
HAL Id: hal-01438843
https://hal.science/hal-01438843

Submitted on 25 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Overrun Handling for Mixed-Criticality Support in
RTEMS

Kuan-Hsun Chen, Georg von Der Brüggen, Jian-Jia Chen

To cite this version:
Kuan-Hsun Chen, Georg von Der Brüggen, Jian-Jia Chen. Overrun Handling for Mixed-Criticality
Support in RTEMS. WMC 2016, Nov 2016, Porto, Portugal. �hal-01438843�

https://hal.science/hal-01438843
https://hal.archives-ouvertes.fr


Overrun Handling for Mixed-Criticality Support in RTEMS

Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen
Department of Informatics, TU Dortmund University, Germany

Email: {kuan-hsun.chen, georg.von-der-brueggen, jian-jia.chen}@tu-dortmund.de

Abstract—Real-time operating systems are not only used in
embedded real-time systems but also useful for the simulation and
validation of those systems. During the evaluation of our paper
about Systems with Dynamic Real-Time Guarantees that appears
in RTSS 2016 we discovered certain unexpected system behavior
in the open-source real-time operating system RTEMS. In the
current implementation of RTEMS (version 4.11), overruns of an
implicit-deadline task, i.e., deadline misses, result in unexpected
system behavior as they may lead to a shift of the release pattern
of the task. This also has the consequence that some task instances
are not released as they should be. In this paper we explain the
reason why such problems occur in RTEMS and our solutions.

I. INTRODUCTION

Over the last years the number of embedded systems has
drastically increased as embedded systems are now part of
many daily-used products and are used in the control of
many technical devices and machines. For most of those
embedded systems real-time guarantees have to be given. This
means, the correct behavior of a system depends not only on
the computation value but also on the satisfaction of given
timing constraints, i.e., the computation has to be completed
successfully before a certain deadline. This is due to the fact,
that embedded systems are used in safety-critical applications
where missing these timing constraints would risk of resulting
in serious consequences, e.g., in automotive or aeronauti-
cal applications. Therefore, the satisfactions of those timing
constraints have to be ensured, either at runtime or during
the design time of the system. Real-time operation systems
(RTOS) and platforms like FreeRTOS [10], Litmus-RT [3],
and RTEMS [1] are not only used for running embedded real-
time systems but also are useful tools for validating timing
constraints at design time, either via simulations or by actually
running the implemented tasks.

For many real-time applications the sporadic task model
has been adopted, where each task τi is characterized by its
minimum inter-arrival time or period Ti, its relative deadline
Di, and its worst-case execution time (WCET) Ci. Such a
sporadic task τi releases an infinite number of task instances,
called jobs, where two consecutive releases of jobs of the same
task have to be separated by the minimum inter-arrival time
Ti. For example, this is a good way to model an application
that has to react to a value recurrently read from a sensor.

In many cases either the implicit-deadline task model,
i.e., Di = Ti ∀τi, or the constrained-deadline task model,
i.e., Di ≤ Ti ∀τi, is adopted. Suppose that the question
at hand is to validate if all tasks meet their deadlines or
that we only care about the correct execution of a system,
where the timing behavior was ensured in a previous analysis.
For such applications, the support of current implementations

of real-time operation systems is sufficient. However, some
applications also have tasks with arbitrary deadlines, i.e., for
some tasks Di > Ti. If the tasks are strictly periodic, this
leads to a situation where two or more instances of the same
task are ready to be executed at the same time. It is usually
assumed that multiple task instances of a task are executed in
a first-come-first-serve (FCFS) manner. Thus, it is sufficient to
release the second task instance at the moment the first task
instance finishes, assuming that the first task instance finishes
after the time point at which the second task instance would
have been released according to a strictly periodic pattern.

