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Abstract

We consider a general equilibrium model of a private ownership economy with con-
sumption and production externalities. Utility functions and production technolo-
gies may be affected by the consumption and production activities of all other agents
in the economy. We use homotopy techniques to show that the set of competitive
equilibria is non-empty and compact. Fixing the externalities, the assumptions on
utility functions and production technologies are standard in a differentiable frame-
work. Competitive equilibria are written in terms of first-order conditions associated
with agents’ behavior and market clearing conditions, following the seminal paper
of Smale (1974). The work of adapting the homotopy approach to economies with
externalities on the production side is non trivial and it requires some ingenious ad-
justments, because the production technologies are not required to be convex with
respect to the consumption and production activities of all agents.

JEL classification: C62, D51, D62.

Key words: externalities, private ownership economy, competitive equilibrium,
homotopy approach.
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1 Introduction

We consider a general equilibrium model of a private ownership economy with
consumption and production externalities. We use differential techniques to
show that the set of competitive equilibria is non-empty and compact.

The general equilibrium model of Arrow and Debreu has been extended to
economies with externalities. Our model of externalities is based on the sem-
inal models given in Arrow and Hahn (1971), Laffont and Laroque (1972),
and Laffont (1988), where individual preferences and production technologies
are affected by the consumption and production activities of all other agents
in the economy. Consumption externalities have been widely recognized in
the literature on network externalities and other-regarding preferences. Pol-
luting production activities are a classical example of production externalities
induced on individual preferences and technological processes of other firms.
Furthermore, ICT (Information and Communication Technologies) firms also
are in a between-firms externality relationship, because of the influence of the
production activities of one firm on another’s productivity.

We consider a private ownership economy with a finite number of commodi-
ties, households and firms. Each household’s preferences are represented by a
utility function. Each firm’s production technology is represented by a trans-
formation function. 3 Utility and transformation functions may be affected by
the consumption and production activities of all other agents. Each agent
(household or firm) maximizes his goal by taking as given both the commod-
ity prices and the choices of every other agent in the economy. The associated

1 The first version of this paper dates back to 2011 and it has been available on the
website: http://www.parisschoolofeconomics.eu/fr/del-mercato-elena/publications.
We are delighted that this paper has been quoted by Balasko (2015). Furthermore,
we have recently found a similar contribution in Ericson and Kung (2015). The
2011’s version has been presented at the Public Economic Theory (PET 10) and
Public Goods, Public Projects, Externalities (PGPPE) Closing Conference, Bogazici
University, 2010, and the Fifth Economic Behavior and Interaction Models (EBIM)
Doctoral Workshop on Economic Theory, Bielefeld University, 2010. We thank the
participants of these conferences for useful comments.
2 Elena L. del Mercato, Université Paris 1 Panthéon-Sorbonne, Centre d’Economie
de la Sorbonne and Paris School of Economics, address: Centre d’Economie de
la Sorbonne, 106-112 Boulevard de l’Hôpital, 75647 Paris Cedex 13, France, e-
mail: Elena.delMercato@univ-paris1.fr; Vincenzo Platino (corresponding author),
Department of Economics and Statistics, University of Naples Federico II and
CSEF, address: Via Cintia Monte S. Angelo, 80126 Napoli, Italy, e-mail: vin-
cenzo.platino@gmail.com.
3 This is a convenient way to represent a production set using an inequality on a
function called the transformation function, see for instance Mas-Colell et al. (1995).
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concept of competitive equilibrium is an equilibrium à la Nash, the resulting
allocation being feasible with the initial resources of the economy. This no-
tion is given, for instance, in Arrow and Hahn (1971), and Laffont (1988),
and it includes as a particular case the classical equilibrium definition without
externalities.

Fixing the externalities, the assumptions on utility and transformation func-
tions are standard in a differentiable framework. In particular, preferences and
production technologies are convex. However, we do not require preferences
and production technologies to be convex with respect to the externalities. Our
main theorem (Theorem 8) states that the set of competitive equilibria with
strictly positive consumptions and strictly positive prices is non-empty and
compact. We prove Theorem 8 following the seminal work by Smale (1974),
and more recent contributions by Villanacci and Zenginobuz (2005), del Mer-
cato (2006) and Bonnisseau and del Mercato (2008). That is, we use:

(1) Smale’s approach.
(2) Homotopy techniques.
(3) The topological degree modulo 2.

In Smale’s approach, the equilibrium is written as a solution of an extended
system of equations consisting of the first-order conditions associated with
agents’ behavior and the market clearing conditions. No externalities are taken
into account in the seminal work of Smale (1974). However, this approach is
used in many different settings such as incomplete markets, public goods and
externalities. In the presence of externalities, Smale’s approach overcomes the
following difficulty: the individual demand and supply depend on the indi-
vidual demand and supply of all other agents which, in turn, depend on the
individual demand and supply of all other agents, and so on. Therefore, it is
problematic to define an aggregate demand and an aggregate supply which
depend only on prices and initial endowments.

The homotopy idea is that any economy is connected by an arc to some other
economy that has a unique regular equilibrium. Along this arc, equilibrium
moves in a continuous way without sliding off the boundary. It does not imply
that at the end of the arc there is still a unique regular equilibrium. But, it
implies that at the end of the arc the set of equilibria associated with the given
economy is non-empty and compact. This is a kind of standard technique used
in many contributions in general equilibrium theory, see for instance Villanacci
and Zenginobuz (2005), del Mercato (2006), Mandel (2008), Bonnisseau and
del Mercato (2008), Kung (2008), and Ericson and Kung (2015). However,
the work of adapting this technique to economies with externalities on the
production side is non-trivial and it requires some ingenious adjustments, be-
cause the production sets are not required to be convex with respect to the
consumption and production activities of all the agents (for more details, see

3
 

Documents de travail du Centre d'Economie de la Sorbonne - 2015.34R (Version révisée)



Subsection 4.2). Furthermore, our proof covers the case in which the economy
is a standard private ownership economy without externalities. 4

The technique described above is based on the homotopy invariance of the
topological degree. Our proof is based on the topological degree modulo 2. 5 The
degree modulo 2 is simpler than the Brouwer degree which is based on the no-
tion of oriented manifold. 6 The reader can find in Geanakoplos and Shafer
(1990) a brief review of both degree theories. In Section 6, we recall the defi-
nition and fundamental properties of the degree modulo 2.

We now compare our contribution with previous works. del Mercato (2006)
and Balasko (2015) study pure exchange general equilibrium models with ex-
ternalities. In Villanacci and Zenginobuz (2005), and Kung (2008), there are no
externalities on the production side. In Ericson and Kung (2015), utility and
transformation functions are also affected by the price system. In order to get
their existence result, the authors need to perturb utility and transformation
functions. 7 Our contribution highlights that, in the presence of consumption
and production externalities, there is no need for perturbing utility and trans-
formation functions to establish the existence of an equilibrium. Furthermore,
the contribution of Ericson and Kung (2015) presents some technical prob-
lems. 8 The existence results of Arrow and Hahn (1971), Laffont and Laroque
(1972), Bonnisseau and Médecin (2001), and Mandel (2008) are more general
than ours. In Arrow and Hahn (1971), Laffont and Laroque (1972), and Bon-
nisseau and Médecin (2001), the authors use fixed point arguments, while we
use differential techniques. The approach in Mandel (2008) differs from ours
for two main reasons: the author uses the excess demand approach and the
topological Brouwer degree. In order to use the excess demand approach, the
author has to enlarge the commodity space treating the externalities as ad-
ditional variables. Moreover, in Bonnisseau and Médecin (2001), and Mandel
(2008), production technologies are also non-convex with respect to the in-
dividual firm’s choice. For that reason, their equilibrium notion involves the
concept of pricing rule and their existence proofs consist of techniques more
sophisticated than those we use. In our simpler context, we provide an exis-
tence proof simpler than the ones provided in Bonnisseau and Médecin (2001),
and Mandel (2008).

