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Abstract. In Design by Shopping, designers explore the design space to gain an insight into trades and feasible 

and impractical solutions, as well as to learn about alternatives before optimization and selection. The design space 

consists of multidimensional sets of data and, in order to select the best design from amongst numerous 

alternatives, designers may use several different graphs. In this study, we test to find the most appropriate graph 

to indicate the best solution corresponding to a set of objectives represented by a design scenario (1). A further 

constraint is that this must be done in the shortest possible time (2). Three graph types are tested in three different 

design scenarios where one car has to be chosen from a total of 40. A response quality index is proposed which 

computes the quality of a designer’s choice for any given scenario. In total, 90 tests with 30 participants were 

performed. The Parallel Coordinates Plot proved to be the best graph for selection in Design by Shopping. 

Keywords.  Visual Design, Computer Aided Design (CAD), Decision Making 

1 Introduction 

In engineering design, once the design has been formalized, a necessary design task is to select from amongst 

candidate designs or parametric values (Otto & Antonsson, 1993). This can be done in the preliminary concept 

phase, where the designer has to choose one solution over other alternatives, or in the detail design, where the 

designer has to choose particular values to use in a design model. The main challenge when designing complex 

systems (such as cars or aircraft) lies in resolving the inherent trade-offs that exist between the overall system 

and subsystems, and between conflicting and competing objectives. 

When exploring the design space, the design is selected after evaluating the elements present in order to identify 

optimal solutions by reducing the design space to an area of performance. In this method, visualization 

techniques are used as decision support tools. Graphs are useful to quickly visualize feasible solutions as 

opposed to impractical solutions, as well as those violating engineering constraints or client requirements. Three 

different situations can be represented with more or less data:  

 Representing the single vector of design parameters featuring the product solution, (𝑋): this refers to 

the feasible design space, 

 Representing the single vector of solution performances for feasible solutions, (𝑌): this refers to the 

feasible performance space, 

 Representing two sets of design parameters and corresponding performances for feasible solutions 

(respecting constraints and requirements),(
𝑋
𝑌
): this refers to the feasible design and performance space. 

Graphical supports are effective for design parameters (Simpson et al., 2007), engineering optimization (Barron 

et al., 2004) and conceptual design (Yannou et al., 2005). There is already much research in visual design and it 

has been shown that fast graphical design interfaces impact user performance in terms of design efficiency, 

mailto:a.abiakle@estia.fr


Abi Akle A., Minel S., Yannou B. (2016) 'Information Visualization For Selection In Design By Shopping', Research in Engineering Design, 28(1), pp. 

99-117, doi: 10.1007/s00163-016-0235-2 

 

2 
 

design effectiveness and the design search process (Ligetti et al., 2003). Various tools for exploring the design 

space with different graphs exist, namely: the ARL Trade Space Visualizer (Stump et al., 2004), the VIDEO tool 

(Kollat & Reed, 2007), the LIVE tool (Yan et al., 2011, 2012) and the Rave tool (Daskilewicz & German, 2012). 

In fact, these graphs are useful for representing multidimensional sets of data with unlimited numbers of 

alternatives (design points). Exploring the design space consists of three main phases: discovery, narrowing and 

selection. During the selection phase, designers face a reduced design space with a limited number of design 

points (in a performance area). The following figure (Fig 1) shows which graphs best help designers in selecting 

an optimal solution during the final phase of the design process. 

 
Fig 1. From exploring the Design Space to the research question 

We know that exploring the design space is the embodiment of a paradigm where designers shop for the best 

solution. It is called Design by Shopping, a term coined by Balling (1999). Indeed, Balling (1999) noted that the 

traditional optimization-based design process to “formulate the design problem, obtain analysis models and 

execute an optimization algorithm” leaves designers unsatisfied. Designers, like consumers, want to “shop” to gain 

an insight into trades, feasible and impractical solutions, and to learn about their alternatives before making 

decisions. Design by Shopping firstly allows designers to explore the design space and secondly to optimize and 

choose an optimal solution from a set of possible designs, and then develop realistic expectations with regard to 

what is possible. 

So, in Design by Shopping, the selection phase should be supported by graphs that allow designers to observe all 

the design alternatives, therefore enabling them to distinguish between right and wrong responses. The graph 

should allow differentiation between design parameters and performance variables. With graphs, the designer 

needs to compare candidates according to criteria. In this way, the graph should help the designer find a so-called 

"optimal" solution. In this sense, it should not create confusion or increase the designer’s workload.  