In addition, the situation that a task instance is not finished
at the end of its period (we call this behavior an overrun)
may not only happen if a task has an arbitrary deadline but
also when a task misses its deadline. While a deadline miss
is not tolerable in most cases, in some situations rare deadline
misses might be tolerable for some tasks. In Mixed-Criticality
Systems [11] tasks have two different WCETs where the
WCET in the high-criticality mode is longer than the WCET
in the low-criticality mode. To ensure that the deadlines of
the high-criticality tasks are met, the state of the art abandons
the low-criticality tasks in the high-criticality mode. Instead
of abandoning these tasks, running them with best effort
or reduced timing guarantees, e.g., bounded tardiness [12],
seems a reasonable option. However, in these cases the low-
criticality tasks may miss some of their deadlines which
results in an overrun. When software based recovery strategies
for transient faults are considered, e.g., re-execution [9] or
checkpointing [6], tasks may have a longer execution time
in some rare cases due to the recovery operations. If the fault
rate is slightly higher than expected, this could lead to deadline
misses as well.

A real-time operating system should make sure that the
system still behaves as expected if such overrun situations
occur. Namely, the task instances should still be released
according to the given pattern and all task instances are still
released even if another task instance is still in the system at
the moment the next task instance would be released according
to the pattern. This makes sure that the system behavior is
predictable even with very rare overrun situations. In addition,
it allows to analyze the effect those overruns have on the
system behavior.

For our work on Systems with Dynamic Real-Time Guaran-
tees [12] we ran simulations with RTEMS (Real-Time Exec-
utive for Multiprocessor Systems) [1] to analyze the impact
of transient faults during the execution of a task instance.
We assumed those faults to happen randomly under a given
fault rate and wanted to analyze the impact of the fault rate
on the system behavior. During these analyses we discovered



that RTEMS (version 4.11) did not behave as expected when
these faults result in a task missing its deadline. On one hand,
missing the deadline of a task instance leads to a shift of
the release pattern of the task. On the other hand, if the
deadline was missed by more than one period, the task instance
that should have been released during this period was never
released. We extended the current release of the RTEMS
source code to tackle these two problems.
Our Contributions: This paper focuses on explaining the
problems that arise from the current implementation of real-
time operating systems when overruns take place and provides
a solution that tackles these problems.

• An introduction to the general overrun handling mech-
anism implemented in well-known real time operating
systems is given and compared with the model usually
considered in academic publications. We explain how
these overruns can occur in practical cases, e.g., arbitrary
deadlines, Mixed-Criticality systems, software based so-
lutions for handling transient faults like re-execution and
checkpointing.

• We discovered two major problems in the current im-
plementation of Real-Time Executive for Multiprocessor
Systems (RTEMS) [1], namely that the release pattern of
tasks is shifted, and that jobs are not released at all if the
overrun of a task is longer than one period.

• A comprehensive extension to the latest RTEMS [1]
source code (version 4.11) is provided that enhances the
fixed-priority scheduler to provide a proper behavior for
overrun handling, especially tackling the two determined
major problems.

In addition we shortly explain the case study we performed
for the paper Systems with dynamic real-time guarantees in
uncertain and faulty execution environment [12], which was
the reason why we discovered those problems and enhanced
the implementation of RTEMS [1].

II. OVERRUN HANDLING IN RTEMS

In this section, we will first describe the original design
of overrun handling in RTEMS (Real-Time Executive for
Multiprocessor Systems) [1] and present how the enhancement
integrates perfectly in the latest RTEMS release. A moti-
vational example is provided to demonstrate the differences
between the original design and the enhanced version of
overrun handling. In addition to the proper overrun handling
routine, we also provide a useful helper function, which is
detailed at the end of this section.

A. Task Model

In this paper we consider n independent periodic real-time
tasks T = {τ1, τ2, . . . , τn} in a uniprocessor system. Each
task τi releases an infinite number of jobs (also called task
instances) under the given period (temporal) constraint Ti. As
we assume the tasks to be strictly periodic this means if at time
θa a job of task τi arrives, the next instance of the task must
arrive at θa +Ti. The relative deadline of task τi is Di, i.e., a
task instance released at θa must be finished before θa +Di.
We mainly consider implicit-deadline task sets in this paper,
i.e., Di = Ti ∀τi.

