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Overrun Handling for Mixed-Criticality Support in RTEMS

Real-time operating systems are not only used in embedded real-time systems but also useful for the simulation and validation of those systems. During the evaluation of our paper about Systems with Dynamic Real-Time Guarantees that appears in RTSS 2016 we discovered certain unexpected system behavior in the open-source real-time operating system RTEMS. In the current implementation of RTEMS (version 4.11), overruns of an implicit-deadline task, i.e., deadline misses, result in unexpected system behavior as they may lead to a shift of the release pattern of the task. This also has the consequence that some task instances are not released as they should be. In this paper we explain the reason why such problems occur in RTEMS and our solutions.

I. INTRODUCTION

Over the last years the number of embedded systems has drastically increased as embedded systems are now part of many daily-used products and are used in the control of many technical devices and machines. For most of those embedded systems real-time guarantees have to be given. This means, the correct behavior of a system depends not only on the computation value but also on the satisfaction of given timing constraints, i.e., the computation has to be completed successfully before a certain deadline. This is due to the fact, that embedded systems are used in safety-critical applications where missing these timing constraints would risk of resulting in serious consequences, e.g., in automotive or aeronautical applications. Therefore, the satisfactions of those timing constraints have to be ensured, either at runtime or during the design time of the system. Real-time operation systems (RTOS) and platforms like FreeRTOS [START_REF]FreeRTOS[END_REF], Litmus-RT [START_REF] Brandenburg | LITMUS RT : Linux Testbed for Multiprocessor Scheduling in Real-Time Systems[END_REF], and RTEMS [START_REF]RTEMS: Real-Time executive for multiprocessor systems[END_REF] are not only used for running embedded realtime systems but also are useful tools for validating timing constraints at design time, either via simulations or by actually running the implemented tasks.

For many real-time applications the sporadic task model has been adopted, where each task τ i is characterized by its minimum inter-arrival time or period T i , its relative deadline D i , and its worst-case execution time (WCET) C i . Such a sporadic task τ i releases an infinite number of task instances, called jobs, where two consecutive releases of jobs of the same task have to be separated by the minimum inter-arrival time T i . For example, this is a good way to model an application that has to react to a value recurrently read from a sensor.

In many cases either the implicit-deadline task model, i.e., D i = T i ∀τ i , or the constrained-deadline task model, i.e., D i ≤ T i ∀τ i , is adopted. Suppose that the question at hand is to validate if all tasks meet their deadlines or that we only care about the correct execution of a system, where the timing behavior was ensured in a previous analysis. For such applications, the support of current implementations of real-time operation systems is sufficient. However, some applications also have tasks with arbitrary deadlines, i.e., for some tasks D i > T i . If the tasks are strictly periodic, this leads to a situation where two or more instances of the same task are ready to be executed at the same time. It is usually assumed that multiple task instances of a task are executed in a first-come-first-serve (FCFS) manner. Thus, it is sufficient to release the second task instance at the moment the first task instance finishes, assuming that the first task instance finishes after the time point at which the second task instance would have been released according to a strictly periodic pattern.

In addition, the situation that a task instance is not finished at the end of its period (we call this behavior an overrun) may not only happen if a task has an arbitrary deadline but also when a task misses its deadline. While a deadline miss is not tolerable in most cases, in some situations rare deadline misses might be tolerable for some tasks. In Mixed-Criticality Systems [START_REF] Vestal | Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance[END_REF] tasks have two different WCETs where the WCET in the high-criticality mode is longer than the WCET in the low-criticality mode. To ensure that the deadlines of the high-criticality tasks are met, the state of the art abandons the low-criticality tasks in the high-criticality mode. Instead of abandoning these tasks, running them with best effort or reduced timing guarantees, e.g., bounded tardiness [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF], seems a reasonable option. However, in these cases the lowcriticality tasks may miss some of their deadlines which results in an overrun. When software based recovery strategies for transient faults are considered, e.g., re-execution [START_REF] Many | Scheduling analysis under fault bursts[END_REF] or checkpointing [START_REF] Egwutuoha | A survey of fault tolerance mechanisms and checkpoint/restart implementations for high performance computing systems[END_REF], tasks may have a longer execution time in some rare cases due to the recovery operations. If the fault rate is slightly higher than expected, this could lead to deadline misses as well.

