follows from the previous equation that ρ(α) =
±ρ(xy); examining the signs, this summand cancels from the summand that
comes from contracting the edge. ��
Definition 52 The algebra fGC′

R is the quotient of fGC0
R by the ideal I .

Note that fGC′
R is also free as an algebra,with generators given by connected

graphs with no isolated vertices, nor univalent vertices, nor bivalent vertices
labeled by 1R , and where the labels lie in R/ ker(ρ) = A.

Definition 53 A circular graph is a graph in the shape of a circle and where
all vertices are labeled by 1R , i.e. graphs of the type e12e23 . . . e(k−1)kek1.
Let fLoopR ⊂ fGC0

R be the submodule spanned by graphs whose connected
components either have univalent vertices or are equal to a circular graphs.
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Lemma 54 The submodule fLoopR is a sub-CDGA of fGC0
R.

Proof The submodule fLoopR is stable under products (disjoint union) by
definition, so we just need to check that it is stable under the differential.
Thanks to the proof of Lemma 51, in fGC0

R , if a graph contains a univalent
vertex, then so do all the summands of its differential. On a circular graph, the
internal differential of R vanish, because all labels are equal to 1R . Contracting
an edge in a circular graph yields another circular graph, and splitting an edge
yields a graph with univalent vertices, which belongs to fLoopR . ��
Proposition 55 The sequence fLoopR → fGC0

R → fGC′
R is a homotopy

cofiber sequence of CDGAs.

Proof The CDGA fGC0
R is freely generated by connected labeled graphs with

at least two vertices. It is a quasi-free extension of fLoopR by the algebra
generated by graphs that are not circular and that do not contain any univalent
vertices. The homotopy cofiber of the inclusion fLoopR → fGC0

R is this
algebra fGC′′

R , generated by graphs that are not circular and do not contain
any univalent vertices, together with a differential induced by the quotient
fGC0

R/(fLoopR).
Let us note that the quotient map fGC0

R → fGC′
R = fGC0

R/I vanishes on
fLoopR , because fLoopR is included in R. Thus we have a diagram:

0 fLoopR fGC0
R fGC′′

R :=fGC0
R/fLoopR 0

0 I fGC0
R fGC′

R :=fGC0
R/I 0

Let us prove that themorphism fGC′′
R → fGC′

R is a quasi-isomorphism.Define
an increasing filtration on both algebras by letting FsfGC′

R (resp. FsfGC′′
R) be

the submodule spanned by graphs Γ such that #edges − #vertices ≤ s. The
splitting part of the differential strictly decreases the filtration, so only dR and
dcontr remain on the first page of the associated spectral sequences.

One can then filter by the number of edges. On the first page of the spectral
sequence associated to this new filtration, there is only the internal differential
dR . Thus on the second page, the vertices are labeled by H∗(R) = H∗(M).
The contracting part of the differential decreases the new filtration by exactly
one, and so on the second page we see all of dcontr.

We can now adapt the proof of [53, Proposition 3.4] to show that on the
part of the complex with bivalent vertices, only the circular graphs contribute
to the cohomology (we work dually so we consider a quotient instead of an
ideal, but the idea is the same). To adapt the proof, one must see the labels
of positive degree as formally adding one to the valence of the vertex, thus
“breaking” a line of bivalent vertices. These labels break the symmetry (recall
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the coinvariants in the definition of the twisting) that allow cohomology classes
to be produced. ��
Corollary 56 The morphism Zϕ : fGCR → R factors through fGC′

R in the
homotopy category of CDGAs.

Proof Let us show that Zϕ is homotopic to zero when restricted to the ideal
defining fGC′

R = fGC0
R/I as a quotient of fGCR . Up to rescaling εA by a real

coefficient, we may assume that εAρ(−) and
∫

M σ(−) are homotopic, which
induces a homotopy (by derivations) on the sub-CDGA of graphs with no edges.
Hence Zϕ is homotopic to zerowhen restricted to the ideal defining fGC0

R from
fGCR . Moreover the map Zϕ vanishes on graphs with univalent vertices by
Corollary 44. The degree of a circular graph with k vertices is −k < 0 (recall
that all the labels are 1R in a circular graph), but Zϕ vanishes on graphs of
nonzero degree. Hence Zϕ vanishes on the connected graphs appearing in
the definition of fLoopR . Therefore, in the homotopy category of CDGAs, Zϕ

factors through the homotopy cofiber of the inclusion fLoopR → fGC0
R , which

is quasi-isomorphic to fGC′
R by Proposition 55. ��

The statement of the corollary is not concrete, as the “factorization” could
go through a zigzag of maps. However, the CDGAs fGCR and fGC′

R are both
cofibrant (see Lemma 48 for fGCR , whose proof can easily be adapted to
fGC′

R). Recall from Sect. 1.1 the following definition of homotopy. Let π :
fGCR → fGC′

R be the quotient map. Recall that A∗
PL(Δ1) = S(t, dt) is a path

object for the CDGA R, and ev0, ev1 : A∗
PL(Δ1) → R are evaluation at t = 0

and t = 1. There exists some morphism Z ′
ϕ : fGC′

R → R and some homotopy
h : fGCR → A∗

PL(Δ1) such that the following diagram commutes:

fGCR

R A∗
PL(Δ1) R

Zϕ Z ′
ϕπ

h

∼
ev1 ev0

∼

Definition 57 Let A∗
PL(Δ1)h be the fGCR-module induced by h, and let

Graphs′
R(U ) = A∗

PL(Δ1)h ⊗fGCR TwGraR(U ).

Definition 58 Let Zε : fGCR → R be the algebra morphism that sends a
graph γ with a single vertex labeled by x ∈ R to εA(ρ(x)), and that vanishes
on all the other connected graphs.LetRε be the one-dimensional fGCR-module
induced by Zε, and let

Graphsε
R(U ) = Rε ⊗fGCR TwGraR(U ).
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Explicitly, in Graphsε
R , all internal components with at least two vertices

are identified with zero, whereas an internal component with a single vertex
labeled by x ∈ R is identified with the number εA(ρ(x)).

Lemma 59 The morphism Z ′
ϕπ is equal to Zε.

Proof This is a rephrasing of Proposition 45. Using the same degree counting
argument, all the connected graphs with more than one vertex in fGC′

R are
of positive degree. Since R is concentrated in degree zero, Z ′

ϕπ must vanish
on these graphs, just like Zε. Moreover the morphism π : fGCR → fGC′

R =
fGC0

R/I factors through fGC0
R , where graphs γ with a single vertex are already

identified with the numbers Zε(γ ). ��
Proposition 60 For each finite set U, we have a zigzag of quasi-isomorphisms
of CDGAs:

Graphsε
R(U )

∼←− Graphs′
R(U )

∼−→ Graphsϕ
R(U ).

If χ(M) = 0, then Graphs′
R and Graphsε

R are right Hopf Graphsn-
comodules, and the zigzag defines a zigzag of Hopf right comodule morphisms.

Proof We have a commutative diagram:

Graphsε
R(U ) Graphs′

R(U ) Graphsϕ
R(U )

TwGraR(U ) ⊗fGCR Rε TwGraR(U ) ⊗fGCR A∗
PL(Δ1)h TwGraR(U ) ⊗fGCR Rϕ

= =
1⊗ev1 1⊗ev0

=

The fGCR-module TwGraR(U ) is cofibrant. Indeed, it is quasi-free, because
TwGraR(U ) is freely generated as a graded fGCR-module by reduced graphs.
Moreover, we can adapt the proof of Lemma 48 to filter the space of generators
in an appropriate manner and show that TwGraR(U ) is cofibrant.

Therefore the functor TwGraR(U ) ⊗fGCR (−) preserves quasi-isomorph-
isms. The two evaluation maps ev0, ev1 : A∗

PL(Δ1) → R are quasi-
isomorphisms. It follows that all the maps in the diagram are quasi-
isomorphisms.

If χ(M) = 0, the proof that Graphs′
R and Graphsε

R assemble to
Graphsn-comodules is identical to the proof for Graphsϕ

R (see Proposi-
tion 41). It is also clear that the two zigzags define morphisms of comodules:
in Graphsn , as all internal components are identified with zero anyway. ��
Proposition 61 The CDGA morphisms ρ′∗ : GraR(U ) → GA(U ) extend to
CDGA morphisms ρ∗ : Graphsε

R(U ) → GA(U ) by sending all reduced graphs
containing internal vertices to zero. If χ(M) = 0 this extension defines a Hopf
right comodule morphism.
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Proof The submodule of reduced graphs containing internal vertices is a mul-
tiplicative ideal and a cooperadic coideal, so all we are left to prove is that
ρ∗ is compatible with differentials. Since ρ′∗ was a chain map, we must only
prove that if Γ is a reduced graph with internal vertices, then ρ∗(dΓ ) = 0.