4 In Chapter 9 of Villanacci et al. (2002), the reader can find a homotopy proof for
a standard private ownership economies without externalities. Our proof is simpler
than the latter one, because we do not homotopize the shares.
5 See for instance, Chapter 4 in Milnor (1965), and Villanacci et al. (2002).
6 See for instance, Chapter 5 in Milnor (1965), and Mas-Colell (1985).
7 See pages 53–55 in Ericson and Kung (2015).
8 Some basic assumptions for the existence of an equilibrium are missing, i.e., the
possibility of inaction and the compactness of the set of feasible allocations, or any
related assumptions. See for instance, Assumption 1(2) and Assumption 3 in our
paper, or Assumption P(2) and Assumption UB in Bonnisseau and Médecin (2001).
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The paper is organized as follows. In Section 2, we present the model and the
assumptions. In Section 3, we provide the notions of competitive equilibrium
and equilibrium function. The equilibrium function is built on the first-order
conditions associated with households and firms maximization problems, and
market clearing conditions. In Section 4, we first present our main result (The-
orem 8) which states that the set of equilibria is non-empty and compact. Sec-
ond, we provide the homotopy theorem (Theorem 9) used to prove Theorem
8. In order to apply Theorem 9, in Subsection 4.1 we build an appropriate pri-
vate ownership economy that has a unique regular equilibrium. In Subsection
4.2, we provide our homotopy and its properties. All the lemmas are proved
in Section 5. Finally, in Section 6, the reader can find a brief review on the
topological degree modulo 2.

2 The model and the assumptions

There is a finite number C of physical commodities labeled by the superscript
c ∈ C := {1, . . . , C}. The commodity space is RC . There are a finite number
J of firms labeled by the subscript j ∈ J := {1, . . . , J} and a finite number
H of households labeled by the subscript h ∈ H := {1, . . . , H}. Each firm
is owned by households and it is characterized by a technology described
by a transformation function. Each household is characterized by preferences
described by a utility function, the shares on firms’ profits and an endowment
of commodities. Utility and transformation functions may be affected by the
consumption and production activities of all other agents. The notations are
summarized below.

• yj := (y1
j , .., y

c
j , .., y

C
j ) ∈ RC is the production plan of firm j, as usual if ycj > 0

then commodity c is produced as an output, if y`j < 0 then commodity ` is
used as an input, y−j := (yf )f 6=j denotes the production plan of firms other
than j, y := (yj)j∈J .
• xh := (x1

h, .., x
c
h, .., x

C
h ) ∈ RC

++ denotes household h’s consumption, x−h :=
(xk)k 6=h denotes the consumption of households other than h, x := (xh)h∈H.
• The production set of firm j is described by a transformation function. This

is a convenient way to represent a production set using an inequality on a
function called the transformation function, see for instance Mas-Colell et al.
(1995) and Villanacci et al. (2002). In the case of a single-output technology,
the production set is commonly described by a production function. The
transformation function is the counterpart of the production function in
the case of production processes which involve several outputs.

The main innovation of this paper comes from the dependency of the trans-
formation function tj on the production and consumption activities of all
other agents. That is, tj describes both the technology of firm j and the
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way in which firm j’s technology is affected by the activities of the other
agents. More precisely, for any given (y−j, x), the production set of the firm
j is given by the following set,

Yj(y−j, x) :=
{
yj ∈ RC : tj(yj, y−j, x) ≤ 0

}
where the transformation function tj is a function from RC×RC(J−1)×RCH

++

to R, t := (tj)j∈J .
• Household h has preferences described by a utility function,

uh : (xh, x−h, y) ∈ RC
++ × RC(H−1)

+ × RCJ −→ uh(xh, x−h, y) ∈ R

uh(xh, x−h, y) is the utility level of household h associated with (xh, x−h, y).
That is, uh also describes the way in which household h’s preferences are
affected by the actions of the other agents. Denote u := (uh)h∈H.
• sjh ∈ [0, 1] is the share of firm j owned by household h; sh := (sjh)j∈J ∈

[0, 1]J denotes the vector of the shares owned by household h; s := (sh)h∈H ∈
[0, 1]JH . As usual,

∑
h∈H

sjh = 1 for every firm j ∈ J .

• eh := (e1
h, .., e

c
h, .., e

C
h ) ∈ RC

++ denotes household h’s endowment, e := (eh)h∈H ∈
RCH

++ and r :=
∑
h∈H

eh ∈ RC
++.

• E := ((u, e, s), t) is a private ownership economy with externalities.
• pc is the price of one unit of commodity c, p := (p1, .., pc, .., pC) ∈ RC

++.
• Given w = (w1, .., wc, .., wC) ∈ RC , we denote w\ := (w1, .., wc, .., wC−1) ∈
RC−1.

We make the following assumptions on the transformation functions.

Assumption 1 For all j ∈ J ,

(1) The function tj is continuous on its domain. For every (y−j, x) ∈ RC(J−1)×
RCH

++ , the function tj(·, y−j, x) is differentiable and Dyj tj(·, ·, ·) is conti-
nuous on RCJ × RCH

++ .
(2) For every (y−j, x) ∈ RC(J−1) × RCH

++ , tj(0, y−j, x) = 0.
(3) For every (y−j, x) ∈ RC(J−1) × RCH

++ , the function tj(·, y−j, x) is differen-
tiably strictly quasi-convex, i.e., it is a C2 function and for all y′j ∈ RC,
D2
yj
tj(y

′
j, y−j, x) is positive definite on KerDyj tj(y

′
j, y−j, x). 9

(4) For every (y−j, x) ∈ RC(J−1)×RCH
++ , Dyj tj(y

′
j, y−j, x)� 0 for all y′j ∈ RC.

9 Let v and v′ be two vectors in Rn, v · v′ denotes the scalar product of v and v′.
Let A be a real matrix with m rows and n columns, and B be a real matrix with
n rows and l columns, AB denotes the matrix product of A and B. Without loss of
generality, vectors are treated as row matrices and A denotes both the matrix and
the following linear mapping A : v ∈ Rn → A(v) := AvT ∈ R[m] where vT denotes
the transpose of v and R[m] := {wT : w ∈ Rm}. When m = 1, A(v) coincides with
the scalar product A · v, treating A and v as vectors in Rn.
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Fixing the externalities, the assumptions on tj are standard in a differentiable
framework. From Points 1 and 4 of Assumption 1, the production set is a C1

manifold with boundary of dimension C and its boundary is a C1 manifold of
dimension C−1. Point 2 of Assumption 1 states that inaction is possible. Con-
sequently, using standard arguments from profit maximization, the individual
wealth of household h derived from his endowment eh ∈ RC

++ and his profit
shares is strictly positive for every price p ∈ RC

++, from which one deduces
the non-emptiness of the interior of the individual budget constraint. From
Point 3 of Assumption 1, the production set is strictly convex. Furthermore, if
the profit maximization problem has a solution then it is unique, because the
function tj(·, y−j, x) is continuous and strictly quasi-convex. We remark that
tj is not required to be quasi-convex with respect to all the variables, so we do
not require the production set to be convex with respect to the externalities.
From Point 4 of Assumption 1, the function tj(·, y−j, x) is strictly increasing
and so the production set satisfies the classical “free disposal” property.

Remark 2 Our analysis holds true if some commodities are not involved in
the technological process of firm j. In this case, for every firm j, one defines the
set Cj of all the commodities c ∈ C that are involved in the technological pro-
cess of firm j, where Cj denotes the cardinality of the set Cj with 2 ≤ Cj ≤ C.
The production plan of firm j is then defined as yj := (ycj)c∈Cj ∈ RCj and the

transformation function tj is a function from RCj ×
∏
f 6=j

RCf × RCH
++ to R. In

this case, all the assumptions on the transformation functions are written just
replacing RC × RC(J−1) × RCH

++ by RCj ×
∏
f 6=j

RCf × RCH
++ . Furthermore, in the

definition of a competitive equilibrium, one also adapts the market clearing
condition for every commodity c by considering only the firms that use com-
modity c in their technological process. That is, for every commodity c, the
sum over j ∈ J is replaced by the sum over j ∈ J (c) := {j ∈ J : c ∈ Cj}.

For any given externality (x, y) ∈ RCH
++ ×RCJ , define the set of all the produc-

tion allocations that are consistent with the externality (x, y), that is

Y (x, y) := {y′ ∈ RCJ : tj(y
′
j, y−j, x) ≤ 0, ∀ j ∈ J } (1)

We remind that r =
∑
h∈H

eh and we make the following assumption which

is analogous to Assumption UB (Uniform Boundedness) in Bonnisseau and
Médecin (2001), and Assumption P(3) in Mandel (2008).

Assumption 3 (Uniform Boundedness) There exists a bounded set C(r) ⊆
RCJ such that for every (x, y) ∈ RCH

++ × RCJ ,

Y (x, y) ∩ {y′ ∈ RCJ :
∑
j∈J

y′j + r � 0} ⊆ C(r)

7
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The following lemma is an immediate consequence of Assumption 3.

Lemma 4 There exists a bounded set K(r) ⊆ RCH
++ ×RCJ such that for every

(x, y) ∈ RCH
++ × RCJ , the following set is included in K(r).