A real-time operating system should make sure that the system still behaves as expected if such overrun situations occur. Namely, the task instances should still be released according to the given pattern and all task instances are still released even if another task instance is still in the system at the moment the next task instance would be released according to the pattern. This makes sure that the system behavior is predictable even with very rare overrun situations. In addition, it allows to analyze the effect those overruns have on the system behavior.

For our work on Systems with Dynamic Real-Time Guarantees [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF] we ran simulations with RTEMS (Real-Time Executive for Multiprocessor Systems) [START_REF]RTEMS: Real-Time executive for multiprocessor systems[END_REF] to analyze the impact of transient faults during the execution of a task instance. We assumed those faults to happen randomly under a given fault rate and wanted to analyze the impact of the fault rate on the system behavior. During these analyses we discovered that RTEMS (version 4.11) did not behave as expected when these faults result in a task missing its deadline. On one hand, missing the deadline of a task instance leads to a shift of the release pattern of the task. On the other hand, if the deadline was missed by more than one period, the task instance that should have been released during this period was never released. We extended the current release of the RTEMS source code to tackle these two problems. Our Contributions: This paper focuses on explaining the problems that arise from the current implementation of realtime operating systems when overruns take place and provides a solution that tackles these problems.

• An introduction to the general overrun handling mechanism implemented in well-known real time operating systems is given and compared with the model usually considered in academic publications. We explain how these overruns can occur in practical cases, e.g., arbitrary deadlines, Mixed-Criticality systems, software based solutions for handling transient faults like re-execution and checkpointing. • We discovered two major problems in the current implementation of Real-Time Executive for Multiprocessor Systems (RTEMS) [START_REF]RTEMS: Real-Time executive for multiprocessor systems[END_REF], namely that the release pattern of tasks is shifted, and that jobs are not released at all if the overrun of a task is longer than one period. • A comprehensive extension to the latest RTEMS [START_REF]RTEMS: Real-Time executive for multiprocessor systems[END_REF] source code (version 4.11) is provided that enhances the fixed-priority scheduler to provide a proper behavior for overrun handling, especially tackling the two determined major problems. In addition we shortly explain the case study we performed for the paper Systems with dynamic real-time guarantees in uncertain and faulty execution environment [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF], which was the reason why we discovered those problems and enhanced the implementation of RTEMS [START_REF]RTEMS: Real-Time executive for multiprocessor systems[END_REF].

II. OVERRUN HANDLING IN RTEMS

In this section, we will first describe the original design of overrun handling in RTEMS (Real-Time Executive for Multiprocessor Systems) [START_REF]RTEMS: Real-Time executive for multiprocessor systems[END_REF] and present how the enhancement integrates perfectly in the latest RTEMS release. A motivational example is provided to demonstrate the differences between the original design and the enhanced version of overrun handling. In addition to the proper overrun handling routine, we also provide a useful helper function, which is detailed at the end of this section.

A. Task Model

In this paper we consider n independent periodic real-time tasks T = {τ 1 , τ 2 , . . . , τ n } in a uniprocessor system. Each task τ i releases an infinite number of jobs (also called task instances) under the given period (temporal) constraint T i . As we assume the tasks to be strictly periodic this means if at time θ a a job of task τ i arrives, the next instance of the task must arrive at θ a + T i . The relative deadline of task τ i is D i , i.e., a task instance released at θ a must be finished before θ a + D i . We mainly consider implicit-deadline task sets in this paper, i.e., D i = T i ∀τ i . In the considered version 4.11 of RTEMS, the scheduler uses a virtual table of function pointers to hook schedulerspecific code and the thread management. In this work, we limit our attention on the fixed-priority scheduler in the RTEMS implementation. Although the related functions have a prefix rate-monotonic and is called RMS in RTEMS, the scheduler can be used for any fixed-priority scheduling, as the priorities can be set by the user. For the sake of clarity, we will remove the prefix when we mention the functions of the scheduler in the rest of paper. The primary source code is located in the following files in the SuperCore (cpukit/score):