If a summand of dΓ still contains an internal vertex, then it is mapped to
zero by definition ofρ∗. Sowe need to look for the summands of the differential
that can remove all internal vertices at once.

The differential of R leaves the number of internal vertices constant, there-
fore if Γ already had an internal vertex, so do all the summands of dRΓ . The
contracting part dcontr of the differential decreases the number of internal ver-
tices by exactly one, so let us assume that Γ has exactly one internal vertex.
This vertex is at least univalent, as we consider reduced graphs. Then there are
several cases to consider, depending of the valence of the internal vertex:

– if it is univalent, then the argument of Lemma 51 shows that contracting
the incident edge cancels with the splitting part of the differential;

– if it is bivalent, the contracting part has two summands, and both cancel by
the symmetry relation ιu(a)ωuv = ιv(a)ωuv in Eq. (22);

– if it is at least trivalent, then we can use the symmetry relation ιu(a)ωuv =
ιv(a)ωuv to push all the labels on a single vertex, and we see that the sum
of graphs that appear is obtained by the Arnold relation (see Fig. 1 for an
example in the case of Graphsn → e∨

n ).

Finally, the splitting part of the differential leaves the number of internal
vertices constant, unless it splits off a whole connected component with only
internal vertices, in which case the component is evaluated using the partition
function Zε. If that connected component consists of a single internal ver-
tex, then we saw in the previous item that splitting the edge connecting this
univalent vertex to the rest of the graph cancels with the contraction of that
edge. Otherwise, if the graph has more than one vertex, then by definition Zε

vanishes on that graph. ��

4.2 The morphisms are quasi-isomorphisms

In this section we prove that the morphisms constructed in Proposition 41 and
Proposition 61 are quasi-isomorphisms, completing the proof of Theorem 3.

Let us recall our hypotheses and constructions. Let M be a simply connected
closed smooth manifold of dimension at least 4. We endow M with a semi-
algebraic structure (Sect. 1.3) and we consider the CDGA Ω∗

PA(M) of PA forms
on M , which is a model for the real homotopy type of M . Recall that we fix

a zigzag of quasi-isomorphisms of CDGAs A
ρ←− R

σ−→ Ω∗
PA(M), where A

is a Poincaré duality CDGA (Theorem 14), and σ factors through the quasi-
isomorphic sub-CDGA of trivial forms.
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Recall that ϕ ∈ Ωn−1
PA (FMM(2)) is an (anti-)symmetric trivial form on

the compactification of the configuration space of two points in M , whose
restriction to the sphere bundle ∂FMM(2) is a global angular form, and whose
differential dϕ is a representative of the diagonal class of M (Proposition 25).
Recall that we defined the graph complexGraphsϕ

R(U ) using reduced labeled
graphs with internal and external vertices (Definition 40) and a partition func-
tion built from ϕ (Definition 38). We also defined the variants Graphsε

R and
Graphs′

R (Definitions 57 and 58).

Theorem 62 (Precise version of Theorem 3) Let M be a simply connected
closed smooth manifold of dimension at least 4. Using the notation recalled
above, the following zigzag, where the maps were constructed in Proposi-
tion 41, Proposition 60, and Proposition 61, is a zigzag of quasi-isomorphisms
of Z-graded CDGAs for all finite sets U:

GA(U )
∼←− Graphsε

R(U )
∼←− Graphs′

R(U )
∼−→ Graphsϕ

R(U )
∼−→ Ω∗

PA(FMM (U )).

If χ(M) = 0, then the left-pointing maps form a quasi-isomorphism of Hopf
right comodules:

(GA,e∨
n )

∼←− (Graphsε
R,Graphsn)

∼←− (Graphs′
R,Graphsn).

If moreover M is framed, then the right-pointing maps also form a quasi-
isomorphism of Hopf right comodules:

(Graphs′
R,Graphsn)

∼−→ (Graphsϕ
R,Graphsn)

∼−→ (Ω∗
PA(FMM ), Ω∗

PA(FMn)).

The rest of the section is dedicated to the proof of this theorem. Let us give a
roadmap of this proof. We first prove that Graphsε

R(U ) → GA(U ) is a quasi-
isomorphism by an inductive argument on #U (Proposition 64). This involves
setting up a spectral sequence so that we can reduce the argument to connected
graphs. Then we use explicit homotopies in order to show that both complexes
have cohomology of the same dimension, and we show that the morphism is
surjective on cohomology by describing a section by explicit arguments. Then
we prove that Graphsϕ

R(U ) → Ω∗
PA(FMM(U )) is surjective on cohomology

explicitly (Proposition 76). Since we know that GA(U ) and FMM(U ) have the
same cohomology by the theorem of Lambrechts–Stanley [33, Theorem 10.1],
this completes the proof that all the maps are quasi-isomorphisms. Compati-
bility with the various comodules structures was already shown in Sect. 3.

Lemma 63 The morphisms Graphsε
R(U ) → GA(U ) factor through quasi-

isomorphisms Graphsε
R(U ) → Graphsε

A(U ), where Graphsε
A(U ) is the

CDGA obtained by modding graphs with a label in ker(ρ : R → A) in
Graphsε

R(U ).
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Proof The morphism Graphsε
R → Graphsε

A simply applies the surjective
map ρ : R → A to all the labels. Hence Graphsε

R → GA factors through the
quotient.

We can consider the spectral sequences associated to the filtrations of both
Graphsε

R and Graphsε
A by the number of edges, and we obtain a mor-

phism E0Graphsε
R → E0Graphsε

A. On both E0 pages, only the internal
differentials coming from R and A remain. The chain map R → A is a quasi-
isomorphism; hence we obtain an isomorphism on the E1 page. By standard
spectral sequence arguments, it follows that Graphsε

R → Graphsε
A is a

quasi-isomorphism. ��
The CDGA Graphsε

A(U ) has the same graphical description as the CDGA

Graphsε
R(U ), except that now vertices are labeled by elements of A. An

internal component with a single vertex labeled by a ∈ A is identified with
ε(a), and an internal component with more than one vertex is identified with
zero.

Proposition 64 The morphism Graphsε
A → GA is a quasi-isomorphism.

Before starting to prove this proposition, let us outline the different steps.
We filter our complex in such a way that on the E0 page, only the contracting
part of the differential remains (such a technique was already used in the proof
of Proposition 55). Using a splitting result, we can focus on connected graphs.
Finally, we use a “trick” (Fig. 2) for moving labels around in a connected
component, reducing ourselves to the case where only one vertex is labeled.
We then get a chain map A ⊗ Graphsn → A ⊗ e∨

n (U ), which is a quasi-
isomorphism thanks to the formality theorem.

Let us start with the first part of the outlined program, removing the splitting
part of the differential from the picture. We now define an increasing filtration
on Graphsε

A. The submodule FsGraphs
ε
A is spanned by reduced graphs

such that #edges − #vertices ≤ s.

Lemma 65 The above submodules define a filtration of Graphsε
A by sub-

complexes, satisfying F−#U−1Graphsε
A(U ) = 0 for each finite set U. The E0

page of the spectral sequence associated to this filtration is isomorphic as a
module to Graphsε

A. Under this isomorphism the differential d0 is equal to
dA + d ′

contr, where dA is the internal differential coming from A and d ′
contr is

the part of the differential that contracts all edges but edges connected to a
univalent internal vertex.

Proof Let Γ be an internally connected (Definition 11) reduced graph. If
Γ ∈ Graphsε

A(U ) is the graph with no edges and no internal vertices, then
it lives in filtration level −#U . Adding edges can only increase the filtration.
Since we consider reduced graphs (i.e. no internal components), each time we
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add an internal vertex (decreasing the filtration) we must add at least one edge
(bringing it back up). By induction on the number of internal vertices, each
graph is of filtration at least −#U .

Let us nowprove that the differential preserves the filtration and checkwhich
parts remain on the associated graded complex. The internal differential dA
does not change either the number of edges nor the number of vertices and
so keeps the filtration constant. The contracting part dcontr of the differential
decreases both by exactly one, and so keeps the filtration constant too.