A(x, y; r) := {(x′, y′) ∈ RCH
++ × RCJ : y′ ∈ Y (x, y) and

∑
h∈H

x′h −
∑
j∈J

y′j ≤ r}

It is well known that the boundedness of the set of feasible allocations is a cru-
cial condition for the non-emptiness and the compactness of the set of equilib-
ria. Fixing the externalities, from Assumption 3 one deduces that the set of fea-
sible allocations is bounded. Therefore, in this sense, Assumption 3 is standard.
Furthermore, Assumption 3 also guarantees that the set of feasible allocations
A(x, y; r) is uniformly bounded with respect to the externalities (x, y). In par-
ticular, it implies that the set F(r) = {(x, y) ∈ RCH

++ × RCJ | tj(yj, y−j, x) ≤
0, ∀ j ∈ J and

∑
h∈H

xh −
∑
j∈J

yj ≤ r} of feasible allocations that are mutually

consistent is bounded. However, for a proof of the existence of an equilibrium it
would not be sufficient to assume only the boundedness of the set F(r). 10 We
use Lemma 4 to prove that the homotopy is compact once externalities move
along the homotopy arc, see Step 2.1 in the proof of Proposition 15 in Section
5.

We make the following assumptions on the utility functions.

Assumption 5 For all h ∈ H,

(1) The function uh is continuous on its domain. For every (x−h, y) ∈ RC(H−1)
++ ×

RCJ , the function uh(·, x−h, y) is differentiable and Dxhuh(·, ·, ·) is con-
tinuous on RCH

++ × RCJ .

(2) For every (x−h, y) ∈ RC(H−1)
++ × RCJ , the function uh(·, x−h, y) is diffe-

rentiably strictly increasing, i.e., Dxhuh(x
′
h, x−h, y)� 0 for all x′h ∈ RC

++.

(3) For every (x−h, y) ∈ RC(H−1)
++ × RCJ , the function uh(·, x−h, y) it is dif-

ferentiably strictly quasi-concave, i.e., it is C2 and for all x′h ∈ RC
++,

D2
xh
uh(x

′
h, x−h, y) is negative definite on KerDxhuh(x

′
h, x−h, y).

(4) For every (x−h, y) ∈ RC(H−1)
+ × RCJ and for every u ∈ Imuh(·, x−h, y),

clRC{xh ∈ RC
++ : uh(xh, x−h, y) ≥ u} ⊆ RC

++

Fixing the externalities, the assumptions on uh are standard in a differentiable
framework. From Point 3 of Assumption 5, the upper contour sets are strictly
convex. Consequently, if the utility maximization problem has a solution then

10 See Section 2 in Chapter 6 of Arrow and Hahn (1971), Bonnisseau and Médecin
(2001), and Mandel (2008), where these authors also need uniform boundedness
assumptions in order to prove the non-emptiness of the set of equilibria.
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it is unique. Notice that uh is not required to be quasi-concave with respect
to all the variables, that is, we do not require preferences to be convex with
respect to the externalities. Point 4 of Assumption 5 is the classical Boundary
Condition (BC), it means that the closure of the upper counter sets is included
in RC

++. We notice that in Point 1 and Point 4 of Assumption 5, we allow for

consumption externalities x−h on the boundary of the set RC(H−1)
++ in order to

look at the limit of the behavior of uh with respect to the consumption ex-
ternalities. It means that BC is still valid whenever consumption externalities
converge to zero for some commodities. This property is used in Step 2.2 of
the proof of Proposition 15 in Section 5. 11 If uh does not satisfy BC whenever
consumption externalities converge to zero for some commodities, we provide
below an alternative assumption on uh from which one still gets Step 2.2 in the
proof of Proposition 15, while maintaining Point 1 and Point 4 of Assumption
5 only for consumption externalities in RC(H−1)

++ . 12

(5) There exists δ > 0 such that for every (x−h, y) ∈ RC(H−1)
++ × RCJ and

for every (xh, x
′
h) ∈ R2C

++, if uh(xh, x−h, y) > uh(x
′
h, x−h, y), then uh(xh, x−h +

δ1, y) ≥ uh(x
′
h, x−h + δ1, y) where 1 := (1, . . . , 1) ∈ RC

++. 13

3 Competitive equilibrium and equilibrium function

In this section, we provide the definition of competitive equilibrium à la Nash
and the notion of equilibrium function.

Without loss of generality, commodity C is the “numeraire good”. Then, given
p\ ∈ RC−1

++ with innocuous abuse of notation, we denote p := (p\, 1) ∈ RC
++.

Definition 6 (Competitive equilibrium) (x∗, y∗, p∗\) ∈ RCH
++×RCJ×RC−1

++

is a competitive equilibrium for the economy E if for all j ∈ J , y∗j solves the
following problem

max
yj∈RC

p∗ · yj

subject to tj(yj, y
∗
−j, x

∗) ≤ 0
(2)

11 A simple example of utility function that satisfies this property is given by any
additively separable function uh(xh, x−h) = ũh(xh) + vh(x−h) where ũh is defined

on RC++ and satisfies the classical BC, and vh is defined on RC(H−1)
+ .

12 For example, consider two commodities and the utility function uh(x1
h, x

2
h, x

1
k) :=

x1
hx

2
hx

1
k where (x1

h, x
2
h) ∈ R2

++ and x1
k ∈ R+. This function does not satisfy BC

whenever the externality x1
k converges to zero, but it satisfies Point 5.

13 A simple example of utility function that satisfies Point 5 is given by any multi-
plicatively separable function uh(xh, x−h) = ũh(xh)mh(x−h) where ũh is defined on

RC++ and mh(x−h) > 0 for every x−h ∈ RC(H−1)
++ .

9
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for all h ∈ H, x∗h solves the following problem

max
xh∈RC

++

uh(xh, x
∗
−h, y

∗)

subject to p∗ · xh ≤ p∗ · (eh +
∑
j∈J

sjhy
∗
j )

(3)

and (x∗, y∗) satisfies market clearing conditions, that is∑
h∈H

x∗h =
∑
h∈H

eh +
∑
j∈J

y∗j (4)

Using first-order conditions, one easily characterizes the solutions of firms and
households maximization problems. The proof of the following proposition is
standard, because in problems (2) and (3) each agent takes as given both the
price system and the choices of the other agents.

Proposition 7

(1) From Assumption 1, if y∗j is a solution to problem (2), then it is unique
and it is completely characterized by KKT conditions. 14

(2) From Point 2 of Assumption 1 and Assumption 5, there exists a unique
solution x∗h to problem (3) and it is completely characterized by KKT
conditions.

(3) As usual, from Point 2 of Assumption 5, household h’s budget constraint
holds with an equality. Thus, at equilibrium, due to the Walras law, the
market clearing condition for commodity C is “redundant”. Then, one
replaces condition (4) with

∑
h∈H

x
∗\
h =

∑
h∈H

e
\
h +

∑
j∈J

y
∗\
j .

Let Ξ := (RC
++×R++)H×(RC×R++)J×RC−1

++ be the set of endogenous varia-
bles with generic element ξ := (x, λ, y, α, p\) := ((xh, λh)h∈H, (yj, αj)j∈J , p

\)
where λh denotes the Lagrange multiplier associated with household h’s bud-
get constraint, and αj denotes the Lagrange multiplier associated with firm
j’s technological constraint. We can now describe the competitive equilibria
associated with the economy E using the equilibrium function F : Ξ→ Rdim Ξ,

F (ξ) := ((F h.1 (ξ) , F h.2 (ξ))h∈H, (F
j.1 (ξ) , F j.2 (ξ))j∈J , F

M (ξ)) (5)

where F h.1 (ξ) := Dxhuh(xh, x−h, y)−λhp, F h.2 (ξ) := −p ·(xh−eh−
∑
j∈J

sjhyj),

F j.1 (ξ) := p − αjDyj tj(yj, y−j, x), F j.2 (ξ) := −tj(yj, y−j, x), and FM (ξ) :=∑
h∈H

x
\
h −

∑
j∈J

y
\
j −

∑
h∈H

e
\
h.

14 “KKT conditions” means Karush–Kuhn–Tucker conditions.
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ξ∗ = (x∗, λ∗, y∗, α∗, p∗\) ∈ Ξ is an extended equilibrium for the economy E if
and only if F (ξ∗) = 0. By Proposition 7, (x∗, y∗, p∗\) is a competitive equi-
librium for E if and only if there exists (λ∗, α∗) such that ξ∗ is an extended
equilibrium for E. We simply call ξ∗ an equilibrium.