• cpukit/rtems/src/ratemonperiod.c • cpukit/rtems/src/ratemontimeout.c • cpukit/rtems/include/rtems/rtems/ratemon.h • cpukit/rtems/include/rtems/rtems/ratemonimpl.h The rate-monotonic manager in RTEMS is responsible for handling the periodicity of the tasks. Based on it, this work mainly redefines the behavior of the Period() function and the Timeout() function in ratemonperiod.c and ratemontimeout.c, respectively. As mentioned in [START_REF] Bloom | Scheduling and thread management with rtems[END_REF], for each task, its periodicity is implemented by using a timer to track its period. The application designer should create a periodic timer and implement the task body with a loop that calls Period() at the beginning to initialize the timer with the current system tick plus its period. Every time the task finishes its task body, i.e., at the end of the loop, Period() is called to setup the next iteration and immediately checks if the period is depleted yet. If the task finishes before its next period, it immediately goes to sleep (or suspends) until its period elapses, at which time its timer fires, wake the task to continue the loop body, and so on so forth. In the original design in RTEMS, if the watchdog notices that the deadline of a job expires but the job has not finished yet, i.e., a period timeout of a task takes place but the task body has not been finished, RTEMS marks the period state as EXPIRED and does nothing more. The next

C 1 = 6, T 1 = 10 C 2 = 1, T 2 = 2 0 5 10 15 20 25 30 (a)
The original design of overrun handling in RTEMS. The red job is postponed from 10. The arrival pattern from 16 is changed due to the lateness of the red job, by which the orange job and the following jobs are all released earlier.

C 1 = 6, T 1 = 10 C 2 = 1, T 2 = 2 0 5 10 15 20 25 30 (b)
The overrun handling with our enhancement in RTEMS. The postponed jobs due to the execution of τ 1 are marked red, the jobs postponed due to the execution of previous jobs of τ 2 that are not executed in the right period are marked orange. The yellow job is postponed due to the orange job in the same period but can still finish its execution on time.

C A 1 = 6, C N 1 = 1 C A 2 = 1, C N 2 = 1 0 5 10 15 20 25 30 (c)
The overrun handling with our enhancement for dynamic real-time guarantees in RTEMS. Due to error recovery routine, task τ 1 runs in the second period with the abnormal mode, i.e., C A 1 = 6. The postponed jobs due to the execution of τ 1 are marked red, the jobs postponed due to the execution of previous jobs of τ 2 that are not executed in the right period are marked orange. The yellow job is postponed due to the orange job in the same period but can still finish its execution on time.

Fig. 2: An example illustrates different system behaviors according to the original design and the enhanced overrun handling. time Period() is called at the beginning of the loop, i.e., when the expired task is finished, the Block while expired() function records the marked state of the expired period to update the system statistic routine and releases the next job immediately while updating the timer with the current system tick plus its period. Figure 1 illustrates the flowchart of the RMS manager. However, such an overrun handling mechanism is not able to keep the periodicity of the task, since the system tick at which the delayed task instance finishes is normally not at an integer multiple of the period of the task. Also this moment does not necessarily have to happen during or at the end of the first period after the deadline expired, but could be in any period after the originally expired one. In such a scenario, all the postponed jobs that would have been initialized in the time interval between the expired deadline and the newly released task instance is created are just gone.

To illustrate the behavior of the original design and the behavior after the enhancement, we provide an example with two implicit-deadline sporadic 1 tasks in Figure 2: τ 1 with C 1 = 6 and T 1 = 10, and τ 2 with C 2 = 1 and T 2 = 2, where τ 1 is given a higher priority than τ 2 . We let τ 1 only release two jobs (at 0 and 10) and τ 2 has a phase of 6, i.e., the first job of τ 2 is released at 6 but its follow-up jobs arrive with a period of 2.

The behavior using the current version of RTEMS is shown in Figure 2a. We see that τ 2 can not be executed in the interval [START_REF]FreeRTOS[END_REF]16] as τ 1 has higher priority, resulting in 3 expired periods. Using the original overrun handling the job of τ 2 released at 10 (colored red) is finished at 17 which leads to a new release of τ 2 at 17, as τ 2 is marked to have deadline misses. This 1 For the simplicity of presentation, the sporadic task model here is more clear to show the effects rather than using the strict periodic release pattern.

results in a shift of the periodicity of τ 2 by 1 for this job and all the following jobs. The job that should be released at 16 is released at 17 now (orange), and the following jobs are all shifted as well. it is worth noting that the jobs that should be released at 12 and 14 are never released to the system. Overall, we can observe that the original design in RTEMS does not match the expectation for overrun handling and periodicity in most applications and researches, as two jobs do not enter the system at all and the period of the τ 2 is shifted due to the deadline miss of the job started at 10.