The splitting part dsplit of the differential removes one edge. If the resulting
graph is still connected, then nothing else changes and thefiltration is decreased
exactly by 1. If the resulting graph is not connected, then we get an internal
component γ which was connected to the rest of the graph by a single edge,
and was then split off and identified with a number in the process. If γ has
a single vertex labeled by a (i.e. we split an edge connected to a univalent
vertex), then this number is ε(a), and the filtration is kept constant. Otherwise,
the summand is zero (and so the filtration is obviously preserved).

In all cases, the differential preserves the filtration, and so we get a filtered
chain complex. On the associated graded complex, the only remaining parts
of the differential are dA, dcontr, and the part that splits off edges connected to
univalent vertices. But by the proof of Proposition 61 this last part cancels out
with the part that contracts these edges connected to univalent vertices. ��

The symmetric algebra S(ωuv)u �=v∈U has a weight grading by the word-
length on the generatorsωuv. This induces aweight grading one∨

n (U ), because
the ideal defining the relations is compatible with the weight grading. This
grading in turn induces an increasing filtration F ′

sGA on GA (the extra differ-
ential strictly decreases the weight). Define a shifted filtration on GA by:

FsGA(U ):=F ′
s+#UGA(U ).

Lemma 66 The E0 page of the spectral sequence associated to F∗GA is iso-
morphic as a module to GA. Under this isomorphism the d0 differential is just
the internal differential of A. ��
Lemma 67 The morphism Graphsε

A → GA preserves the filtration and
induces a chain map E0Graphsε

A(U ) → E0GA(U ), for each U. It maps
reduced graphs with internal vertices to zero, an edge euv between external
vertices to ωuv, and a label a of an external vertex u to ιu(a).

Proof The morphism Graphsε
A(U ) → GA(U ) preserves the filtration by

construction. If a graph has internal vertices, then its image in GA(U ) is of
strictly lower filtration unless the graph is a forest (i.e. a product of trees).
But trees have leaves, therefore by Corollary 44 and the formula defining
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Graphsε
A → GA they are mapped to zero in GA(U ) anyway. It is clear that

the rest of the morphism preserves filtrations exactly, and so is given on the
associated graded complex as stated in the lemma. ��

We now use arguments similar to [34, Lemma 8.3]. For a partition π of U ,
define the submodule Graphsε

A〈π〉 ⊂ E0Graphsε
A(U ) spanned by reduced

graphs Γ such that the partition ofU induced by the connected components of
Γ is exactlyπ . In particular letGraphsε

A〈{U }〉 be the submodule of connected
graphs,where {U } is the indiscrete partition ofU consisting of a single element.

Lemma 68 For each partition π of U, Graphsε
A〈π〉 is a subcomplex of

E0Graphsε
A(U ), and E0Graphsε

A(U ) splits as the sum over all partitions
π :

E0Graphsε
A(U ) =

⊕

π

⊗

V ∈π

Graphsε
A〈{V }〉.

Proof Since there is no longer any part of the differential that can split off
connected components in E0Graphsε

A, it is clear that Graphs
ε
A〈{U }〉 is a

subcomplex. The splitting result is immediate. ��
The complex E0GA(U ) splits in a similar fashion. For a monomial in

S(ωuv)u �=v∈U , say that u and v are “connected” if the term ωuv appears in
the monomial. Consider the equivalence relation generated by “u and v are
connected”. The monomial induces in this way a partition π of U , and this
definition factors through the quotient defining e∨

n (U ) (draw a picture of the
3-term relation). Finally, for a givenmonomial in GA(U ), the induced partition
of U is still well-defined.

Thus for a given partition π of U , we can define e∨
n 〈π〉 and GA〈π〉 to be

the submodules of e∨
n (U ) and E0GA(U ) spanned by monomials inducing the

partition π . It is a standard fact that e∨
n 〈{U }〉 = Lie∨

n (U ), see [47]. The proof
of the following lemma is similar to the proof of the previous lemma:

Lemma 69 For each partition π of U, GA〈π〉 is a subcomplex of E0GA(U ),
and E0GA(U ) splits as the sum over all partitions π of U:

E0GA(U ) =
⊕

π

⊗

V ∈π

GA〈{V }〉.

��
Lemma 70 The map E0Graphsε

A(U ) → E0GA(U ) preserves the splitting.

We can now focus on connected graphs to prove Proposition 64.

Lemma 71 The complex GA〈{U }〉 is isomorphic to A ⊗ e∨
n 〈{U }〉.
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Proof We define explicit isomorphisms in both directions.
Define A⊗U ⊗ e∨

n 〈{U }〉 → A ⊗ e∨
n 〈{U }〉 using the multiplication of A.

This constructions induces a map on the quotient E0GA(U ) → A ⊗e∨
n 〈{U }〉,

which restricts to a map GA〈{U }〉 → e∨
n 〈{U }〉. Since dA is a derivation, this

is a chain map.
Conversely, define A⊗e∨

n 〈{U }〉 → A⊗U ⊗e∨
n 〈{U }〉 by a ⊗ x �→ ιu(a)⊗ x

for some fixed u ∈ U (it does not matter which one since x ∈ e∨
n 〈{U }〉 is

“connected”). This construction gives a map A ⊗ e∨
n 〈{U }〉 → GA〈{U }〉, and

it is straightforward to check that this map is the inverse isomorphism of the
previous map. ��

We have a commutative diagram of complexes:

Graphsε
A〈{U }〉 A ⊗ Graphs′

n〈{U }〉

GA〈{U }〉 A ⊗ e∨
n 〈{U }〉
∼

∼=

Here Graphs′
n(U ) is defined similarly to Graphsn(U ) except that mul-

tiple edges are allowed. It is known that the quotient map Graphs′
n(U ) →

e∨
n (U ) (which factors through Graphsn(U )) is a quasi-isomorphism [53,

Proposition 3.9]. The subcomplex Graphs′
n〈{U }〉 is spanned by connected

graphs. The upper horizontal map in the diagram multiplies all the labels of a
graph.

The right vertical map is the tensor product of idA and Graphsn〈{U }〉 ∼−→
e∨

n 〈{U }〉 (see 1.6). The bottom row is the isomorphism of the previous lemma.
It then remains to prove that Graphsε

A〈{U }〉 → A ⊗ Graphs′
n〈{U }〉 is a

quasi-isomorphism to prove Proposition 64. If U = ∅, then Graphs′
A(∅) =

R = GA(∅) and the morphism is the identity, so there is nothing to do. From
now on we assume that #U ≥ 1.

Lemma 72 The morphism Graphsε
A〈{U }〉 → A ⊗ Graphs′

n〈{U }〉 is sur-
jective on cohomology.

Proof Choose some u ∈ U . There is an explicit chain-level section of the
morphism, sending x ⊗ Γ to Γu,x , the same graph with the vertex u labeled
by x and all the other vertices labeled by 1R . It is a well-defined chain map,
which is clearly a section of the morphism in the lemma, hence the morphism
of the lemma is surjective on cohomology. ��

We now use a proof technique similar to the proof of [34, Lemma 8.3],
working by induction. The dimension of H∗(Graphs′

n〈{U }〉) = e∨
n 〈{U }〉 =

Lie∨
n (U ) is well-known:
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dim Hi (Graphs′
n〈{U }〉) =

{
(#U − 1)!, if i = (n − 1)(#U − 1);
0, otherwise.

(33)

Lemma 73 For all sets U with#U ≥ 1, the dimension of Hi (Graphsε
A〈{U }〉)

is the same as the dimension:

dim Hi (A ⊗ Graphs′
n〈{U }〉) = (#U − 1)! · dim Hi−(n−1)(#U−1)(A).

The proof will be by induction on the cardinality of U . Before proving this
lemma, we will need two additional sub-lemmas.

Lemma 74 The complex Graphsε
A〈1〉 has the same cohomology as A.

Proof Let I be the subcomplex spanned by graphs with at least one internal
vertex.We will show that I is acyclic; as Graphsε

A〈1〉/I ∼= A, this will prove
the lemma.