4 Existence and compactness

In this section, we show that the set of competitive equilibria with strictly
positive consumptions and strictly positive prices is compact and non-empty.
The result is provided in the following theorem.

Theorem 8 The equilibrium set F−1(0) is compact and non-empty.

In order to prove Theorem 8, we use a homotopy approach following the sem-
inal paper by Smale (1974). The following theorem is a consequence of the
homotopy invariance of the topological degree. Following Chapter 4 in Milnor
(1965), and more recent contributions by Villanacci and Zenginobuz (2005),
del Mercato (2006) and Bonnisseau and del Mercato (2008), our homotopy ap-
proach is based on the theory of degree modulo 2. The reader can find a survey
of the degree theory, for example, in Geanakoplos and Shafer (1990) and in
Villanacci et al. (2002). In Section 6, we recall the definition and fundamental
properties of the degree modulo 2.

Theorem 9 (Homotopy Theorem) Let M and N be C2 manifolds of the
same dimension contained in euclidean spaces. Let y ∈ N and f, g : M → N
be two functions such that f is continuous, g is C1, y is a regular value of g
and #g−1(y) is odd. Let L be a continuous homotopy from g to f such that
L−1(y) is compact. Then,

(1) g−1(y) is compact and deg2(g, y) = 1,
(2) f−1(y) is compact and deg2(f, y) = 1.

The equilibrium function F plays the role of function f given in Theorem 9.
In order to construct the function playing the role of function g, we proceed
as follows. In Subsection 4.1, we construct an appropriate economy called the
“test economy”.G is the equilibrium function associated with the test economy
and it plays the role of function g in Theorem 9. The test economy has an
unique regular equilibrium, i.e., #G−1(0) = 1 and 0 is a regular value of G,
see Proposition 12. In Subsection 4.2, we provide the homotopy H from G to
F playing the role of the homotopy L. Proposition 15 states the compactness
of H−1(0). Using Propositions 12 and 15, all the assumptions of Theorem 9
are satisfied, and then one gets the following lemma.
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Lemma 10 F−1(0) is compact and deg2(F, 0) = 1.

Using Lemma 10 and the non-triviality property of the topological degree, one
gets F−1(0) 6= ∅, and then Theorem 8 is completely proved.

Finally, we remark that if, in addition, E is a regular economy (i.e., the equi-
librium function F is C1 and 0 is a regular value of F ), then using Lemma 10
and the computation of the degree modulo 2, one obviously obtains that, at
a regular economy, the number of equilibria is finite and odd. 15 However, this
paper does not address any regularity issue. In the presence of consumption
and production externalities, the analysis of regular economies is quite sensi-
tive. For the case without externalities on the production side, see for example
Bonnisseau (2003), Kung (2008), and Bonnisseau and del Mercato (2010). In
the presence of production externalities, the analysis of regular economies de-
serves a separate analysis, see del Mercato and Platino (forthcoming 2017).

4.1 The “test economy” and its properties

We construct the test economy in two steps. We first fix the externalities
and we consider a Pareto optimal allocation of a standard production econ-
omy E without externalities. Second, using the Second Theorem of Welfare
Economics, we construct an appropriate private ownership economy Ẽ that
has a unique regular equilibrium. Ẽ is called the “test economy” and it is an
economy without externalities.

Fix an allocation (x, y) ∈ RCH
++ × RCJ . Define uh(xh) := uh(xh, x−h, y) for all

h ∈ H, tj(yj) := tj(yj, y−j, x) for all j ∈ J , and the production economy E :=

(u, t, r) where r =
∑
h∈H

eh. Under Assumptions 1, 3 and 5, there exist a Pareto

optimal allocation (x̃, ỹ) of the economy E and Lagrange multipliers (θ̃, γ̃, β̃)
such that (x̃, ỹ, θ̃, γ̃, β̃) is completely characterized by the first-order conditions
for Pareto optimality. This result is provided in the following proposition.

Proposition 11 There exist a Pareto optimal allocation (x̃, ỹ) ∈ RCH
++ ×RCJ

of the economy E and (β̃, θ̃, γ̃) = ((β̃j)j∈J , (θ̃h)h6=1, γ̃) ∈ RJ
++ × RH−1

++ × RC
++

such that (x̃, ỹ, β̃, θ̃, γ̃) is the unique solution to the following system.
(1) Dx1u1(x1) = γ (2) ∀ h 6= 1, θhDxhuh(xh) = γ (3) ∀ h 6= 1, uh(xh) = uh(x̃h)

(4) ∀ j ∈ J , γ = βjDyj tj(yj) (5) ∀ j ∈ J , −tj(yj) = 0 (6)
∑
h∈H

xh −
∑
j∈J

yj = r

(6)

15 The computation of the degree modulo 2 for C1 functions and regular values is
given by Proposition 17 in Section 6.
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It is well known that a Pareto optimal allocation can be supported by some
price system. 16 From system (6), one easily deduces a supporting price p̃, a
redistribution of initial endowments ẽ = (ẽh)h∈H and the equilibrium equations
satisfied by (x̃, ỹ) for appropriate Lagrange multipliers (λ̃, α̃) ∈ RH

++ × RJ
++.

More precisely, first define

ẽh := x̃h −
∑
j∈J

sjhỹj (7)

and the economy Ẽ := ((u, ẽ, s), t) which is a private ownership economy
without externalities. Second, define the function G : Ξ→ Rdim Ξ,

G (ξ) := ((Gh.1 (ξ) , Gh.2 (ξ))h∈H, (G
j.1 (ξ) , Gj.2 (ξ))j∈J , G

M (ξ)) (8)

where Gh.1 (ξ) := Dxhuh(xh, x−h, y)−λhp, Gh.2 (ξ) := −p ·(xh− ẽh−
∑
j∈J

sjhyj),

Gj.1 (ξ) := p − αjDyj tj(yj, y−j, x), Gj.2 (ξ) := −tj(yj, y−j, x) and GM (ξ) :=∑
h∈H

x
\
h −

∑
j∈J

y
\
j −

∑
h∈H

ẽ
\
h.

The function G is nothing else than the equilibrium function associated with

the economy Ẽ. Finally, define ξ̃ := (x̃, λ̃, ỹ, α̃, p̃\) with p̃ := γ̃
γ̃C

, λ̃1 := γ̃C ,

λ̃h := γ̃C

θ̃h
for all h 6= 1 and α̃j := β̃j

γ̃C
for all j ∈ J . Using system (6), it is an

easy matter to check that G(ξ̃) = 0. As stated in the following proposition, ξ̃
is the unique regular equilibrium of the economy Ẽ.

Proposition 12 G−1(0) = {ξ̃}, G is C1 and 0 is a regular value for G.

Remark 13 Notice that the redistribution of endowments ẽ = (ẽh)h∈H given
in (7) is not necessarily strictly positive. However, at equilibrium, the indi-
vidual wealth of household h is equal to p̃ · x̃h which is strictly positive. One
might wish to consider a different redistribution that gives rise to positive en-
dowments. But, such a redistribution involves also some redistributions of the
shares. 17 Our redistribution of endowments ẽ = (ẽh)h∈H does not involve any
redistribution of shares, so that we do not need to homotopize the shares, see
the homotopy H in the next subsection. 18

16 Using Debreu’s vocabulary, the Pareto optimal allocation (x̃, ỹ) is an equilibrium
relative to some price system, see Section 6.4 in Debreu (1959).
17 For example, the redistribution êh := ŝjh

∑
h∈H eh with ŝjh := p̃·x̃h

p̃·
∑

h∈H x̃h
.

18 Even in the absence of externalities, homotopizing the shares complicates the
homotopy proof, see for instance Section 2.2 in Chapter 9 of Villanacci et al. (2002).
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4.2 The homotopy and its properties

The basic idea is to homotopize the endowments and the externalities by a
segment in the two economies Ẽ and E. But, one finds the following difficulty.
At equilibrium, the individual wealth is positive at the beginning as well as at
the end of the homotopy arc. 19 Nevertheless, since the production sets are not
required to be convex with respect to the choices of all agents, the equilibrium
individual wealth may not be positive along the homotopy arc. Consequently,
the individual budget constraints may be empty along the homotopy arc. We
illustrate the details below.