Period()

Period->state?

Block_while_active() Activate()Block_while_expired()

ACTIVE INACTIVE

Overrun

Restart the periodWait for the next period Release a job

TIMEOUT

SUCCESSFULSUCCESSFUL

NEXT PERIODIC LOOP

Release a job

Fig. 1: Flowchart of the RMS manager in RTEMS

B. Original Design

In the considered version 4.11 of RTEMS, the scheduler
uses a virtual table of function pointers to hook scheduler-
specific code and the thread management. In this work, we
limit our attention on the fixed-priority scheduler in the
RTEMS implementation. Although the related functions have
a prefix rate-monotonic and is called RMS in RTEMS, the
scheduler can be used for any fixed-priority scheduling, as the
priorities can be set by the user. For the sake of clarity, we
will remove the prefix when we mention the functions of the
scheduler in the rest of paper. The primary source code is
located in the following files in the SuperCore (cpukit/score):

• cpukit/rtems/src/ratemonperiod.c
• cpukit/rtems/src/ratemontimeout.c
• cpukit/rtems/include/rtems/rtems/ratemon.h
• cpukit/rtems/include/rtems/rtems/ratemonimpl.h

The rate-monotonic manager in RTEMS is responsible for
handling the periodicity of the tasks. Based on it, this work
mainly redefines the behavior of the Period() function and the
Timeout() function in ratemonperiod.c and ratemontimeout.c,
respectively. As mentioned in [2], for each task, its period-
icity is implemented by using a timer to track its period.
The application designer should create a periodic timer and
implement the task body with a loop that calls Period() at the
beginning to initialize the timer with the current system tick
plus its period. Every time the task finishes its task body, i.e.,
at the end of the loop, Period() is called to setup the next
iteration and immediately checks if the period is depleted yet.
If the task finishes before its next period, it immediately goes
to sleep (or suspends) until its period elapses, at which time
its timer fires, wake the task to continue the loop body, and
so on so forth. In the original design in RTEMS, if the
watchdog notices that the deadline of a job expires but the
job has not finished yet, i.e., a period timeout of a task takes
place but the task body has not been finished, RTEMS marks
the period state as EXPIRED and does nothing more. The next



C1 = 6, T1 = 10

C2 = 1, T2 = 2

0 5 10 15 20 25 30

(a) The original design of overrun handling in RTEMS. The red job is postponed from 10. The arrival pattern from 16 is changed due to the lateness of
the red job, by which the orange job and the following jobs are all released earlier.

C1 = 6, T1 = 10

C2 = 1, T2 = 2

0 5 10 15 20 25 30

(b) The overrun handling with our enhancement in RTEMS. The postponed jobs due to the execution of τ1 are marked red, the jobs postponed due to the
execution of previous jobs of τ2 that are not executed in the right period are marked orange. The yellow job is postponed due to the orange job in the same
period but can still finish its execution on time.

CA
1 = 6, CN

1 = 1

CA
2 = 1, CN

2 = 1

0 5 10 15 20 25 30

(c) The overrun handling with our enhancement for dynamic real-time guarantees in RTEMS. Due to error recovery routine, task τ1 runs in the second
period with the abnormal mode, i.e., CA

1 = 6. The postponed jobs due to the execution of τ1 are marked red, the jobs postponed due to the execution of
previous jobs of τ2 that are not executed in the right period are marked orange. The yellow job is postponed due to the orange job in the same period but
can still finish its execution on time.