C. Enhancement

After discussing the original design, we now explain how we enhanced the original implementation to handle the deadline overrun correctly. Based on the previous observations, the main ideas of our enhancement can be summarized as follows:

• correcting the deadline assignment errors using a watchdog, i.e., keep the periodicity of the tasks, • tracking the number of postponed jobs, and • providing two modes of job releasing depending on the situation, i.e., normal and postponed release. The flowchart is provided in Figure 3. In the rest of this subsection, we explain more details about our implementation. Please note that the use of the word deadline in the rest of section is referring to the deadline of the watchdog timer. Since the arrival time of the tasks' jobs is exactly the deadline of the watchdog timer in RMS, the periodicity of tasks should be fixed from the deadline assignment of the watchdog.

Correcting the deadline assignment: To keep the correct deadline assignment after a job misses its deadline, we add an additional variable called latest deadline in the Control structure that records the latest deadline assigned by the period watchdog. This variable is used to call an additional function named Renew deadline() in the Timeout() function, making sure that the watchdog updates the timer to the next absolute deadline. The next deadline will be recorded in the variable latest deadline. Due to this enhancement, the watchdog updates the timer correctly rather than doing nothing in the original design. The recorded deadline in the variable latest deadline is prepared for the next call of the Timeout() function, allowing to set the deadline to the sum of latest deadline and period for the next deadline assignment directly.

Tracking the number of postponed jobs: In addition to the correct deadline assignment, we also implemented a tracking mechanism for the number of the postponed jobs to ensure that the postponed jobs are correctly released. To deploy this idea, we add an additional variable in the Control structure called postponed jobs and initialize it while the periodic timer is created. When the watchdog detects a deadline miss (a period timeout while the related task is not finished), this variable is increased by one immediately in the Timeout() function. Conversely, every time a postponed job is released by Release postponedjob(), this variable is decreased by one immediately.

Two modes of job releasing: As we mentioned before, normally the execution of periodic tasks is correct, if there is no deadline miss. When there is an overrun, the watchdog of the expired period detects such an overrun and the next call of Period() will immediately release one job and set the expired period state back to the normal state by using the function Block while expired(). In the original facility, the above behavior is handled by the function Release job(). In the enhancement, we replaced it with an additional function Release postponedjob() and let the watchdog handle the deadline assignment individually. We implemented it similar to the original job releasing routine, but it does not assign the new deadline to the timer while releasing a postponed job. Since they already missed their deadline and are tracked by the watchdog in the Timeout() function, it is meaningless to assign an already expired deadline to the watchdog. Every time a postponed job is released, the variable postponed jobs is decreased by one. When the variable postponed jobs is not 0, the scheduler is in the postponed mode.

Based on the original design in RTEMS, every time Period() is called at the beginning of the loop, it checks the state of the current period. When the state is EXPIRED, in fact the period might be expired many times already. In this block, now it calls the enhanced Block while expired() to release the postponed jobs without assigning a new deadline. We added one more condition when checking if the state of the period is ACTIVE, in which the task is blocked and waits for the next period. The additional condition checks if the variable postponed jobs is greater than 0, which means the scheduler is still in the postponed mode. Otherwise, when the variable postponed jobs is 0, the scheduler is in the normal mode and the job release is the same as it was in the original design. We use the same example as before to illustrate the effect of our enhancement in Figure 2b, which is now matching the expectation of most applications and researches. At time 10 τ 1 is executed, as it has higher priority than τ 2 , which leads to three expired periods of τ 2 . This means, the watchdog increases the variable postponed jobs to 3. When task τ 2 can be executed, it starts to release the postponed jobs in the postponed mode. Moreover, the three postponed jobs of τ 2 that should be released at time units 10, 12, and 14 due to the execution of τ 1 , marked red, are released at time units 16, 17, and 18, respectively. However, the period from 16 to 18 and from 18 to 20 also expired while executing the three previously postponed jobs and the job postponed at 16, marked orange. At 20 the job postponed at 18 (marked orange as well) is released and is finished at 21, at which time the job postponed at 20 is released (yellow) and finishes at 22. After all the postponed jobs are finished, the release of τ 2 turns back according to the original pattern again. We provide an additional example in Figure 2c as well to demonstrate how the enhancement works for dynamic real-time guarantees [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF]. Detailed notation can be found in Section III or in [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF]. Suppose that task τ 1 requires a full timing guarantee with the abnormal execution time C A 1 = 6, and the normal execution time