There is an explicit homotopy h that shows that I is acyclic. Given a graph
Γ with a single external vertex and at least one internal vertex, define h(Γ )

to be the same graph with the external vertex replaced by an internal vertex, a
new external vertex labeled by 1A, and an edge connecting the external vertex
to the new internal vertex:

u
x h�−→ u

1A x

The differential in Graphsε
A〈1〉 only retains the internal differential of A and

the contracting part of the differential. Contracting the new edge in h(Γ ) gives
Γ back, and it is now straightforward to check that dh(Γ ) = Γ ± h(dΓ ). ��

Now let U be a set with at least two elements, and fix some element u ∈ U .
LetGraphsu

A〈{U }〉 ⊂ Graphsε
A〈{U }〉 be the subcomplex spanned by graphs

Γ such that u has valence 1, is labeled by 1A, and is connected to another
external vertex.

We now get to the core of the proof of Lemma 73. The idea (adapted from
[34, Lemma 8.3]) is to “push” the labels of positive degree away from the
chosen vertex u through a homotopy. Roughly speaking, we use Fig. 2 to
move labels around up to homotopy.

Lemma 75 The inclusion Graphsu
A〈{U }〉 ⊂ Graphsε

A〈{U }〉 is a quasi-
isomorphism.
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d contr
x

=
x

−
x

Fig. 2 Trick for moving labels around (gray vertices are either internal or external)

Proof Let Q be the quotient. We will prove that it is acyclic. The module Q
further decomposes into a direct sum of modules (but the differential does not
preserve the direct sum):

– The moduleQ1 spanned by graphs where u is of valence 1, labeled by 1A,
and connected to an internal vertex;

– The moduleQ2 spanned by graphs where u is of valence≥ 2 or has a label
in A>0.

We now filter Q as follows. For s ∈ Z, let FsQ1 be the submodule of Q1
spanned by graphs with at most s + 1 edges, and let FsQ2 be the submodule
spanned by graphs with at most s edges. This filtration is preserved by the
differential of Q.

Consider the E0 page of the spectral sequence associated to this filtration.
Then the differential d0 is a morphism E0Q1 → E0Q2 (count the number of
edges and use the crucial fact that edges connected to univalent vertices are
not contractible when looking at reduced graphs). This differential contracts
the only edge incident to u. It is an isomorphism, with an inverse similar to
the homotopy defined in Lemma 74, “blowing up” the point u into a new edge
connecting u to a new internal vertex that replaces u.

This shows that (E0Q, d0) is acyclic, hence E1Q = 0. It follows that Q
itself is acyclic. ��
Proof of Lemma 73 The case #U = 0 is obvious, and the case #U = 1 of the
lemma was covered in Lemma 74. We now work by induction and assume the
claim proved for #U ≤ k, for some k ≥ 1.

Let U be of cardinality k + 1. Choose some u ∈ U and define
Graphsu

A〈{U }〉 as before. By Lemma 75 we only need to show that this
complex has the right cohomology. It splits as:

Graphsu
A〈{U }〉 ∼=

⊕

v∈U\{u}
euv · Graphsε

A〈{U\{u}}〉, (34)

and therefore using the induction hypothesis:

dim Hi (Graphsu
A〈{U }〉) = k · dim Hi−(n−1)(Graphsε

A〈{U\{u}}〉)
= k! · dim Hi−k(n−1)(A).

��
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Proof of Proposition 64 By Lemma 72, the morphism induced by Graphsε
A

→ GA on theE0 page is surjective on cohomology. By Lemma 73 and Eq. (33),
both E0 pages have the same cohomology, and so the induced morphism is a
quasi-isomorphism. Standard spectral arguments imply the proposition. ��
Proposition 76 The morphism ω : Graphs′

R(U ) → Ω∗
PA(FMM(U )) is a

quasi-isomorphism.

Proof ByEq. (23), Proposition 60, Lemma63, andProposition 64, both CDGAs
have the same cohomology of finite type, so it will suffice to show that the
map is surjective on cohomology to prove that it is a quasi-isomorphism.

We work by induction. The caseU = ∅ is immediate, as Graphs′
R(∅)

∼−→
Graphsϕ

R(∅) = Ω∗
PA(FMM(∅)) = R and the last map is the identity.

Suppose that U = {u} is a singleton. Since ρ is a quasi-isomorphism,
for every cocycle α ∈ Ω∗

PA(FMM(U )) = Ω∗
PA(M) there is some cocycle

x ∈ R such that ρ(x) is cohomologous to α. Then the graph γx with a single
(external) vertex labeled by x is a cocycle in Graphs′

R(U ), and ω(γx ) =
ρ(x) is cohomologous to α. This proves that Graphs′

R({u}) → Ω∗
PA(M) is

surjective on cohomology, and hence is a quasi-isomorphism.
Now assume that U = {u} � V , where #V ≥ 1, and assume that the claim

is proven for sets of vertices of size at most #V = #U − 1. By Eq. (23), we
may represent any cohomology class of FMM(U ) by an element z ∈ GA(U )

satisfying dz = 0. Using the relations defining GA(U ), we may write z as

z = z′ +
∑

v∈V

ωuvzv,

where z′ ∈ A ⊗GA(V ) and zv ∈ GA(V ). The relation dz = 0 is equivalent to

dz′ +
∑

v∈V

(pu × pv)
∗(ΔA) · zv = 0, (35)

and dzv = 0 for all v. (36)

By the induction hypothesis, for all v ∈ V there exists a cocycle γv ∈
Graphs′

R(V ) such thatω(γv) represents the cohomology class of the cocycle
zv in H∗(FMM(V )), and such that σ∗(γv) is equal to zv up to a coboundary.

By Eq. (35), the cocycle

γ̃ =
∑

v∈V

(pu × pv)
∗(ΔR) · γv ∈ R ⊗ Graphs′

R(V )

is mapped to a coboundary in A⊗GA(V ). Themap σ∗ : R⊗Graphs′
R(V ) →

A ⊗ GA(V ) is a quasi-isomorphism, hence γ̃ = dγ̃1 is a coboundary too.
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It follows that z′ −σ∗(γ̃1) ∈ A ⊗GA(V ) is a cocycle. Thus by the induction
hypothesis there exists some γ̃2 ∈ R⊗Graphs′

R(V )whose cohomology class
represents the same cohomology class as z′ − σ∗(γ̃1) in H∗(A ⊗ GA(V )) =
H∗(M × FMM(V )).
We now let γ ′ = −γ̃1 + γ̃2, hence dγ ′ = −γ̃ + 0 = −γ̃ and σ∗(γ ′) is

equal to z′ up to a coboundary. By abuse of notation we still let γ ′ be the
image of γ ′ under the obvious map R ⊗ Graphs′

R(V ) → Graphs′
R(U ),

x ⊗ Γ �→ ιu(x) · Γ . Then

γ = γ ′ +
∑

v∈V

euv · γv ∈ Graphs′
R(U )

is a cocycle, andω(γ ) represents the cohomology class of z inΩ∗
PA(FMM(U )).

We have shown that the morphism Graphs′
R(U ) → Ω∗

PA(FMM(U )) is sur-
jective on cohomology, and hence it is a quasi-isomorphism. ��
Proof of Theorem 62 The zigzag of the theorem becomes, after factorizing the
first map through Graphsε

A:

GA(U ) ← Graphsε
A(U ) ← Graphsε

R(U ) ←
Graphs′

R(U ) → Graphsϕ
R(U ) → Ω∗

PA(FMM(U ))

All these maps are quasi-isomorphisms by Lemma 63, Proposition 60,
Proposition 64, and Proposition76. Their compatibility with the comodule
structures (under the relevant hypotheses) are due to Proposition 41, Proposi-
tion 60, and Proposition 61. ��

The last thing we need to check is the following proposition, which shows
that that we can choose any Poincaré duality model.

Proposition 77 If A and A′ are two quasi-isomorphic simply connected
Poincaré duality CDGAs, then there is a weak equivalence of symmetric collec-
tions GA � GA′ . If moreover χ(A) = 0 then this weak equivalence is a weak
equivalence of right Hopf e∨

n -comodules.

Proof The CDGAs A and A′ are quasi-isomorphic, hence there exists some
cofibrant S and quasi-isomorphisms f : S

∼−→ A and f ′ : S
∼−→ A′. This yields

two chain maps ε = εA ◦ f, ε′ = εA′ ◦ f ′ : S → R[−n]. Mimicking the proof
of Proposition 15, we can also find (anti-)symmetric cocycles Δ, Δ′ ∈ S ⊗ S
and such that ( f ⊗ f )Δ = ΔA and ( f ′ ⊗ f ′)Δ′ = ΔA′ .