Fig. 2: An example illustrates different system behaviors according to the original design and the enhanced overrun handling.

time Period() is called at the beginning of the loop, i.e., when
the expired task is finished, the Block while expired() function
records the marked state of the expired period to update the
system statistic routine and releases the next job immediately
while updating the timer with the current system tick plus its
period. Figure 1 illustrates the flowchart of the RMS manager.
However, such an overrun handling mechanism is not able to
keep the periodicity of the task, since the system tick at which
the delayed task instance finishes is normally not at an integer
multiple of the period of the task. Also this moment does not
necessarily have to happen during or at the end of the first
period after the deadline expired, but could be in any period
after the originally expired one. In such a scenario, all the
postponed jobs that would have been initialized in the time
interval between the expired deadline and the newly released
task instance is created are just gone.

To illustrate the behavior of the original design and the
behavior after the enhancement, we provide an example with
two implicit-deadline sporadic1 tasks in Figure 2: τ1 with
C1 = 6 and T1 = 10, and τ2 with C2 = 1 and T2 = 2,
where τ1 is given a higher priority than τ2. We let τ1 only
release two jobs (at 0 and 10) and τ2 has a phase of 6, i.e.,
the first job of τ2 is released at 6 but its follow-up jobs arrive
with a period of 2.

The behavior using the current version of RTEMS is shown
in Figure 2a. We see that τ2 can not be executed in the interval
[10, 16] as τ1 has higher priority, resulting in 3 expired periods.
Using the original overrun handling the job of τ2 released at
10 (colored red) is finished at 17 which leads to a new release
of τ2 at 17, as τ2 is marked to have deadline misses. This

1For the simplicity of presentation, the sporadic task model here is more
clear to show the effects rather than using the strict periodic release pattern.

results in a shift of the periodicity of τ2 by 1 for this job and
all the following jobs. The job that should be released at 16
is released at 17 now (orange), and the following jobs are all
shifted as well. it is worth noting that the jobs that should be
released at 12 and 14 are never released to the system. Overall,
we can observe that the original design in RTEMS does not
match the expectation for overrun handling and periodicity in
most applications and researches, as two jobs do not enter the
system at all and the period of the τ2 is shifted due to the
deadline miss of the job started at 10.

C. Enhancement

After discussing the original design, we now explain how we
enhanced the original implementation to handle the deadline
overrun correctly. Based on the previous observations, the
main ideas of our enhancement can be summarized as follows:

• correcting the deadline assignment errors using a watch-
dog, i.e., keep the periodicity of the tasks,

• tracking the number of postponed jobs, and
• providing two modes of job releasing depending on the

situation, i.e., normal and postponed release.
The flowchart is provided in Figure 3. In the rest of this
subsection, we explain more details about our implementation.
Please note that the use of the word deadline in the rest of
section is referring to the deadline of the watchdog timer. Since
the arrival time of the tasks’ jobs is exactly the deadline of
the watchdog timer in RMS, the periodicity of tasks should
be fixed from the deadline assignment of the watchdog.

Correcting the deadline assignment: To keep the correct
deadline assignment after a job misses its deadline, we add
an additional variable called latest deadline in the Control
structure that records the latest deadline assigned by the period



watchdog. This variable is used to call an additional function
named Renew deadline() in the Timeout() function, making
sure that the watchdog updates the timer to the next absolute
deadline. The next deadline will be recorded in the variable lat-
est deadline. Due to this enhancement, the watchdog updates
the timer correctly rather than doing nothing in the original
design. The recorded deadline in the variable latest deadline
is prepared for the next call of the Timeout() function, allowing
to set the deadline to the sum of latest deadline and period for
the next deadline assignment directly.

Tracking the number of postponed jobs: In addition to the
correct deadline assignment, we also implemented a tracking
mechanism for the number of the postponed jobs to ensure
that the postponed jobs are correctly released. To deploy this
idea, we add an additional variable in the Control structure
called postponed jobs and initialize it while the periodic timer
is created. When the watchdog detects a deadline miss (a
period timeout while the related task is not finished), this
variable is increased by one immediately in the Timeout()
function. Conversely, every time a postponed job is released
by Release postponedjob(), this variable is decreased by one
immediately.