We have thus identified three graphs which are useful for representing multidimensional sets of data (>3 variables) 

and with a limited number of alternatives (<50): Combined Table (CT), Parallel Coordinate Plot (PCP) and Radar 

Chart (RC).  We carried out experiments with 30 participants and designed three scenarios to mimic the design 

activity. The framework was simplified in order to focus our study on the selection phase (13 design parameters 

and 5 performance variables where it is necessary to achieve trade-offs between conflicting objectives). We 

identified the graph best suited to the selection phase in Design by Shopping: the Parallel Coordinates Plot (PCP). 

In this paper, we describe the different approaches to design selection in the first section, followed by a description 

of the tools available for exploring the design space. We then characterize the Design by Shopping paradigm and 

efficient graphs for the selection phase, before presenting the experimental design and the measurements used in 

the experiment that lead to our study’s results. Finally, we discuss the results and conclude. 

2 Selection In Design approaches 
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As already noted by Yannou et al. (2013), design optimization is a well-established field of research with two 

primary approaches: unique objective function optimization and multiple objective optimizations. In our case, 

we are concerned with the second approach in which design solutions are computed and/or a desired 

compromise (on the Pareto surface for instance) is found either automatically or interactively. 

In the “automatic” approach, a finite set of “best” solutions is directly proposed to the designer. There are many 

methods, such as the weighted-sum of preferences, indifference points or compensation of the weight (see Scott 

& Antonsson, 2000, 2005). In this case, we also consider the “semi-automated” approach where the direct 

specification of importance weights is an ad-hoc process, for instance. This approach involves the designer at the 

end of the process. 

In the “interactive” approach we distinguish two close paradigms: Uncertainty Reduction and Design by 

Shopping. In the Uncertainty Reduction paradigm, the designer iteratively reduces intervals on variables 

allowing design knowledge to be gained, thereby reducing uncertainty through the process of convergence 

towards an optimal solution (Malak et al., 2009). It is worth mentioning the use of Constraint Programming as a 

relevant method for reducing uncertainty in the preliminary design stage (cf. Yannou & Hamdi, 2004; Yannou et 

al., 2009). With this paradigm, the designer is part of the process and the design selection is derived from the 

process. In the Design by Shopping paradigm, the designer explores feasible design solutions and interactions 

between variables. A design point can be selected and consequently the design space is reduced by discovering 

knowledge and gaining insights during the process (Zhang et al., 2012). With this paradigm, the designers are 

part of the process and they are direct in the simulation loop.  

We also focus on the work of Miller et al. which attempts to capture the key attributes from the decision-making 

literature tailored to the engineering domain (Miller et al., 2013). More precisely, they compare three models: 

the widely known normative decision-making model, the marketing model of Shocker et al. (1991), and the trade 

space exploration model developed by Simpson et al. (2008). 

The first one concerns the traditional optimization process that is to develop a model, defines 

constraints/objectives, chooses an algorithm, optimizes and checks satisfaction (see Miller et al. (2013)). This 

process (and by extension, selection using this process) follows the “automatic” approach already mentioned. 

The second model comes from the domain of marketing and was defined by Shocker et al. (1991) where 

“consumers” sequentially reduce the space of considered choices through a number of discrete sets. There are 

four sets: the universal set corresponding to all possible choices, the awareness set corresponding to solutions for 

which the decision-maker becomes aware, the consideration set corresponding to the potential solutions and the 

choice set defined as the final consideration set prior to a final choice. Finally, the last model described by Miller 

et al. (2013) is the Trade Space Exploration which is an embodiment of the Design by Shopping paradigm. The 

authors point out that this model combines the first two; it describes the “arrows” between sets defined in the 

marketing model. Indeed, the visualization tools are used to assist Decision-Makers in constructing their 

preferences while the space is proceeded upon to reduce the universal sets into a sequence of consideration sets 

to a choice set and finally a choice. 