C N 1 = 1. Task τ 2 is a timing tolerable task with C A 2 = C N 2 = 1.
In Figure 2c, the second job of task τ 1 needs 6 time units for its execution time. We can see that after all the postponed jobs of task τ 2 are finished at 24, the release of task τ 2 turns back according to the original periodic pattern again.

D. Helper Function

In our enhancement, we also provided a helper function called Postponed num() to return the number of postponed jobs with the current period ID of tasks as function input. According to the expected behavior, the number of postponed jobs is only increased by the watchdog of the corresponding period; it is only decreased by the routine of postponed job releasing in RMS manager. This helper function is especially useful for on-line admission control and the system monitor design in terms of scheduling. In fact, it is already used in [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF] for the system state analysis, where the overhead of the enhancement is negligible in our evaluation (see Section III).

REMARK: ARBITRARY DEADLINE

Up to this point, we have presented how to handle the overrun for implicit-(D i = T i ∀i) or constrained-deadline (D i ≤ T i ∀i) task sets properly with our enhancement based on the original scheduler design in RTEMS. In the arbitrarydeadline task model, no general relation between D i and T i exists. Especially, for some tasks D i > T i is possible. However, due to the limitation of the original design in the fixed-priority scheduler, the arbitrary-deadline task model is not supported yet in RTEMS as well. Since the deadline detection is originally embedded in the routine of the task periodicity, the deadline is expected to be less than or equal to their period without any overrun. However, this expectation is only true for implicit-deadline and constraint-deadline task models and applications where all deadlines are met.

From the schedulability analysis aspect, the detection of deadline misses should be separated as an individual feature. One potential solution is to set the deadline of a task explicitly as the input parameter while the period is initialized and update the deadline accordingly while every job is released. The detection routine for deadline misses should be revised for recording the number of deadline misses rather than the number of periods expired. By co-working with our enhancement, this solution could make the fixed-priority scheduler of RTEMS support more general real-time task models.

III. CASE STUDY: SYSTEMS WITH DYNAMIC REAL-TIME GUARANTEES

The need for the presented enhanced implementation for RTEMS was discovered during the work on the paper Systems with dynamic real-time guarantees in uncertain and faulty execution environment [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF]. A System with Dynamic Real-Time Guarantees can be used to analyze and schedule systems where some tasks have two different worst-case execution times (WCET); a shorter WCET C N i for executions that happens more often (called normal execution), and a longer WCET C A i for some rare special cases (called abnormal execution). The general idea is that also all tasks in the system normally need to fulfill strict timing guarantees but in some special cases, i.e., a number of tasks with abnormal execution happen in a short period of time, for some not so important tasks (called timing tolerable tasks) rare deadline misses are tolerable while for the more important tasks (called timing strict tasks) deadline misses are allowed under no circumstances. In Systems with Dynamic Real-Time Guarantees fixedpriority scheduling is used.