Two modes of job releasing: As we mentioned before,
normally the execution of periodic tasks is correct, if there
is no deadline miss. When there is an overrun, the watchdog
of the expired period detects such an overrun and the next
call of Period() will immediately release one job and set the
expired period state back to the normal state by using the
function Block while expired(). In the original facility, the
above behavior is handled by the function Release job(). In
the enhancement, we replaced it with an additional function
Release postponedjob() and let the watchdog handle the dead-
line assignment individually. We implemented it similar to
the original job releasing routine, but it does not assign the
new deadline to the timer while releasing a postponed job.
Since they already missed their deadline and are tracked by
the watchdog in the Timeout() function, it is meaningless to
assign an already expired deadline to the watchdog. Every
time a postponed job is released, the variable postponed jobs
is decreased by one. When the variable postponed jobs is not
0, the scheduler is in the postponed mode.

Based on the original design in RTEMS, every time Period()
is called at the beginning of the loop, it checks the state of
the current period. When the state is EXPIRED, in fact the
period might be expired many times already. In this block,
now it calls the enhanced Block while expired() to release the
postponed jobs without assigning a new deadline. We added
one more condition when checking if the state of the period
is ACTIVE, in which the task is blocked and waits for the
next period. The additional condition checks if the variable
postponed jobs is greater than 0, which means the scheduler
is still in the postponed mode. Otherwise, when the variable
postponed jobs is 0, the scheduler is in the normal mode and
the job release is the same as it was in the original design.

We use the same example as before to illustrate the effect
of our enhancement in Figure 2b, which is now matching
the expectation of most applications and researches. At time
10 τ1 is executed, as it has higher priority than τ2, which

Period()

Period->state?

Block_while_active()

Activate()Block_while_expired()

ACTIVE INACTIVE

Overrun

Restart the periodWait for the 

next period

Release a 

postponed job

TIMEOUT

SUCCESSFUL
SUCCESSFUL

NEXT PERIODIC LOOP

Postponed_jobs >0

Block_while_expired()

Release a 

normal job

Decrease 

counter

Fig. 3: Flowchart of the enhanced RMS manager. The light
background blocks are involved in the enhancement.

leads to three expired periods of τ2. This means, the watchdog
increases the variable postponed jobs to 3. When task τ2 can
be executed, it starts to release the postponed jobs in the
postponed mode. Moreover, the three postponed jobs of τ2
that should be released at time units 10, 12, and 14 due to the
execution of τ1, marked red, are released at time units 16, 17,
and 18, respectively. However, the period from 16 to 18 and
from 18 to 20 also expired while executing the three previously
postponed jobs and the job postponed at 16, marked orange. At
20 the job postponed at 18 (marked orange as well) is released
and is finished at 21, at which time the job postponed at 20 is
released (yellow) and finishes at 22. After all the postponed
jobs are finished, the release of τ2 turns back according to the
original pattern again.

We provide an additional example in Figure 2c as well
to demonstrate how the enhancement works for dynamic
real-time guarantees [12]. Detailed notation can be found in
Section III or in [12]. Suppose that task τ1 requires a full
timing guarantee with the abnormal execution time CA

1 = 6,
and the normal execution time CN

1 = 1. Task τ2 is a timing
tolerable task with CA

2 = CN
2 = 1. In Figure 2c, the second

job of task τ1 needs 6 time units for its execution time. We can
see that after all the postponed jobs of task τ2 are finished at
24, the release of task τ2 turns back according to the original
periodic pattern again.

D. Helper Function

In our enhancement, we also provided a helper function
called Postponed num() to return the number of postponed
jobs with the current period ID of tasks as function input.
According to the expected behavior, the number of postponed
jobs is only increased by the watchdog of the corresponding
period; it is only decreased by the routine of postponed job
releasing in RMS manager. This helper function is especially
useful for on-line admission control and the system monitor
design in terms of scheduling. In fact, it is already used in
[12] for the system state analysis, where the overhead of the
enhancement is negligible in our evaluation (see Section III).