We can then build symmetric collections Graphsε,Δ
S and a quasi-

isomorphism f∗ : Graphsε,Δ
S → GA similarly to Sect. 3. The differential

of an edge euv in Graphs
ε,Δ
S is ιuv(Δ), and an isolated internal vertex labeled
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by x ∈ S is identifiedwith ε(x). In parallel, we can build f ′∗ : Graphsε′,Δ′
S

∼−→
GA′ .

If moreover χ(A) = 0, then we can choose Δ, Δ′ such that both graph
complexes become right Hopf Graphsn-comodules, and f∗, f ′∗ are compat-
ible with the comodule structure. It thus suffices to find a quasi-isomorphism
Graphsε,Δ

S � Graphsε′,Δ′
S to prove the proposition.

We first have an isomorphism Graphsε′,Δ′
S

∼= Graphsε′,Δ
S (with the obvi-

ous notation). Indeed, the two cocycles Δ and Δ′ are cohomologous, say
Δ′ − Δ = dα for some α ∈ S ⊗ S of degree n − 1. If we replace α by
(α + (−1)nα21)/2, then we can assume that α21 = (−1)nα. Moreover if
χ(A) = 0, then we can replace α by α − (μS(α) ⊗ 1 + (−1)n1 ⊗ μS(α))/2
to get μS(α) = 0. We then obtain an isomorphism by mapping an edge euv to
euv ± ιuv(α) (the sign depending on the direction of the isomorphism). This
map is compatible with differentials, with products, and with the comodule
structures if χ(A) = 0.

The dg-module S is cofibrant andR[−n] is fibrant (like all dg-modules).We
can assume that ε and ε′ induce the same map on cohomology (it suffices to
rescale one map, say ε′, and there is an automorphism of Graphsε′,Δ

S which
takes care of this rescaling). Thus the two maps ε, ε′ : S → R[−n] are homo-
topic, i.e. there exists some h : S[1] → R[−n] such that ε(x)−ε′(x) = h(dx)

for all x ∈ S. This homotopy induces a homotopy between the two morphisms
Zε, Zε′ : fGCS → R. Because TwGraΔ

S (U ) and TwGraΔ′
S (U ) are cofi-

brant as modules over fGCS , we obtain quasi-isomorphisms Graphsε,Δ
S �

Graphsε′,Δ
S (compare with Proposition 60). ��

Corollary 78 Let M be a smooth simply connected closed manifold and A be
any Poincaré duality model of M. Then GA(k) is a real model for Confk(M).

Proof The corollary follows from Theorem 62 in the case where dim M ≥
4 (together with the previous proposition to ensure that we can choose any
Poincaré duality model A in our constructions). Note that the graph complexes
are, in general, nonzero even in negative degrees, but by Proposition 4 this does
not change the result. In dimension at most 3, the only examples of simply
connected closed manifolds are S2 and S3. We address these examples in
Sect. 4.3. ��
Corollary 79 The real homotopy types of the configuration spaces of a smooth
simply connected closed manifold only depends on the real homotopy type of
the manifold.

Proof When dim M ≥ 3, the Fadell–Neuwirth fibrations [12] Confk−1(M\∗)

↪→ Confk(M) → M show by induction that if M is simply connected, then
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so is Confk(M) for all k ≥ 1. Hence the real model GA(k) completely encodes
the real homotopy type of Confk(M). ��

4.3 Models for configurations on the 2- and 3-spheres

The degree-counting argument of Proposition 45 does not work in dimension
less than 4, sowe have to use othermeans to prove that the Lambrechts–Stanley
CDGAs are models for the configuration spaces.

There are no simply connected closed manifolds of dimension 1. In dimen-
sion 2, the only simply connected closed manifold is the 2-sphere, S2. This
manifold is a complex projective variety: S2 = CP

1. Hence the result of
Kriz [30] shows that GH∗(S2)(k) (denoted E(k) there) is a rational model for
Confk(S2). The 2-sphere S2 is studied in greater detail in Sect. 6, where we
study the action of the framed little 2-disks operad on a framed version of
FMS2 .

In dimension 3, the only simply connected smooth closed manifold is the
3-sphere by Perelman’s proof of the Poincaré conjecture [41,42]. we also the
following partial result, communicated to us by Thomas Willwacher:

Proposition 80 The CDGA GA(k), where A = H∗(S3; Q), is a rational model
of Confk(S3) for all k ≥ 0.

Proof The claim is clear for k = 0. Since S3 is a Lie group, the Fadell–
Neuwirth fibration is trivial [12, Theorem 4]:

Confk(R
3) ↪→ Confk+1(S3) → S3

The space Confk+1(S3) is thus identified with S3 × Confk(R
3), which is

rationally formal with cohomology H∗(S3) ⊗ e∨
3 (k). It thus suffices to build

a quasi-isomorphism between GA(k + 1) and H∗(S3) ⊗ e∨
n (k).

To simplify notation, we consider GA(k+) (where k+ = {0, . . . , k}), which
is obviously isomorphic to GA(k + 1). Let us denote by υ ∈ H3(S3) = A3

the volume form of S3, and recall that the diagonal class ΔA is given by
1 ⊗ υ − υ ⊗ 1. We have an explicit map f : H∗(S3) → e∨

3 (k) given on
generators by f (ν ⊗ 1) = ι0(ν) and f (1 ⊗ ωi j ) = ωi j + ω0i − ω0 j .

The Arnold relations show that this is a well-defined algebra morphism. Let
us prove that d ◦ f = 0 on the generator ωi j (the vanishing on υ ⊗ 1 is clear).
We may assume that k = 2 and (i, j) = (1, 2), and then apply ιi j to get the
general case. Then we have:

(d ◦ f )(ω12) = (1 ⊗ 1 ⊗ υ − 1 ⊗ υ ⊗ 1) + (1 ⊗ υ ⊗ 1 − υ ⊗ 1 ⊗ 1)

−(1 ⊗ 1 ⊗ υ − υ ⊗ 1 ⊗ 1) = 0
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We know that both CDGAs have the same cohomology, so to check that f
is a quasi-isomorphism it suffices to check that it is surjective in cohomology.
The cohomology H∗(GA(k+)) ∼= H∗(S3) ⊗ e∨

3 (k) is generated in degrees 2
(by the ωi j ’s) and 3 (by the ιi (υ)’s), so it suffices to check surjectivity in these
degrees.

In degree 3, the cocycle υ ⊗ 1 is sent to a generator of H3(GA(k+)) ∼=
H3(S3) = Q. Indeed, assume ι0(υ) = dω, where ω is a linear combination
of the ωi j for degree reasons. In dω, the sum of the coefficients of each ιi (υ)

is zero, because they all come in pairs (dωi j = ι j (υ) − ιi (υ)). We want the
coefficient of ι0(υ) to be 1, so at least one of the other coefficient must be
nonzero to compensate, hence dω �= ι0(υ).

It remains to prove that H2( f ) is surjective. We consider the quotient map
p : GA(k+) → e∨

3 (k) that maps ιi (υ) and ω0i to zero for all 1 ≤ i ≤ k. We
also consider the quotient map q : H∗(S3) ⊗ e∨

3 (k) → e∨
3 (k) sending υ ⊗ 1

to zero. We get a morphism of short exact sequences:

0 ker q H∗(S3) ⊗ e∨
3 (k) e∨

3 (k) 0

0 ker p GA(k) e∨
3 (k) 0

q

f =
p

We consider part of the long exact sequence in cohomology induced by
these short exact sequences of complexes:

e∨
3 (k)1 H2(ker q) H2(H∗(S3) ⊗ e∨

3 (k)) = e∨
3 (k)2 e∨

3 (k)2

e∨
3 (k)1 H2(ker p) H2(GA(k+)) e∨

3 (k)2
= (1) H2( f ) =

For degree reasons, H2(ker q) = 0 and so the map (1) is injective. By
the four lemma, it follows that H2( f ) is injective. Since both domain and
codomain have the same finite dimension, it follows that H2( f ) is an isomor-
phism. ��

5 Factorization homology of universal enveloping En-algebras

5.1 Factorization homology and formality

The manifold R
n is framed. Let U be a finite set and consider the space of

framed embeddings (i.e. such that the differential at each point preserves the
given trivializations of the tangent bundles) of U copies of R

n in itself, with
the compact open topology:
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Diskfrn (U ) := Embfr(Rn × U, R
n) ⊂ Map(Rn × U, R

n). (37)

Using composition of embeddings, these spaces assemble to form a topo-
logical operad Diskfrn . This operad is weakly equivalent to the operad of little
n-disks [3, Remark 2.10], and the application that takes f ∈ Diskfrn (U ) to
{ f (0 × u)}u∈U ∈ ConfU (Rn) is a homotopy equivalence.