A System with Dynamic Real-Time Guarantees assumes that at the beginning of a task's execution it is not possible to determine if the task is executed in a normal or an abnormal mode, i.e., abnormal executions happen randomly and do not follow a strict pattern. This is the case when we look at the fault tolerance enhanced to handle soft errors, i.e., the consequences of transient faults of the computing hardware or the memory subsystem, by using software-based solutions, e.g., re-execution [START_REF] Many | Scheduling analysis under fault bursts[END_REF] or checkpointing [START_REF] Egwutuoha | A survey of fault tolerance mechanisms and checkpoint/restart implementations for high performance computing systems[END_REF]. Such faults can either happen for each individual task instance with low probability or they can happen as a burst that affects (nearly) all tasks over a small time window. In both cases it would not be sensible to in general assume the longer C N i in the analysis if those faults occur rarely and some deadline misses can be tolerated, as it would lead to over dimensioning the system. The idea of Systems with Dynamic Real-Time Guarantees is to give full timing guarantees, i.e., all tasks meet all their deadlines, if tasks are executed normally, and maybe downgrade this guarantees to limited timing guarantees if some tasks are executed in the abnormal mode. When limited timing guarantees are given, only the timing strict tasks are guaranteed to meet their deadlines while the timing tolerable tasks may miss some deadlines but still bounded tardiness for these tasks is guaranteed. In addition, Systems with Dynamic Real-Time Guarantees provide a system monitor that analyzes if full timing guarantees can be given for all tasks, i.e., all tasks will meet their deadline if no faults occur, or if only limited timing guarantees can be given for some timing tolerable tasks. To determine this for each timing tolerable tasks an over estimation of the busy period is calculated, summing up the current carry-in workload by jobs with higher or identical priority and the workload created in the future under the assumptions of 1) a worst-case release pattern and 2) that no further faults occur. For details see Section 6 of [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF].

Similar behavior occurs in Mixed-Criticality Systems [START_REF] Vestal | Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance[END_REF] witch have two modes, a high-and a low-criticality mode where tasks have a longer execution time in the high-criticality mode. It is often assumed that low-criticality tasks can be abandoned when the system switches from the low-criticality to high-criticality mode to ensure that the high-criticality tasks will still meet their deadlines. However, this assumption has been criticised recently [START_REF] Burns | Mixed criticality systems-a review[END_REF][START_REF] Ernst | Mixed criticality systems -A history of misconceptions[END_REF][START_REF] Esper | How realistic is the mixed-criticality real-time system model?[END_REF]. The problem is tackled when a System with Dynamic Real-Time Guarantees is used, as the low-criticality tasks are seen as timing tolerable tasks and the system gives limited timing guarantees, i.e., guarantees bounded tardiness instead of abandoning the task.

To analyze the behavior of Systems with Dynamic Real-Time Guarantees, a QEMU emulator under Real-Time Executive for Multiprocessor Systems (RTEMS) [START_REF]RTEMS: Real-Time executive for multiprocessor systems[END_REF] was used where the number of cores was set to 1 for the simulation. In the situation it was assumed that transient faults happen randomly, i.e., a given rate of faults per millisecond, and at the moment a task instance finished its normal execution a random draw, based on the probability of faults per millisecond and C N i , determined if the execution was prolonged to run up to C A i or not. The system monitor was used to determine the amount of time when only limited timing guarantees could be provided.

As the timing tolerable tasks are not abandoned those tasks may miss their deadlines. However, they should be executed after the deadline as the result may still be useful. In addition, it may happen that not only one job of a task misses the deadline but also that the execution of the task may be postponed for more than one period. In these cases more than one job of a task may be ready to execute at a given time, another situation previously not covered in RTEMS [START_REF]RTEMS: Real-Time executive for multiprocessor systems[END_REF]. The enhancement presented in Section II was necessary to ensure that the release pattern was still correct when a task missed its deadline. The number of the postponed releases was determined using the helper function. The system monitor framework also adopts the helper function when it calculates The scheduling algorithm in [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF] can only schedule 44.4% of the task sets when the task sets are randomly generated with 10 tasks, 50% of these tasks are randomly chosen to be timing strict tasks, the total utilization in the normal mode is 70%, and C A i = 1.83 • C N i ∀i, i.e., the total utilization in the abnormal mode is ≈ 128.1%. We used 40 of those randomly created tasks sets under the given setting that are schedulable according to the scheduling algorithm in [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF] if the bounded tardiness condition for the timing tolerable tasks is dropped. Obviously, for utilization > 100% in the abnormal mode, bounded tardiness for the timing tolerable tasks can only be guaranteed if the fault rate is not too high as a high fault rate will lead to more overruns. We let the system simulate a run for one hour under different fault rates for each of those task sets, i.e., on average 10 -4 , 3 • 10 -4 , 10 -3 , 3•10 -3 and 10 -2 faults per millisecond (f/ms). For each executed task instance we decided if the instance was faulty or not by a random draw. The results, i.e., the percentage of time the system was running with full timing guarantees, are shown in Figure 4 (which is Fig 8 in [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF]). The median of those 40 sets is colored red. The blue box represents the interval from the first to the third quartile, while the black whiskers show the minimum and maximum of all of the data.