REMARK: ARBITRARY DEADLINE

Up to this point, we have presented how to handle the
overrun for implicit- (Di = Ti ∀i) or constrained-deadline
(Di ≤ Ti ∀i) task sets properly with our enhancement based
on the original scheduler design in RTEMS. In the arbitrary-
deadline task model, no general relation between Di and
Ti exists. Especially, for some tasks Di > Ti is possible.
However, due to the limitation of the original design in the
fixed-priority scheduler, the arbitrary-deadline task model is
not supported yet in RTEMS as well. Since the deadline
detection is originally embedded in the routine of the task
periodicity, the deadline is expected to be less than or equal
to their period without any overrun. However, this expectation
is only true for implicit-deadline and constraint-deadline task
models and applications where all deadlines are met.

From the schedulability analysis aspect, the detection of
deadline misses should be separated as an individual feature.
One potential solution is to set the deadline of a task explicitly
as the input parameter while the period is initialized and
update the deadline accordingly while every job is released.
The detection routine for deadline misses should be revised
for recording the number of deadline misses rather than the
number of periods expired. By co-working with our enhance-
ment, this solution could make the fixed-priority scheduler of
RTEMS support more general real-time task models.

III. CASE STUDY: SYSTEMS WITH DYNAMIC REAL-TIME
GUARANTEES

The need for the presented enhanced implementation for
RTEMS was discovered during the work on the paper Systems
with dynamic real-time guarantees in uncertain and faulty
execution environment [12]. A System with Dynamic Real-
Time Guarantees can be used to analyze and schedule systems
where some tasks have two different worst-case execution
times (WCET); a shorter WCET CN

i for executions that
happens more often (called normal execution), and a longer
WCET CA

i for some rare special cases (called abnormal
execution). The general idea is that also all tasks in the system
normally need to fulfill strict timing guarantees but in some
special cases, i.e., a number of tasks with abnormal execution
happen in a short period of time, for some not so important
tasks (called timing tolerable tasks) rare deadline misses are
tolerable while for the more important tasks (called timing
strict tasks) deadline misses are allowed under no circum-
stances. In Systems with Dynamic Real-Time Guarantees fixed-
priority scheduling is used.

A System with Dynamic Real-Time Guarantees assumes
that at the beginning of a task’s execution it is not possible
to determine if the task is executed in a normal or an
abnormal mode, i.e., abnormal executions happen randomly
and do not follow a strict pattern. This is the case when we
look at the fault tolerance enhanced to handle soft errors,
i.e., the consequences of transient faults of the computing
hardware or the memory subsystem, by using software-based
solutions, e.g., re-execution [9] or checkpointing [6]. Such
faults can either happen for each individual task instance with
low probability or they can happen as a burst that affects
(nearly) all tasks over a small time window. In both cases

it would not be sensible to in general assume the longer CN
i

in the analysis if those faults occur rarely and some deadline
misses can be tolerated, as it would lead to over dimensioning
the system. The idea of Systems with Dynamic Real-Time
Guarantees is to give full timing guarantees, i.e., all tasks
meet all their deadlines, if tasks are executed normally, and
maybe downgrade this guarantees to limited timing guarantees
if some tasks are executed in the abnormal mode. When limited
timing guarantees are given, only the timing strict tasks are
guaranteed to meet their deadlines while the timing tolerable
tasks may miss some deadlines but still bounded tardiness for
these tasks is guaranteed. In addition, Systems with Dynamic
Real-Time Guarantees provide a system monitor that analyzes
if full timing guarantees can be given for all tasks, i.e., all tasks
will meet their deadline if no faults occur, or if only limited
timing guarantees can be given for some timing tolerable
tasks. To determine this for each timing tolerable tasks an
over estimation of the busy period is calculated, summing up
the current carry-in workload by jobs with higher or identical
priority and the workload created in the future under the
assumptions of 1) a worst-case release pattern and 2) that no
further faults occur. For details see Section 6 of [12].