Similarly if M is a framed manifold, then the spaces Embfr(Rn × −, M)

assemble to form a topological right Diskfrn -module, again given by composi-
tion of embeddings. We call it DiskfrM . If B is a Diskfrn -algebra, factorization
homology is given by a derived composition product [3, Definition 3.2]:

∫

M
B := DiskfrM ◦L

Diskfrn
B:=

hocoeq
(
DiskfrM ◦ Diskfrn ◦ B ⇒ DiskfrM ◦ B

)
. (38)

Using [52, Section 2], the pair (FMM ,FMn) is weakly equivalent to the pair
(DiskfrM ,Diskfrn ). So if B is an FMn-algebra, then its factorization homology
is:

∫

M
B � FMM ◦L

FMn
B:= hocoeq

(
FMM ◦ FMn ◦ B ⇒ FMM ◦ B

)
. (39)

We nowwork in the category of chain complexes overR.We use the formal-
ity theorem (Sect. 1.6) and the fact that weak equivalences of operads induce
Quillen equivalence between categories of right modules (resp. categories of
algebras) by [16, Theorems 16.A, 16.B]. Thus, to any homotopy class [B] of
En-algebras in the category of chain complexes, there corresponds a homotopy
class [B̃] of en-algebras (which is generally not easy to describe).

UsingTheorem62, a gameof adjunctions [16, Theorems 15.1.A and 15.2.A]
shows that:

∫

M
B � G∨

A ◦L

en
B̃, (40)

where A is the Poincaré duality model of M mentioned in the theorem, and
G∨

A is the right en-module dual to GA viewed as a chain complex.

5.2 Higher enveloping algebras

Knudsen [27, Theorem A] considers a higher enveloping algebra functor Un
fromhomotopyLie algebras to nonunital En-algebras. This functor generalizes
the standard enveloping algebra functor from the category of Lie algebras to
the category of associative algebras.
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Let n be at least 2. We can again use Kontsevich’s theorem on the formality
of the little disks operads to identity the category of non-unital En-algebras
with the category of en-algebras in homotopy. We also use that a homotopy
Lie algebra is equivalent, in homotopy, to an ordinary Lie algebra. Then we
get that Knudsen’s higher enveloping algebra functor is equivalent to the left
adjoint of the obvious forgetful functor en-Alg → Lie-Alg, which maps an
n-Poisson algebra B to its underlying shifted Lie algebra B[1−n]. This model
Ũn : Lie-Alg → en-Alg maps a Lie algebra g to the n-Poisson algebra given
by Ũn(g) = S(g[n−1]), with the shifted Lie bracket defined using the Leibniz
rule.

Knudsen [26, Theorem 3.16] also gives a way of computing factorization
homology of higher enveloping algebras. If g is a Lie algebra, then so is A ⊗g
for any CDGA A. Then the factorization homology of Un(g) on M is given by:

∫

M
Un(g) � CCE∗ (A−∗

PL (M) ⊗ g) (41)

where CCE∗ is the Chevalley–Eilenberg complex and A−∗
PL (M) is the CDGA

of rational piecewise polynomial differential forms, with the usual grading
reversed.

Proposition 81 Let A be a Poincaré duality CDGA. Then we have a quasi-
isomorphism of chain complexes:

G∨
A ◦L

en
S(g[n − 1]) ∼−→ CCE∗ (A−∗ ⊗ g).

If A is a Poincaré dualitymodel of M , we have A � Ω∗
PA(M) � A∗

PL(M)⊗Q

R [23, Theorem 6.1]. It follows that the Chevalley–Eilenberg complex of the
previous proposition is weakly equivalent to the Chevalley–Eilenberg complex
of Eq. (41). By Eq. (39), the derived circle product over en computes the
factorization homology ofUn(g) on M , and so we recover Knudsen’s theorem
(over the reals) for closed framed simply connected manifolds.

Let I be the unit of the composition product, defined by I(1) = R and
I(U ) = 0 for #U �= 1. Let Λ be the suspension of operads, satisfying

ΛP ◦ (X [−1]) = (P ◦ X)[−1] = I[−1] ◦ (P ◦ X).

As as symmetric collection, ΛP is simply given by ΛP = I[−1] ◦ P ◦ I[1].
Recall that we let Lien = Λ1−nLie. The symmetric collection

Ln := Lie ◦ I[1 − n] = I[1 − n] ◦ Lien (42)
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is a (Lie,Lien)-bimodule, i.e. a Lie-algebra in the category of Lien-right
modules. We have Ln(U ) = (Lien(U ))[1 − n]. This bimodule satisfies, for
any Lie algebra g,

Ln ◦Lien g[n − 1] ∼= g as Lie algebras. (43)

We can view the CDGA A−∗ as a symmetric collection concentrated in
arity 0, and as such it is a commutative algebra in the category of symmetric
collections. Thus the tensor product

A−∗ ⊗ Ln = {A−∗ ⊗ Ln(k)}k≥0

becomes a Lie-algebra in right Lien-modules, where the right Lien-module
structure comes from Ln and the Lie algebra structure combines the Lie alge-
bra structure of Ln and the CDGA structure of A−∗. Its Chevalley–Eilenberg
complex CCE∗ (A−∗ ⊗ Ln) is well-defined, and by functoriality of CCE∗ , it is a
right Lien-module.

The proof of the following lemma is essentially found (in a different lan-
guage) in [15, Section 2].

Lemma 82 The right Lien-modules G∨
A and CCE∗ (A−∗ ⊗Ln) are isomorphic.

Proof We will actually define a non-degenerate pairing

〈−, −〉 : GA(U ) ⊗ CCE∗ (A−∗ ⊗ Ln)(U ) → R,

for each finite set U , compatible with differentials and the right Lien-
(co)module structures. As both complexes are finite-dimensional in each
degree, this is sufficient to prove that they are isomorphic.

Recall that the Chevalley–Eilenberg complex CCE∗ (g) is given by the cofree
cocommutative conilpotent coalgebra Sc(g[−1]), together with a differential
induced by the Koszul duality morphism Λ−1Com∨ → Lie. It follows that
as a module, CCE∗ (A−∗ ⊗ Ln)(U ) is given by:

CCE∗ (A−∗ ⊗ Ln)(U )

=
⊕

r≥0

⎛

⎝
⊕

π∈Partr (U )

A−∗ ⊗ Ln(U1)[−1] ⊗ · · · ⊗ A−∗ ⊗ Ln(Ur )[−1]
⎞

⎠

Σr

=
⊕

r≥0

⎛

⎝
⊕

π∈Partr (U )

(An−∗)⊗r ⊗ Lien(U1) ⊗ · · · ⊗ Lien(Ur )

⎞

⎠

Σr

(44)
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where the sums run over all partitions π = {U1 � · · · � Ur } of U and An−∗ =
A−∗[−n] (which is a CDGA, Poincaré dual to A).
Fix some r ≥ 0 and some partition π = {U1 � · · · � Ur }. We define a first

pairing:

(
A⊗U ⊗e∨

n (U )
)⊗(

(An−∗)⊗r ⊗Lien(U1)⊗. . .⊗Lien(Ur )
)→R (45)

as follows:

– On the A factors, the pairing uses the Poincaré duality pairing εA. It is
given by the following formula (where aUi = ∏

u∈Ui
au):

(au)u∈U ⊗ (a′
1 ⊗ · · · ⊗ a′

r ) �→ ±εA(aU1 · a′
1) . . . εA(aUr · a′

r ),

– On the factor e∨
n (U ) ⊗ ⊗r

i=1 Lien(Ui ), it uses the duality pairing on
e∨

n (U ) ⊗ en(U ) (recalling that en = Com ◦ Lien so that we can view⊗r
i=1 Lien(Ui ) as a submodule of en(U )).