First, homotopize the endowments by a segment. Then, for every τ ∈ [0, 1]
the individual wealth is given by p · [τeh + (1 − τ)ẽh] + p ·

∑
j∈J

sjhyj which is

equal to

p · [τeh + (1− τ)x̃h] + p ·
∑
j∈J

sjh[yj − (1− τ)ỹj]

Thus, the individual wealth is positive if p · yj ≥ p · (1 − τ)ỹj for every j ∈
J . Using standard arguments from profit maximization, at equilibrium, this
condition is satisfied if (1 − τ)ỹj belongs to the production set of firm j. On
the other hand if, at the same time, one homotopizes the externalities by a
segment, the individual production set becomes the following set,

Yj(τy−j + (1− τ)y−j, τx+ (1− τ)x)

But, one does not know whether or not the production plan (1−τ)ỹj belongs to
the production set given above, unless the transformation function tj is quasi-
convex with respect to all the variables. Indeed, tj(0, y−j, x) = 0 because of

the possibility of inaction, and tj(ỹj, y−j, x) = 0 because G(ξ̃) = 0. If tj is
quasi-convex with respect to all the variables, then tj((1 − τ)ỹj, τy−j + (1 −
τ)y−j, τx + (1 − τ)x) ≤ 0, and so (1 − τ)ỹj belongs to the production set
given above. But, tj is not required to be quasi-convex with respect to all the
variables.

In order to overcome the difficulty described above, we define below the ho-
motopy H from the function G to the equilibrium function F in two times,
by using the two homotopies Φ and Γ defined below. Namely,

• in the first homotopy Φ, we homotopize the endowments by a segment,
without homotopizing the externalities,

19 Indeed, at the economy E, the equilibrium individual wealth is strictly positive
because of the possibility of inaction (Point 2 of Assumption 1) and standard argu-
ments from profit maximization.
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• in the second homotopy Γ, we homotopize the externalities by a segment
in utility and transformation functions, without homotopizing the endow-
ments.

Remark 14 Notice that,

(1) If the externalities are fixed, then only one homotopy is needed, namely
the homotopy Φ. Then, our homotopy proof covers the case in which the
economy E is a standard private ownership economy without externalities.

(2) If the production sets are convex with respect to the production and con-
sumption activities of all agents, then endowments and externalities can
be homotopized at the same time.

We now provide the definition of all our homotopies. First, define the following
convex combinations,

eh(τ) := τeh + (1− τ)ẽh, x(τ) := τx+ (1− τ)x, y(τ) := τy + (1− τ)y (9)

and the two following homotopies Φ,Γ : Ξ× [0, 1]→ Rdim Ξ,

Φ (ξ, τ) := ((Φh.1 (ξ, τ) ,Φh.2 (ξ, τ))h∈H, (Φ
j.1 (ξ, τ) ,Φj.2 (ξ, τ))j∈J ,Φ

M (ξ, τ))
(10)

where Φh.1 (ξ, τ) = Dxhuh(xh, y−j, x) − λhp, Φh.2 (ξ, τ) = −p · [xh − eh(τ) −∑
j∈J

sjhyj], Φj.1 (ξ, τ) = p − αjDyj tj(yj, y−j, x), Φj.2 (ξ, τ) = −tj(yj, y−j, x),

ΦM (ξ, τ) =
∑
h∈H

x
\
h −

∑
j∈J

y
\
j −

∑
h∈H

eh(τ)\.

Γ (ξ, τ) := ((Γh.1 (ξ, τ) ,Γh.2 (ξ, τ))h∈H, (Γ
j.2 (ξ, τ) ,Γj.2 (ξ, τ))j∈J ,Γ

M (ξ, τ))
(11)

where Γh.1 (ξ, τ) = Dxhuh(xh, x−h(τ), y(τ))− λhp, Γh.2 (ξ, τ) = −p · [xh − eh −∑
j∈J

sjhyj], Γj.1 (ξ, τ) = p−αjDyj tj (yj, y−j(τ), x(τ)), Γj.2 (ξ, τ) = −tj (yj, y−j(τ), x(τ)),

ΓM (ξ, τ) =
∑
h∈H

x
\
h −

∑
j∈J

y
\
j −

∑
h∈H

e
\
h.

Define then the homotopy H : Ξ× [0, 1]→ Rdim Ξ,

H(ξ, ψ) :=

Φ(ξ, 2ψ) if 0 ≤ ψ ≤ 1
2

Γ(ξ, 2ψ − 1) if 1
2
≤ ψ ≤ 1

The homotopy H is continuous since Φ and Γ are composed by continuous
functions. Importantly, H

(
ξ, 1

2

)
is well defined since Φ(ξ, 1) = Γ(ξ, 0). Fur-

thermore, H (ξ, 0) = Φ (ξ, 0) = G(ξ) and H (ξ, 1) = Γ (ξ, 1) = F (ξ). We
conclude the section by stating the following proposition.
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Proposition 15 H−1(0) is compact.

5 Proofs

Proof of Lemma 4. Let (x′, y′) ∈ A(x, y; r). Since
∑
h∈H

x′h � 0, y′ belongs to

the bounded set C(r) given by Assumption 3. Furthermore, for every h ∈ H,
0 � x′h �

∑
h∈H

x′h ≤
∑
j∈J

y′j + r. Thus, there exists a bounded set K(r) ⊆

RCH
++ × RCJ such that for every (x, y) ∈ RCH

++ × RCJ , A(x, y; r) ⊆ K(r).

Proof of Proposition 11. Let E be the production economy defined in
Section 4.1. We remind that A(x, y; r) := {(x′, y′) ∈ RCH

++ × RCJ : tj(y
′
j) ≤

0, ∀j ∈ J and
∑
h∈H

x′h −
∑
j∈J

y′j ≤ r}. Consider the set U(r) := {(u′h)h∈H ∈∏
h∈H

Imuh | ∃(x′, y′) ∈ A(x, y; r) : uh(x
′
h) ≥ u′h, ∀ h ∈ H}. By Point 2 of

Assumption 1, the set Ur is non-empty. Fix (u′h)h∈H ∈ U(r) and consider the
maximization problem

max
(x,y)∈RCH

++×RCJ
u1(x1)

subject to



tj(yj) ≤ 0, ∀j ∈ J

uh(xh) ≥ u′h, ∀h ∈ H∑
h∈H

xh −
∑
j∈J

yj ≤ r

(12)

Step 1. Problem (12) has at least a solution. Let K be the set determined
by the constraints of problem (12). K is non-empty since (u′h)h∈H ∈ Ur. We
claim that K is compact. Define the set N := {(x, y) ∈ RCH

++ ×RCJ : uh(xh) ≥
u′h, ∀h ∈ H} and notice that K = N ∩ A(x, y; r). Then, K is bounded by
Lemma 4. Furthermore, K is a closed set included in RCH

++ × RCJ by Point 4
of Assumption 5 and the continuity of the functions uh and tj. The theorem
of Weierstrass implies that problem (12) has at least a solution.

Step 2. Let (x̃, ỹ) be a solution to problem (12). Then, (x̃, ỹ) solves the fol-
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lowing problem and it is a Pareto optimal allocation of the economy E.

max
(x,y)∈RCH

++×RCJ
u1(x1)

subject to



−tj(yj) ≥ 0, ∀j ∈ J

uh(xh)− uh(x̃h) ≥ 0, ∀h 6= 1

r −
∑
h∈H

xh +
∑
j∈J

yj ≥ 0

(13)

Let K̃ be the set determined by the constraints of problem (13), (x̃, ỹ) obvi-
ously belongs to K̃. Consider now (x, y) ∈ K̃ and remind that K is the set
determined by the constraints of problem (12). If u1(x1) ≥ u′1, then (x, y) ∈ K
and so u1(x̃1) ≥ u1(x1). If u1(x1) < u′1, then u1(x̃1) > u1(x1) since u1(x̃1) ≥ u′1.
Thus, (x̃, ỹ) solves problem (13). Now, suppose by contradiction that (x̃, ỹ)
is not a Pareto optimal allocation of E. Then, there is another allocation
(x̂, ŷ) ∈ RCH

++ × RCJ such that tj(ŷj) ≤ 0 for all j,
∑
h∈H

x̂h ≤ r +
∑
j∈J

ŷj,

uh(x̂h) ≥ uh(x̃h) for all h, and uk(x̂k) > uk(x̃k) for some k ∈ H. If k = 1,
then we get a contradiction since (x̃, ỹ) solves problem (13). If k 6= 1, using
the continuity of uk, there exists ε > 0 such that uk(x̂k−ε1c) > uk(x̃k), where
the vector 1c ∈ RC

+ has all the components equal to 0 except the component
c which is equal to 1. Consider the allocation (x, y) defined by x1 := x̂1 + ε1c,
xk := x̂k − ε1c, xh := x̂h for all h 6= 1, h 6= k, and yj := ŷj for all j. We have

that (x, y) ∈ K̃ and u1(x1) > u1(x̃1) since u1 is strictly increasing. Then, once
again we get a contradiction since (x̃, ỹ) solves problem (13).