Similar behavior occurs in Mixed-Criticality Systems [11]
witch have two modes, a high- and a low-criticality mode
where tasks have a longer execution time in the high-criticality
mode. It is often assumed that low-criticality tasks can be
abandoned when the system switches from the low-criticality
to high-criticality mode to ensure that the high-criticality tasks
will still meet their deadlines. However, this assumption has
been criticised recently [4, 7, 8]. The problem is tackled when
a System with Dynamic Real-Time Guarantees is used, as the
low-criticality tasks are seen as timing tolerable tasks and
the system gives limited timing guarantees, i.e., guarantees
bounded tardiness instead of abandoning the task.

To analyze the behavior of Systems with Dynamic Real-Time
Guarantees, a QEMU emulator under Real-Time Executive
for Multiprocessor Systems (RTEMS) [1] was used where the
number of cores was set to 1 for the simulation. In the situation
it was assumed that transient faults happen randomly, i.e., a
given rate of faults per millisecond, and at the moment a task
instance finished its normal execution a random draw, based on
the probability of faults per millisecond and CN

i , determined
if the execution was prolonged to run up to CA

i or not. The
system monitor was used to determine the amount of time
when only limited timing guarantees could be provided.

As the timing tolerable tasks are not abandoned those tasks
may miss their deadlines. However, they should be executed
after the deadline as the result may still be useful. In addition,
it may happen that not only one job of a task misses the
deadline but also that the execution of the task may be
postponed for more than one period. In these cases more
than one job of a task may be ready to execute at a given
time, another situation previously not covered in RTEMS [1].
The enhancement presented in Section II was necessary to
ensure that the release pattern was still correct when a task
missed its deadline. The number of the postponed releases
was determined using the helper function. The system monitor
framework also adopts the helper function when it calculates



10−4 3 · 10−4 10−3 3 · 10−3 10−2

Average Fault Rate (faults/ms)

65
70
75
80
85
90
95

100
Fu

ll 
Ti

m
in

g 
Gu

ar
an

te
es

 (%
)

40 Task Sets, Hard Tasks: 50.0%, Utilization: 70.0%, WCET-Factor: 1.83

Median
First to Third Quartiles
Whiskers

Fig. 4: Percentage of Time where Full Timing Guarantees can
be given for task sets with utilization 70% in the normal mode
under different fault rates.

the carry-in workload for each task.
The scheduling algorithm in [12] can only schedule 44.4%

of the task sets when the task sets are randomly generated
with 10 tasks, 50% of these tasks are randomly chosen to be
timing strict tasks, the total utilization in the normal mode
is 70%, and CA

i = 1.83 · CN
i ∀i, i.e., the total utilization

in the abnormal mode is ≈ 128.1%. We used 40 of those
randomly created tasks sets under the given setting that are
schedulable according to the scheduling algorithm in [12] if
the bounded tardiness condition for the timing tolerable tasks
is dropped. Obviously, for utilization > 100% in the abnormal
mode, bounded tardiness for the timing tolerable tasks can
only be guaranteed if the fault rate is not too high as a high
fault rate will lead to more overruns.

We let the system simulate a run for one hour under
different fault rates for each of those task sets, i.e., on average
10−4, 3 · 10−4, 10−3, 3·10−3 and 10−2 faults per millisecond
(f/ms). For each executed task instance we decided if the
instance was faulty or not by a random draw. The results,
i.e., the percentage of time the system was running with full
timing guarantees, are shown in Figure 4 (which is Fig 8
in [12]). The median of those 40 sets is colored red. The blue
box represents the interval from the first to the third quartile,
while the black whiskers show the minimum and maximum
of all of the data.