The pairing in Eq. (45) is the product of the two pairings we just defined. It
is extended linearly on all of (A⊗U ⊗ e∨

n (U )) ⊗ CCE∗ (A−∗ ⊗ Ln)(U ), and it
factors through the quotient defining GA(U ) from A⊗U ⊗ e∨

n (U ).
To check the non-degeneracy of this pairing, we use the vector subspaces

GA〈π〉 of Lemma 69, which are well-defined even though they are not pre-
served by the differential if we do not consider the graded space E0GA. Fix
some partitionπ = {U1, . . . , Ur } ofU , thenwe have an isomorphism of vector
spaces:

GA〈π〉 ∼= A⊗r ⊗ Lie∨
n (U1) ⊗ · · · ⊗ Lie∨

n (Ur ).

It is clear thatGA〈π〉 is paired with the factor corresponding toπ in Eq. (44),
using the Poincaré duality pairing of A and the pairing between Lien and its
dual; and if two elements correspond to different partitions, then their pairing
is equal to zero. Since both εA and the pairing between Lien and its dual are
non-degenerate, the total pairing is non-degenerate.

The pairing is compatible with the Lien-(co)module structures, i.e. the fol-
lowing diagram commutes (a relatively easy but notationally tedious check):

GA(U ) ⊗ CCE∗ (A−∗ ⊗ Ln)(U/W )

⊗ Lien(W )
GA(U ) ⊗ CCE∗ (A−∗ ⊗ Ln)(U )

GA(U/W ) ⊗ CCE∗ (A−∗ ⊗ Ln)(U/W )

Lie∨
n (W ) ⊗ Lien(W )

R

1⊗◦W

◦∨
W ⊗1 〈−,−〉

〈−,−〉
〈−,−〉Lien
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Finally, we easily check, using the identity εA(aa′) = ∑
(ΔA) ±εA(aΔ′

A)

εA(a′Δ′′
A) (which in turns follows from the definition of ΔA) that the pairing

commutes with differentials (i.e. 〈d(−), −〉 = ±〈−, d(−)〉). ��
Proof of Proposition 81 The operad en is given by the composition product
Com ◦ Lien equipped with a distributive law that encodes the Leibniz rule.
We get the following isomorphism (natural in g):

G∨
A ◦en S(g[n − 1]) = G∨

A ◦en (Com ◦ g[n − 1])
∼= G∨

A ◦en (en ◦Lien g[n − 1])
∼= G∨

A ◦Lien g[n − 1].

According to Lemma 82, the right Lien-module G∨
A is isomorphic to

CCE∗ (A−∗⊗Ln). The functoriality of A−∗⊗− and CCE∗ (−), as well as Eq. (43),
imply that we have the following isomorphism (natural in g):

G∨
A ◦Lien g[n − 1] ∼= CCE∗ (A−∗ ⊗ Ln) ◦Lien g[n − 1]

∼= CCE∗
(

A−∗ ⊗ ((Ln) ◦Lien g[n − 1]))
∼= CCE∗ (A−∗ ⊗ g).

The derived circle product is computed by taking a cofibrant resolution
of S(g[n − 1]). Let Qg

∼−→ g be a cofibrant resolution of the Lie algebra
g. Then S(Qg[n − 1]) is a cofibrant en-algebra, and by Künneth’s formula
S(Qg[n − 1]) → S(g[n − 1]) is a quasi-isomorphism. It follows that:

G∨
A ◦L

en
S(g[n − 1]) = G∨

A ◦en S(Qg[n − 1]).

We therefore have a commutative diagram:

G∨
A ◦L

en
S(g[n − 1]) G∨

A ◦en S(g[n − 1])

CCE∗ (A−∗ ⊗ Qg) CCE∗ (A−∗ ⊗ g)

∼= ∼=

The functor CCE∗ preserves quasi-isomorphisms of Lie algebras, hence the
bottom map is a quasi-isomorphism. The proposition follows. ��

6 Outlook: The case of the 2-sphere and oriented manifolds

Up to now, we were considering framed manifolds M in order to define the
action of the (unframed) Fulton–MacPherson FMn on FMM . When M is not
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framed, it is not possible to coherently define insertion of infinitesimal con-
figurations from FMn into the tangent space of M , because we lack a coherent
identification of the tangent space at every point with R

n . Instead, for an ori-
ented (but not necessarily framed) manifold M , there exists an action of the
framed Fulton–MacPherson operad obtained by considering infinitesimal con-
figurations together with rotations of SO(n) (see below for precise definitions).

In dimension 2, the formality ofFM2 was extended to a proof of the formality
of the framed version of FM2 in [20] (see also [45] for an alternative proof and
[25] for a generalization for even n). We now provide a generalization of
the previous work for the 2-sphere, and we formulate a conjecture for higher
dimensional closed manifolds that are not necessarily framed.

6.1 Framed little disks and framed configurations

Following Salvatore–Wahl [44, Definition 2.1], we describe the framed little
disks operad as a semi-direct product. If G is a topological group and P is an
operad in G-spaces, the semi-direct product P � G is the topological operad
defined by (P�G)(n) = P(n)×Gn and explicit formulas for the composition.
If H is a commutativeHopf algebra andC is a Hopf cooperad in H -comodules,
then the semi-direct product C � H is defined by formally dual formulas.

The operad FMn is an operad in SO(n)-spaces, the action rotating config-
urations. Thus we can form an operad fFMn = FMn � SO(n), the framed
Fulton–MacPherson operad, weakly equivalent to the standard framed little
disks operad.

Given an oriented n-manifold M , there is a corresponding right module over
fFMn , which we call fFMM [52, Section 2]. The space fFMM(U ) is a principal
SO(n)×U -bundle over FMM(U ). Since SO(n) is an algebraic group, fFMn and
fFMM(U ) are respectively an operad and a module in semi-algebraic spaces.

6.2 Cohomology of fFMn and potential model

The cohomology of SO(n) is classically given by Pontryagin andEuler classes:

H∗(SO(2n); Q) = S(β1, . . . , βn−1, α2n−1) (degα2n−1 = 2n − 1)

H∗(SO(2n + 1)) = S(β1, . . . , βn) (degβi = 4i − 1)

By the Künneth formula, fe∨
n (U ) = e∨

n (U ) ⊗ H∗(SO(n))⊗U . We now
provide explicit formulas for the cocomposition [44]. If x ∈ H∗(SO(n)) and
u ∈ U , then denote as before ιu(x) ∈ H∗(SO(n))⊗U . Let W ⊂ U . If x is
either βi or α2n−1 in the even case, then we have:
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◦∨
W (ιu(x)) =

{
ι∗(x) ⊗ 1 + 1 ⊗ ιu(x), if u ∈ W ;
ιu(x) ⊗ 1, otherwise.

(46)

The formula for ◦∨
W (ωuv) depends on the parity of n. If n is odd, then

◦∨
W (ωuv) is still given by Eq. (14). Otherwise, in fe∨

2n we have:

◦∨
W (ωuv) =

{
ι∗(α2n−1) ⊗ 1 + 1 ⊗ ωuv, if u, v ∈ W ;
ω[u][v] ⊗ 1, otherwise.

(47)

From now on, we focus on oriented surfaces. The only simply connected
compact surface is M = S2. We can choose A = H∗(S2) = S(υ)/(υ2) as its
Poincaré duality model. The Euler class of A is eA = χ(S2)volA = 2υ, and
the diagonal class is ΔA = υ ⊗ 1 + 1 ⊗ υ. Recall that μA(ΔA) = eA.

Definition 83 The framed LS CDGA fGA(U ) is given by:

fGA(U ) = (A⊗U ⊗ fe∨
2 (U )/(ιu(a) · ωuv = ιv(a) · ωuv), d),

where the differential is given by dωuv = ιuv(ΔA) and dιu(α) = ιu(eA).

Proposition 84 The collection {fGA(U )}U is a Hopf right fe∨
2 -comodule,

with cocomposition given by the same formula as Eq. (24).

Proof The proofs that the cocomposition is compatible with the cooperad
structure of fe∨

2 , and that this is compatible with the quotient, is the same as in
the proof of Proposition 16. It remains to check compatibilitywith differentials.

We check this compatibility on generators. The internal differential of A =
H∗(S2) is zero, so it is easy to check that ◦∨

W (d(ιu(a))) = d(◦∨
W (ιu(a))) = 0.