Step 3. There exists (β̃, θ̃, γ̃) := ((β̃j)j∈J , (θ̃h)h6=1, γ̃) ∈ RJ
++ × RH−1

++ × RC
++

such that (x̃, ỹ, β̃, θ̃, γ̃) is the unique solution to system (6).

We first prove the existence of (β̃, θ̃, γ̃), afterwards we show the uniqueness of
(x̃, ỹ, β̃, θ̃, γ̃).

Existence of (β̃, θ̃, γ̃) � 0. By Step 2, (x̃, ỹ) solves problem (13). The KKT
conditions associated with problem (13) are given by


Dx1u1(x1) = γ, ∀h 6= 1 : θhDxhuh(xh) = γ and θh(uh(xh)− uh(x̃h)) = 0,

∀j ∈ J : γ = βjDyj tj(yj) and βj(−tj(yj)) = 0, ∀c ∈ C : γc(rc −
∑
h∈H

xch +
∑
j∈J

ycj) = 0

(14)
where (β, θ, γ) := ((βj)j∈J , (θh)h6=1, (γ

c)c∈C) ∈ RJ
+ × RH−1

+ × RC
+ are the La-

grange multipliers associated with the constraint functions of problem (13). We
first claim that KKT conditions are necessary conditions to solve problem (13).
It is enough to verify that the Jacobian matrix associated with the constraint
functions of problem (13) has full row rank equal to N := J + (H − 1) + C.
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For every firm j, fix a commodity c(j) ∈ C. The matrix given below is the
N ×N square sub-matrix which is obtained by considering the partial deriva-
tives of the constraint functions with respect to ((y

c(j)
j )j∈J , (x

1
h)h6=1, x1). Point

4 of Assumption 1 and Point 2 of Assumption 5 imply that the determinant
of this square sub-matrix is different from zero, which complete the proof of
the claim. 20



−D
y
c(1)
1

t1(y1) . . . 0 0 . . . 0 0

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

0 . . . −D
y
c(J)
J

tJ (yJ ) 0 . . . 0 0

0 . . . 0 D
x1
2
u2(x2) . . . 0 0

.

.

.
. .
.

.

.

.

.

.

.
. .
.

.

.

.

.

.

.

0 . . . 0 0 . . . D
x1
H

uH (xH ) 0[
1c(1)

]T
. . .

[
1c(J)

]T
−
[
11
]T

. . . −
[
11
]T

−IC


Therefore, there exists (β̃, θ̃, γ̃) ≥ 0 such that (x̃, ỹ, β̃, θ̃, γ̃) solves system (14).
Furthermore, Point 4 of Assumption 1 and Point 2 of Assumption 5 imply that
all the Lagrange multipliers (β̃, θ̃, γ̃) must be strictly positive. Consequently,
all the constraints of problem (13) are binding, and then (x̃, ỹ, β̃, θ̃, γ̃) is a
solution to system (6).

Uniqueness of (x̃, ỹ, β̃, θ̃, γ̃). Define θ̃1 := 1, by equations (1) and (2) of sys-

tem (6), for all h one gets Dxhuh(x̃h) = γ̃

θ̃h
. Then, for every h, x̃h solves the

maximization problem: max
xh∈RC

++

uh(xh) subject to γ̃

θ̃h
· xh ≤ γ̃

θ̃h
· x̃h because

KKT are sufficient conditions to solve this problem. Thus, the uniqueness of
x̃h follows from the strict quasi-concavity of uh. Analogously, by equations

(4) and (5) of system (6), ỹj solves the maximization problem: max
yj∈RC

γ̃

β̃j
· yj

subject to tj(yj) ≤ 0 for every j. Thus, the uniqueness of ỹj follows from the
continuity and the strict quasi-convexity of tj. Therefore, (x̃, ỹ) is unique and

consequently, the uniqueness of (β̃, θ̃, γ̃) follows from equations (1), (2) and
(4) of system (6).

Proof of Proposition 12. We use the functions uh and tj defined in Subsec-

tion 4.1. We have already pointed out thatG(ξ̃) = 0. Let ξ′ = (x′, λ′, y′, α′, p′\) ∈
Ξ be such that G(ξ′) = 0, we show that ξ̃ = ξ′.

First, notice that ∑
h∈H

x′h −
∑
j∈J

y′j =
∑
h∈H

eh (15)

20 We remind that for every commodity c, the vector 1c ∈ RC+ has all the components
equal to 0 except the component c which is equal to 1. IC denotes the C×C identity
matrix.
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Indeed, summing Gh.2(ξ′) = 0 over h, one gets
∑
h∈H

x′h −
∑
j∈J

y′j =
∑
h∈H

ẽh by

GM(ξ′) = 0. Using the definition of ẽh given in (7) and Proposition 11, one
deduces (15).

Second, we show that

uh(x
′
h) = uh(x̃h), ∀ h ∈ H (16)

Using the definition of ẽh given in (7) and Gh.1(ξ′) = Gh.2(ξ′) = 0, x′h solves
the following maximization problem

max
xh∈RC

++

uh(xh)

subject to p′ · xh ≤ p′ · x̃h +
∑
j∈J

sjh p
′ · (y′j − ỹj)

(17)

because KKT are sufficient conditions to solve this problem. Analogously, from
Gj.1(ξ′) = Gj.2(ξ′) = 0, y′j solves the maximization problem: max

yj∈RC
p′ ·yj subject

to tj(yj) ≤ 0. Notice that ỹj satisfies the constraint of this problem because

Gj.2(ξ̃) = 0. Thus, p′ · (y′j − ỹj) ≥ 0 for all j, and consequently x̃h belongs to
the budget constraint of problem (17). Then, uh(x

′
h) ≥ uh(x̃h) for all h. Now,

suppose that uk(x
′
k) > uk(x̃k) for some k ∈ H. From (15) and Gj.2(ξ′) = 0

for all j, one deduces that (x′, y′) is a feasible allocation of the production
economy E, and then one gets a contradiction since (x̃, ỹ) is a Pareto optimal
allocation of E by Proposition 11. Thus, (16) is completely proved.

Now, define β′ := (β′j)j∈J where β′j := λ′1α
′
j for all j, θ′ := (θ′h)h6=1 where θ′h :=

λ′1
λ′
h

for all h 6= 1 and γ′ := λ′1p
′. From Gh.1(ξ′) = 0 for all h, Gj.1(ξ′) = Gj.2(ξ′) =

0 for all j, (15) and (16), it is an easy matter to check that (x′, y′, β′, θ′, γ′)
solves system (6). Then, Proposition 11 implies that (x̃, ỹ, β̃, θ̃, γ̃) = (x′, y′, β′, θ′, γ′),
and consequently, one deduces that ξ̃ = ξ′.

We remark that G is C1 by Point 1 of Assumptions 1 and 5. Finally, in order
to show that 0 is a regular value for G, one proves that DξG(ξ̃) has full row

rank. In this regard, we show that if ∆DξG(ξ̃) = 0, then ∆ = 0 where ∆ :=(
(∆xh,∆λh)h∈H, (∆yj,∆αj)j∈J ,∆p

\
)
∈ Rdim Ξ. The system ∆DξG(ξ̃) = 0 is
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given below.

(h.1) ∆xhD
2
xh
uh(x̃h)−∆λhp̃+ ∆p\ [IC−1|0] = 0, ∀ h ∈ H

(h.2) −∆xh · p̃ = 0, ∀ h ∈ H

(j.1)
∑
h∈H

∆λhsjhp̃− α̃j∆yjD2
yj
tj(ỹj)−∆αjDyj tj(ỹj)−∆p\ [IC−1|0] = 0, ∀ j ∈ J

(j.2) −∆yj ·Dyj tj(ỹj) = 0, ∀ j ∈ J

(M) −
∑
h∈H

λ̃h∆x
\
h +

∑
j∈J

∆y
\
j = 0

We first prove that ∆xh = 0 for all h ∈ H. Otherwise, suppose that there is
h ∈ H such that ∆xh 6= 0. The proof goes through the two following claims
that contradict each others.