IV. RELATED IMPLEMENTATIONS

FreeRTOS [10] is a well-known real-time operating system,
which especially offers lighter and easier real time processing.
By analyzing timers.c we can see that prvProcessTimerOr-
BlockTask() and prvProcessExpiredTimer() are responsible for
the periodicity of the task. In fact the feature of prvPro-
cessTimerOrBlockTask() is similar to the function Period() in
RTEMS that determines if the task should be blocked or if
the timer has expired and the overrun handling is required. In
the function prvProcessExpiredTimer(), the expired timer is
updated immediately with the next expiry time. To maintain
the periodicity, all the tasks’ timers are listed in the expiry
time order, and the task which refers to the head of list expires
first. Although the deadline of a task is assigned correctly in
their timer, we are not aware of any tracking mechanism in
the FreeRTOS scheduler that enforces the correct number of
postponed jobs to be released.

Litmus-RT [3] is a popular real-time extension of the Linux
kernel. The overrun handling for the fixed-priority scheduler

can be found in job completion() in sched pfp.c. By track-
ing back to the common function prepare for next Period()
in jobs.c and setup release(), we noticed that it also has
implemented a counter called job no to record how many
jobs should be ideally released without overrun. With
sys wait for job release() in litmus.c, the task is only going
to sleep when its number of released job is greater than
job no by triggering complete job(). This is similar to the
case in Period() where RTEMS decides if the period should be
blocked. By this implementation, the postponed jobs should be
released consecutively until there is no postponed job, which
is similar to our enhancement.

V. CONCLUSION AND FUTURE WORK

The demand of overrun handling has emerged and it is
widely used in practical and theoretical systems, e.g., in the de-
sign of soft real-time systems, Mixed-Criticality systems [11],
and Systems with Dynamic Real-Time Guarantees [12]. In this
work, we have enhanced the fixed-priority scheduler in the
released version 4.11 of RTEMS with a generally expected
overrun handling mechanism. The provided enhancement now
is in the pending patch on RTEMS report ticket #2795 [5]. To
avoid breaking the existing behavior for applications relying
on the original RTEMS feature, the system-level integration for
the new variant via some explicit function calls is planned for
the future. We consider supporting the arbitrary-deadline task
model and a separated deadline assignment as future work.

ACKNOWLEDGMENTS

This research is supported in parts by the German Research
Foundation (DFG) as part of the priority program ”Dependable
Embedded Systems” (SPP 1500 - spp1500.itec.kit.edu). We
thank Mr. Huan-Fui Lee for his assistance on deploying the
case study.

REFERENCES
[1] RTEMS: Real-Time executive for multiprocessor systems. http://www.

rtems.com/, 2013.
[2] G. Bloom and J. Sherrill. Scheduling and thread management with

rtems. SIGBED Rev., 11(1):20–25, Feb. 2014.
[3] B. Brandenburg. LITMUSRT : Linux Testbed for Multiprocessor

Scheduling in Real-Time Systems. http://www.litmus-rt.org/, 2006.
[4] A. Burns and R. Davis. Mixed criticality systems-a review. Technical

report, University of York, 2016. 7th edition.
[5] K.-H. Chen. #2795 ticket: Overrun handling for general real-time

models. http://devel.rtems.org/ticket/2795, 2016.
[6] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen. A survey of

fault tolerance mechanisms and checkpoint/restart implementations for
high performance computing systems. The Journal of Supercomputing,
65(3):1302–1326, 2013.

[7] R. Ernst and M. D. Natale. Mixed criticality systems - A history of
misconceptions? IEEE Design & Test, 33(5):65–74, 2016.

[8] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. How realistic is the
mixed-criticality real-time system model? In RTNS, pages 139–148,
2015.

[9] F. Many and D. Doose. Scheduling analysis under fault bursts. In RTAS,
pages 113–122, 2011.

[10] Real Time Engineers Ltd. FreeRTOS. http://www.freertos.org/, 2016.
[11] S. Vestal. Preemptive scheduling of multi-criticality systems with

varying degrees of execution time assurance. In RTSS, pages 239–243,
2007.

[12] G. von der Brüggen, K.-H. Chen, W.-H. Huang, and J.-J. Chen. Systems
with dynamic real-time guarantees in uncertain and faulty execution
environment. In Real-Time Systems Symposium, 2016. Proceedings.,
37th, 2016.