IV. RELATED IMPLEMENTATIONS FreeRTOS [START_REF]FreeRTOS[END_REF] is a well-known real-time operating system, which especially offers lighter and easier real time processing. By analyzing timers.c we can see that prvProcessTimerOr-BlockTask() and prvProcessExpiredTimer() are responsible for the periodicity of the task. In fact the feature of prvPro-cessTimerOrBlockTask() is similar to the function Period() in RTEMS that determines if the task should be blocked or if the timer has expired and the overrun handling is required. In the function prvProcessExpiredTimer(), the expired timer is updated immediately with the next expiry time. To maintain the periodicity, all the tasks' timers are listed in the expiry time order, and the task which refers to the head of list expires first. Although the deadline of a task is assigned correctly in their timer, we are not aware of any tracking mechanism in the FreeRTOS scheduler that enforces the correct number of postponed jobs to be released.

Litmus-RT [START_REF] Brandenburg | LITMUS RT : Linux Testbed for Multiprocessor Scheduling in Real-Time Systems[END_REF] is a popular real-time extension of the Linux kernel. The overrun handling for the fixed-priority scheduler can be found in job completion() in sched pfp.c. By tracking back to the common function prepare for next Period() in jobs.c and setup release(), we noticed that it also has implemented a counter called job no to record how many jobs should be ideally released without overrun. With sys wait for job release() in litmus.c, the task is only going to sleep when its number of released job is greater than job no by triggering complete job(). This is similar to the case in Period() where RTEMS decides if the period should be blocked. By this implementation, the postponed jobs should be released consecutively until there is no postponed job, which is similar to our enhancement.

V. CONCLUSION AND FUTURE WORK

The demand of overrun handling has emerged and it is widely used in practical and theoretical systems, e.g., in the design of soft real-time systems, Mixed-Criticality systems [START_REF] Vestal | Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance[END_REF], and Systems with Dynamic Real-Time Guarantees [START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF]. In this work, we have enhanced the fixed-priority scheduler in the released version 4.11 of RTEMS with a generally expected overrun handling mechanism. The provided enhancement now is in the pending patch on RTEMS report ticket #2795 [START_REF] Chen | #2795 ticket: Overrun handling for general real-time models[END_REF]. To avoid breaking the existing behavior for applications relying on the original RTEMS feature, the system-level integration for the new variant via some explicit function calls is planned for the future. We consider supporting the arbitrary-deadline task model and a separated deadline assignment as future work.
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 1 Fig. 1: Flowchart of the RMS manager in RTEMS
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 3 Fig. 3: Flowchart of the enhanced RMS manager. The light background blocks are involved in the enhancement.
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 4 Fig.4: Percentage of Time where Full Timing Guarantees can be given for task sets with utilization 70% in the normal mode under different fault rates. the carry-in workload for each task.The scheduling algorithm in[START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF] can only schedule 44.4% of the task sets when the task sets are randomly generated with 10 tasks, 50% of these tasks are randomly chosen to be timing strict tasks, the total utilization in the normal mode is 70%, andC A i = 1.83 • C N i ∀i, i.e., the total utilization in the abnormal mode is ≈ 128.1%. We used 40 of those randomly created tasks sets under the given setting that are schedulable according to the scheduling algorithm in[START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF] if the bounded tardiness condition for the timing tolerable tasks is dropped. Obviously, for utilization > 100% in the abnormal mode, bounded tardiness for the timing tolerable tasks can only be guaranteed if the fault rate is not too high as a high fault rate will lead to more overruns. We let the system simulate a run for one hour under different fault rates for each of those task sets, i.e., on average 10 -4 , 3 • 10 -4 , 10 -3 , 3•10 -3 and 10 -2 faults per millisecond (f/ms). For each executed task instance we decided if the instance was faulty or not by a random draw. The results, i.e., the percentage of time the system was running with full timing guarantees, are shown in Figure4(which is Fig8in[START_REF] Der Brüggen | Systems with dynamic real-time guarantees in uncertain and faulty execution environment[END_REF]). The median of those 40 sets is colored red. The blue box represents the interval from the first to the third quartile, while the black whiskers show the minimum and maximum of all of the data.
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