We first claim that ∆p\ · (
∑
h∈H

λ̃h∆x
\
h) > 0. Multiplying (h.1) by λ̃h∆xh and

summing over h, from (h.2) we get
∑
h∈H

λ̃h∆xhD
2
xh
uh(x̃h)(∆xh) = −∆p\ ·

(
∑
h∈H

λ̃h∆x
\
h). Multiplying Gh.1(ξ̃) = 0 by ∆xh and using (h.2), we get ∆xh ·

Dxhuh(x̃h) = 0 for all h. Therefore, Point 3 of Assumption 5 completes the
proof of the claim since λ̃h > 0 for all h and ∆xh 6= 0.

Second, we claim that ∆p\ · (
∑
h∈H

λ̃h∆x
\
h) ≤ 0. Multiplying both sides of

Gj.1(ξ̃) = 0 by ∆yj and using (j.2), we get ∆yj · p̃ = 0. Then, multiplying (j.1)
by ∆yj and summing over j, from (j.2) we get −

∑
j∈J

α̃j∆yjD
2
yj
tj(ỹj)(∆yj) =

∆p\ ·
∑
j∈J

∆y
\
j . Since, α̃j > 0 for all j, Point 3 of Assumption 1 and (j.2) imply

that ∆p\ ·
∑
j∈J

∆y
\
j ≤ 0. Using (M), the claim is completely proved.

Since p̃C = 1 and ∆xh = 0 for all h ∈ H, from (h.1) we get ∆λh = 0 for all
h, and then ∆p\ = 0. Thus, multiplying (j.1) by ∆yj, Point 3 of Assumption
1 and (j.2) imply that ∆yj = 0. Therefore, using once again (j.1), we get
∆αj = 0 by Point 4 of Assumption 1. Thus, we get ∆ = 0.

Proof of Proposition 15. Observe that H−1(0) = Φ−1(0) ∪ Γ−1(0). Since
the union of a finite number of compact sets is compact, it is enough to show
that Φ−1(0) and Γ−1(0) are compact.

Claim 1. Φ−1(0) is compact.

We prove that, up to a subsequence, every sequence (ξν , τ ν)ν∈N ⊆ Φ−1(0)

20
 

Documents de travail du Centre d'Economie de la Sorbonne - 2015.34R (Version révisée)



converges to an element of Φ−1(0), where ξν := (xν , λν , yν , αν , pν \)ν∈N. Since
{τ ν : ν ∈ N} ⊆ [0, 1], up to a subsequence, (τ ν)ν∈N converges to some τ ∗ ∈
[0, 1]. From Steps 1.1, 1.2, 1.3 and 1.4 below, up to a subsequence, (ξν)ν∈N
converges to some ξ∗ := (x∗, λ∗, y∗, α∗, p∗ \) ∈ Ξ. Since Φ is continuous, taking
the limit, one gets (ξ∗, τ ∗) ∈ Φ−1(0).

We remind that for every τ ∈ [0, 1], eh(τ) is given by (9).

Step 1.1. Up to a subsequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈ RCH
+ ×

RCJ . We show that for r =
∑
h∈H

eh, the sequence (xν , yν)ν∈N is included in the

bounded set K(r) given by Lemma 4. By Φj.2(ξν , τ ν) = 0, for every j we get

tj(y
ν
j , y−j, x) = 0, ∀ ν ∈ N

Thus, the sequence (yν)ν∈N is included in the set Y (x, y) given by (1). Summing
Φh.2(ξν , τ ν) = 0 over h, by ΦM(ξν , τ ν) = 0 we have

∑
h∈H

xνh−
∑
j∈J

yνj =
∑
h∈H

eh(τ
ν)

for every ν ∈ N. Using the definition of ẽh given by (7) and Proposition 11,
one gets

∑
h∈H

eh(τ) = r for every τ ∈ [0, 1], and then
∑
h∈H

xνh −
∑
j∈J

yνj = r for

every ν ∈ N. Thus, (xν , yν)ν∈N ⊆ A(x, y; r) ⊆ K(r). Consequently, (xν , yν)ν∈N
is included in clK(r) which is a compact set. Therefore, up to a subsequence,
(xν , yν)ν∈N converges to some (x∗, y∗) ∈ clK(r) ⊆ RCH

+ × RCJ , and then
(x∗, y∗) ∈ RCH

+ × RCJ .

Step 1.2. The consumption allocation x∗ is strictly positive, i.e. x∗h � 0 for
every h ∈ H. By Φh.1(ξν , τ ν) = Φh.2(ξν , τ ν) = 0 and KKT sufficient conditions,
xνh solves the following problem for every ν ∈ N.

max
xh∈RC

++

uh(xh, x−h, y)

subject to pν · xh ≤ pν · [τ νeh + (1− τ ν)x̃h] + pν ·
∑
j∈J

sjh(y
ν
j − (1− τ ν)ỹj)

(18)
We first claim that for every ν ∈ N, the following vector

êh(τ
ν) := τ νeh + (1− τ ν)x̃h (19)

belongs to the budget constraint of the problem above. By Φj.1(ξν , τ ν) =
Φj.2(ξν , τ ν) = 0 and KKT sufficient conditions, yνj solves the following problem
for every ν ∈ N.

max
yj∈RC

pν · yj

subject to tj(yj, y−j, x) ≤ 0
(20)

tj(ỹj, y−j, x) = 0 since Gj.2(ξ̃) = 0, see (8). By Point 2 of Assumption 1,
tj(0, y−j, x) = 0. Then, we get tj((1 − τ ν)ỹj, y−j, x) < 0 since tj(·, y−j, x) is
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strictly quasi-convex, that is, the production plan (1 − τ ν)ỹj belongs to the
constraint set of problem (20). Thus, pν · (yνj − (1− τ ν)ỹj) ≥ 0 for every j, and

then pν ·
∑
j∈J

sjh(y
ν
j − (1− τ ν)ỹj) ≥ 0 which completes the proof of the claim.

Therefore, for every ν ∈ N, uh(x
ν
h, x−h, y) ≥ uh(êh(τ

ν), x−h, y). By Point 2 of
Assumption 5, for every ε > 0 we get uh(x

ν
h + ε1, x−h, y) > uh(êh(τ

ν), x−h, y)
where 1 := (1, . . . , 1) ∈ RC

++. Taking the limit over ν and using Point 1 of
Assumption 5, we get uh(x

∗
h + ε1, x−h, y) ≥ uh(êh(τ

∗), x−h, y) for every ε > 0.
Then, x∗h belongs to the closure of the upper counter set of (êh(τ

∗), x−h, y),
which is included in RC

++ by Point 4 of Assumption 5. Thus, x∗h � 0.

Step 1.3. Up to a subsequence, (λν , pν \)ν∈N converges to some λ∗ ∈ RH
++ ×

RC−1
++ . The proof is similar to the proof of Step 2.3.

Step 1.4. Up to a subsequence, (αν)ν∈N converges to some α∗ ∈ RJ
++. The

proof is similar to the proof of Step 2.4.

Claim 2. Γ−1(0) is compact.

Let (ξν , τ ν)ν∈N be a sequences in Γ−1(0). As in Claim 1, (τ ν)ν∈N converges to
τ ∗ ∈ [0, 1]. From Steps 2.1, 2.2, 2.3 and 2.4 below, up to a subsequence, (ξν)ν∈N
converges to an element ξ∗ := (x∗, λ∗, y∗, α∗, p∗\) ∈ Ξ. Since Γ is a continuous
function, taking limit, we get (ξ∗, τ ∗) ∈ Γ−1(0).

We remind that for every τ ∈ [0, 1], x(τ) and y(τ) are given by (9).

Step 2.1. Up to a subsequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈ RCH
+ ×

RCJ . We show that for r =
∑
h∈H

eh, the sequence (xν , yν)ν∈N is included in the

bounded set K(r) given by Lemma 4. Then, one completes the proof as in
Step 1.1. By Γj.2(ξν , τ ν) = 0, for every j we have that

tj(y
ν
j , y

ν
−j(τ

ν), xν(τ ν)) = 0, ∀ν ∈ N

Thus, for every ν ∈ N, the production allocation yν belongs to the set Y (xν(τ ν), yν(τ ν))
given by (1). Now, summing Γh.2(ξν , τ ν) = 0 over h, by ΓM(ξν , τ ν) = 0, we
get

∑
h∈H

xνh−
∑
j∈J

yνj = r. Then, for every ν ∈ N, the allocation (xν , yν) belongs

to the set A(xν(τ ν), yν(τ ν); r) ⊆ K(r), and consequently, (xν , yν)ν∈N ⊆ K(r).