Similarly, by Eq. (46), checking the equality on α is immediate. As before
there are several cases to check for ωuv . If u, v ∈ W , then by Eq. (47),

d(◦∨
W (ωuv)) = d(ι∗(α) ⊗ 1 + 1 ⊗ ωuv) = ι∗(eA) ⊗ 1

= ι∗(μA(ΔA)) ⊗ 1 = ◦∨
W (dωuv),

and otherwise the proof is identical to the proof of Proposition 16. ��

6.3 Connecting fGA to Ω∗
PA(fFMS2)

The framed little 2-disks operad is formal [20,45]. We focus on the proof of
Giansiracusa–Salvatore [20], which goes along the same line as the proof of
Kontsevich of the formality of FMn . To simplify notations, let H = H∗(S1),
which is a Hopf algebra. The operad Graphs2 is an operad in H -comodules,
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so there is a semi-direct product Graphs2 � H . Giansiracusa and Salvatore
construct a zigzag:

fe∨
2

∼←− Graphs2 � H
∼−→ ΩPA(fFM2). (48)

The first map is the tensor product of Graphs2
∼−→ e∨

2 and the identity of
H . The second map is given by the Kontsevich integral on Graphs2 and by
sending the generator α ∈ H to the volume form of Ω∗

PA(S1) (pulled back by
the relevant projection). They check that both maps are maps of Hopf (almost)
cooperads, and they use the Künneth formula to conclude that these maps are
quasi-isomorphisms.

Theorem 85 The Hopf right comodule (fGA,fe∨
2 ), where A = H∗(S2; R),

is quasi-isomorphic to the Hopf right comodule (Ω∗
PA(fFMS2), Ω

∗
PA(fFM2)).

Proof It is now straightforward to adapt the proof of Theorem 3 to this setting,
reusing the proof of Giansiracusa–Salvatore [20]. We build the zigzag:

fGA ← Graphsε
A � H → Ω∗

PA(fFMS2).

We simply choose R = A = H∗(S2), mapping υ ∈ H2(S2) to the volume
formof S2.Note that the propagator can bemade completely explicit on S2, and
it can be checked that Zϕ vanishes on all connected graphs with more than one
vertex [6, Proposition 80]. The middle term is a Hopf right (Graphs2 � H)-
comodule built out ofGraphsε

A and H , using formulas similar to the formulas
defining Graphs2 � H out of Graphs2 and H . The first map is given by the
tensor product of GraphsR → GA and the identity of H .

The second map is given by the morphism of Proposition 41 on the
Graphsε

A factor, composed with the pullback along the projection fFMS2 →
FMS2 . The generator α ∈ H is sent to a pullback of a global angular form ψ

of the principal SO(2)-bundle fFMS2(1) → FMS2(1) = S2 induced by the
orientation of S2. This form satisfies dψ = χ(S2)volS2 .

The proof of Giansiracusa–Salvatore [20] then adapts itself to prove that
these two maps are maps of Hopf right comodules. The Künneth formula
implies that the first map is a quasi-isomorphism, and the second map induces
an isomorphism on the E2-page of the Serre spectral sequence associated to
the bundle fFMS2 → FMS2 and hence is itself a quasi-isomorphism. ��
Corollary 86 The CDGA fGH∗(S2)(k) of Definition 83 is a real model for
Confork (S2), the SO(2)×k-principal bundle over Confk(S2) induced by the
orientation of S2.

If M is an oriented n-manifold with n > 2, Definition 83 readily adapts to
define fGH∗(M), by setting dα to be the Euler class of M (when n is even), and
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dβi to be the i th Pontryagin class of M . The proof of Proposition 84 adapts
easily to this new setting, and fGH∗(M) becomes a Hopf right fe∨

n -comodule.

Conjecture 87 If M is a formal, simply connected, oriented closed n-
manifold and if the framed little n-disks operad fen is formal, then the pair
(fGH∗(M),fe∨

n ) is quasi-isomorphic to the pair (Ω∗
PA(fFMM), Ω∗

PA(fFMn)).

To directly adapt our proof for the conjecture, the difficulty would be the
same as encountered by Giansiracusa–Salvatore [20], namely finding forms
in Ω∗

PA(fFMn) corresponding to the generators of H∗(SO(n)) and compatible
with the Kontsevich integral. It was recently proved that the framed Fulton–
MacPherson is formal for even n and not formal for odd n ≥ 3 [25,38].
However, the proof that fFMn is formal for even n ≥ 4, due to Khoroshkin
and Willwacher [25], is much more involved than the proof of the formality
of fFM2. In particular, the zigzag of maps is not completely explicit and relies
on obstruction-theoretical arguments. It would be interesting to try and adapt
the conjecture in this setting.

If M itself is not formal then it is also not clear how to define Pontryagin
classes in some Poincaré duality model of M (the Euler class is canonically
given by χ(A)volA). Nevertheless, for any oriented manifold M we get invari-
ants offen-algebras by considering the functorfG∨

H∗(M)◦L

fen
(−). Despite not

necessarily computing factorization homology, they could prove interesting.
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Glossary of notation

DG-modules and CDGAs
V [k] = ⊕

n∈Z
V n+k : desuspension of a dg-module (Sect. 1.1)

(v ⊗ w)21:= ± w ⊗ v (Sect. 1.1)
X = ∑

(X) X ′ ⊗ X ′′ ∈ V ⊗ W : Sweedler’s notation (Sect. 1.1)
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Cooperads and comodules

k = {1, . . . , k} (Sect. 1.2)
◦∨

W : C(U ) → C(U/W ) ⊗ C(W ): cooperadic cocomposition (Sect. 1.2)
◦∨

W : N(U ) → N(U/W )⊗C(W ): right comodule structure map (Sect. 1.2)

Semi-algebraic sets and PA forms

Ω∗
PA(−): CDGA of piecewise semi-algebraic (PA) forms (Sect. 1.3)

p∗(−) = ∫
p:E→B(−): integral along the fibers of the pa bundle p

(Sect. 1.3)

Little disks and related objects

FMn(k): Fulton–MacPherson compactification of Confk(R
n) (Sect. 1.4)

en:=H∗(FMn), e∨
n :=H∗(FMn) homology and cohomology of FMn (Sect.

1.4)
voln−1 ∈ Ωn−1

PA (FMn(2)) volume form (Sect. 1.4)
FMM(k): Fulton–MacPherson compactification of Confk(M) (Sect. 1.4)
p : ∂FMM(2) → M sphere bundle of rank n − 1 (Sect. 1.4)

Poincaré duality CDGAs

(A, εA): Poincaré duality CDGA with its orientation (Sect. 1.7)
volA ∈ An: volume form (Sect. 1.7)
ΔA ∈ (A ⊗ A)n: diagonal cocycle (Sect. 1.7)
GA(k): Lambrechts–Stanley CDGAs (Sect. 1.8)

Graph complexes for R
n

Gran: graphs with only external vertices (Sect. 1.6)
TwGran: graphs with external and internal vertices (Sect. 1.6)
Graphsn: reduced graphs with external and internal vertices (Sect. 1.6)
Gra�

n , Graphs
�
n : variants with loops and multiple edges (Sect. 3.1)

μ = e∨
12: Maurer–Cartan element used to twist the graphs cooperad

(Sect. 1.6)
ω : Graphsn → Ω∗

PA(FMn): Kontsevich’s integrals (Sect. 1.6)

Graph complexes for a closed manifold M

GraR: labeled graphs with only external vertices (Sect. 3.2)
Gra�

R : variant with loops and multiple edges (Sect. 3.2)
TwGraR: labeled graphs with internal and external vertices (Sect. 3.4)
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ϕ ∈ Ωn−1
PA (FMM(2)): propagator (Sect. 3.3)

fGCR: full labeled graph complex (Definition 36)
Zϕ : fGCR → R: partition function (Sect. 3)
Graphsϕ

R: reduced labeled graphs with internal and external vertices
(Sect. 3.6)
ω : Graphsϕ

R: integrals (Sect. 3.6)
Zε : fGCR → R: almost trivial partition function (Definition 58)
Graphsε

R: reduced labeled graphswith internal and external vertices (Def-
inition 58)

Factorization homology

Diskfrn : operad of framed embeddings (Sect. 5)
DiskfrM : module of framed embeddings for a framed M (Sect. 5)
∫

M A:=DiskfrM ◦L

Diskfrn
A: factorization homology (Sect. 5)

CCE∗ : Chevalley–Eilenberg complex (Sect. 5)

Framed case

fFMn = FMn � SO(n) framed Fulton–MacPherson operad (Sect. 6)
fFMM : framed Fulton–MacPherson compactification (Sect. 6)
fGA(k): framed Lambrechts–Stanley CDGAs (Sect. 6)
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