Step 2.2. The consumption allocation x∗ is strictly positive, i.e. x∗h � 0 for
every h ∈ H. The argument is similar to the one used in Step 1.2 except
for the last part which is quite different due to the presence of consumption
externalities in the utility functions. For this reason, at the end of this step,
we need both the continuity of uh on RC

++ × RC(H−1)
+ × RCJ and Point 4 of

Assumption 5 for all consumption externalities in RC(H−1)
+ or, alternatively,
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the continuity of uh on RC
++ × RC(H−1)

++ × RCJ , Point 4 of Assumption 5 only

for consumption externalities in RC(H−1)
++ , and Point 5 of Section 2.

First, according to Γh.1(ξν , τ ν) = Γh.2(ξν , τ ν) = 0, replace problem (18) with
the following problem

max
xh∈RC

++

uh(xh, x
ν
−h(τ

ν), yν(τ ν))

subject to pν · xh ≤ pν · eh + pν ·
∑
j∈J

sjhy
ν
j

(21)

and replace êh(τ
ν) given by (19) with êh(τ

ν) := eh. Second, according to
Γj.1(ξν , τ ν) = Γj.2(ξν , τ ν) = 0, replace problem (20) with the following problem

max
yj∈RC

pν · yj

subject to tj(yj, y
ν
−j(τ

ν), xν(τ ν)) ≤ 0

Third, one follows the same strategy as for Step 1.2. For every ν ∈ N,
uh(x

ν
h, x

ν
−h(τ

ν), yν(τ ν)) ≥ uh(eh, x
ν
−h(τ

ν), yν(τ ν)). Notice that xν−h(τ
ν) belongs

to RC(H−1)
++ , because xν−h(τ

ν) = τ νxν−h+(1−τ ν)x−h, and xν−h and x−h are both
strictly positive. Then, by Point 2 of Assumption 5, for every ν ∈ N and for
every ε > 0 we get

uh(x
ν
h + ε1, xν−h(τ

ν), yν(τ ν)) > uh(eh, x
ν
−h(τ

ν), yν(τ ν)) (22)

Now, take the limit over ν. Differently from Step 1.2, we have the two following
cases: x∗−h(τ

∗)� 0 or x∗−h(τ
∗) ∈ Bd

(
RC(H−1)

++

)
. The second case may happen

here, but not in Step 1.2, because now there are consumption externalities in
the utility functions. Indeed, if (τ ν)ν∈N converges to τ ∗ = 1, then x∗−h(τ

∗) =
x∗−h which a priori is not necessarily strictly positive.

Suppose that x∗−h(τ
∗) � 0. Using (22) and Point 1 of Assumption 5, we get

uh(x
∗
h + ε1, x∗−h(τ

∗), y∗(τ ∗)) ≥ uh(eh, x
∗
−h(τ

∗), y∗(τ ∗)) for every ε > 0. Then,
x∗h is strictly positive, because it belongs to the closure of the upper counter
set of (eh, x

∗
−h(τ

∗), y∗(τ ∗)), which is included in RC
++ by Point 4 of Assumption

5. Suppose now that x∗−h(τ
∗) ∈ Bd

(
RC(H−1)

++

)
. Under Point 1 and Point 4 of

Assumption 5, the previous argument still holds true. Alternatively, if uh does
not satisfy BC whenever consumption externalities converge to zero for some
commodities, one uses Point 5 in Section 2 as follows. By Point 5 and (22),
there exists δ > 0 such that for every ν ∈ N and for every ε > 0 one gets

uh(x
ν
h + ε1, xν−h(τ

ν) + δ1, yν(τ ν)) ≥ uh(eh, x
ν
−h(τ

ν) + δ1, yν(τ ν))

Take the limit over ν and remark that x∗−h(τ
∗) + δ1 � 0. Consequently, one

gets uh(x
∗
h + ε1, x∗−h(τ

∗) + δ1, y∗(τ ∗)) ≥ uh(eh, x
∗
−h(τ

∗) + δ1, y∗(τ ∗)) for every
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ε > 0, because in this case uh is required to be continuous on RC
++×RC(H−1)

++ ×
RCJ . Then, x∗h is strictly positive since it belongs to the closure of the upper
counter set of (eh, x

∗
−h(τ

∗) + δ1, y∗(τ ∗)), which is included in RC
++ because

x∗−h(τ
∗)+δ1� 0 and because in this case Point 4 of Assumption 5 is required

only for consumption externalities in RC(H−1)
++ .

Step 2.3. Up to a subsequence, (λν , pν \)ν∈N converges to some (λ∗, p∗ \) ∈
RH

++ × RC−1
++ . By Γh.1 (ξν , τ ν) = 0, fixing commodity C, for every ν ∈ N we

have λνh = DxC
h
uh(x

ν
h, x

ν
−h(τ

ν), yν(τ ν)). Taking the limit, by Points 1 and 2 of

Assumption 5, we get λ∗h := DxC
h
uh(x

∗
h, x

∗
−h(τ

∗), y∗(τ ∗)) > 0.

By Γh.1 (ξν , τ ν) = 0, for all commodity c 6= C and for all ν ∈ N we have pν c =
Dxc

h
uh(x

ν
h, x

ν
−h(τ

ν), yν(τ ν))

λνh
. Taking the limit, by Points 1 and 2 of Assumption

5, we get p∗ c :=
Dxc

h
uh(x

∗
h, x

∗
−h(τ

∗), y∗(τ ∗))

λ∗h
> 0. Therefore, p∗ \ � 0.

Step 2.4. Up to a subsequence, (αν)ν∈N converges to some α∗ ∈ RJ
++. For

every firm j, fix a commodity c(j) ∈ C. By Γj.1 (ξν , τ ν) = 0, for every ν ∈ N
we have that

ανj =
pν c(j)

D
y
c(j)
j
tj(yνj , y

ν
−j(τ

ν), xν(τ ν))

which is strictly positive by Point 4 of Assumption 1. Taking the limit, by

Points 1 and 4 of Assumption 1, we get α∗j :=
p∗ c(j)

D
y
c(j)
j
tj(y∗j , y

∗
−j(τ

∗), x∗(τ ∗))
> 0.

6 Appendix

We introduce a definition of the degree modulo 2 for continuous functions, see
Appendix B in Geanakoplos and Shafer (1990), and Chapter 7 in Villanacci
et al. (2002).

Let M and N be two C2 manifolds of the same dimension contained in eu-
clidean spaces. Let A be the set of triples (f,M, y) where

(1) f : M → N is a continuous function,
(2) y ∈ N and f−1(y) is compact.

Theorem 16 There exists a unique function, called degree modulo 2 and de-
noted by deg2 : A → {0, 1} such that
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(1) (Normalisation) deg2(idM ,M, y) = 1
where y ∈M and idM denotes the identity of M .

(2) (Non–triviality) If (f,M, y) ∈ A and deg2(f,M, y) = 1, then f−1(y) 6= ∅.

(3) (Excision) If (f,M, y) ∈ A and U is an open subset of M such that
f−1(y) ⊆ U , then

deg2(f,M, y) = deg2(f, U, y)

(4) (Additivity) If (f,M, y) ∈ A and U1 and U2 are open and disjoint subsets
of M such that f−1(y) ⊆ U1 ∪ U2, then

deg2(f,M, y) = deg2(f, U1, y) + deg2(f, U2, y)

(5) (Local constantness) If (f,M, y) ∈ A and U is an open subset of M with
compact closure such that f−1(y) ⊆ U , then there is an open neighborhood
V of y in N such that for every y′ ∈ V ,

deg2(f, U, y′) = deg2(f, U, y)

(6) (Homotopy invariance) Let L : (z, τ) ∈ M × [0, 1] → L(z, τ) ∈ N be a
continuous homotopy. If y ∈ N and L−1(y) is compact, then

deg2(L0, U, y) = deg2(L1, U, y)

where L0 := L(·, 0) : M → N and L1 := L(·, 1) : M → N .

If there is no possible confusion on the manifoldM , we simply denote deg2(f, y)
the degree modulo 2 of the triple (f,M, y).

As stated in the following proposition, in the case of regular values of a C1

function, the degree modulo 2 is computed using the residue class modulo 2.

Proposition 17 If (g,M, y) ∈ A, g is a C1 function and y is a regular value
of g (i.e., for all z∗ ∈ g−1(y), the differential mapping Dg(z∗) is onto), then
g−1(y) is finite (possibly empty) and the degree modulo 2 of g is given by

deg2(g,M, y) = [#g−1(y)]2 =

 0 if #g−1(y) is even

1 if #g−1(y) is odd
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