Design by Shopping was coined by Balling (1999). He noted that the traditional optimization-based design 

process of “formulate the design problem, obtain analysis models and execute an optimization algorithm” leaves 

designers unsatisfied with their results because the problem is usually improperly formulated: “the objectives 

and constraints used in optimization were not what the owners and stakeholders really wanted. In many cases, 

people do not know what they really want until they see some designs” (Zhang et al., 2009). Design by Shopping 

places emphasis on revealing the range of options available without presuming that all the selection criteria have 

previously been elicited (Feather et al., 2008). 

Designers, like consumers, want to “shop” to gain an insight into trades, feasible and impractical solutions, and 

to learn about their alternatives before making decisions. Design by Shopping initially allows designers to 

explore the design space, before choosing an optimal solution from a set of possible designs and finally 

developing realistic expectations of what is possible. 
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According to Ferringer et al. (2009), “the ultimate reduction of the solution space to a single Decision-Maker 

preferred design proceeds using this trade-off information in a Design by Shopping paradigm”. Rothrock & 

Narayanan (2011) noted similar findings reported in other fields. For example, Wilson & Schooler (1991) 

showed that people do worse at some decision tasks when asked to analyze the reasons for their preferences or 

evaluate all the attributes of their choices. Shanteau (1992) observed that when people are dissatisfied with the 

results of a rational decision-making process, they often change their rating to achieve their desired results. This 

paradigm introduces greater “control” for decision-makers by “allowing them to first form their preference based 

on the visualization of the entire design space, and then choose an optimal design.” (Rangavajhala, 2007). This 

paradigm is as much about eliminating the wrong answers as it is about finding the right answer. Design by 

Shopping is classified as an a posteriori articulation of preferences used to solve multi-objective optimization 

problems. It replaces Human directly in the simulation loop. 

In Design by Shopping, therefore, the selection phase should be supported by graphs that allow designers to 

observe all the design alternatives, as well as the wrong and right responses. The graph should allow 

differentiation between design parameters and performance variables. The designer should be able to compare 

candidates according to specific criteria. The graph should be a help to the designer, a means to select the so-

called “optimal” solution. In this sense, it should not create confusion or an additional workload for the designer. 

3 Interactive design visualization 

It has already been shown that fast graphic design interfaces impact user performances in terms of design 

efficiency, design effectiveness and the design search process (Ligetti et al., 2003). The use of interactive design 

visualization is not new in engineering design field, and a number of articles deal with this topic. Winer and 

Bloebaum propose Visual Design Steering (Winer & Bloebaum, 2001) which enables the use of visualization as 

a support tool in the analysis and optimization phases of a design process. Other works focus on overpassing 2D 

and 3D representations and limitations with multidimensional optimization problems: Cloud Visualization (Eddy 

& Lewis, 2002), BrickViz (Kanukolanu et al., 2006), Hyper-Radial Visualization (Naim et al., 2008), Self-

Organization Maps (Nekolny et al., 2010) and continuous visualization as RAVE tool (Daskilewicz & German, 

2009; 2012). Some have focused on the visualization optimal solution as n-Dimensional Pareto front (Agrawal et 

al., 2004). In our study, since we are concerned by selection, we are interested in graphs that represent design 

points. There are existing tools for exploring design points and the design space using different graphs, namely: 

the ARL Trade Space Visualizer (Stump et al., 2004), the VIDEO tool (Kollat & Reed, 2007), the LIVE tool 

(Yan et al., 2011, 2012) and the Rave tool (Daskilewicz & German, 2012). 

The ARL Trade Space Visualizer (Stump et al., 2004) is used to visualize both design parameters and 

performance variables with Scatter Plot Matrix, Parallel Coordinates Plot and Bar Charts (Fig 2).  
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Fig 2. Screenshot of ARL Trade Space Visualizer: a) Glyph Plot, b) Parallel Coordinates, d) Scatter Matrix 

(Stump et al., 2004) 

The VIDEO tool (Kollat & Reed, 2007) is used to separately visualize on two graphs the objective space (ie. 

performance variables) and decision space (ie. design parameters) with the 3-D Scatter Plot using color and 

size glyphs (Fig 3). 

 

Fig 3. Screenshot of VIDEO system (Kollat & Reed, 2007) 

The LIVE tool (Yan et al., 2011, 2012) is, on the one hand, used to visualize in two graphs, the input variables 

(design parameters) on one side (Fig 4 b.) and the output variables (performance variables) on the other (Fig 4 

a.). On the other hand, a tree structure is displayed which represents the classification of input variable 

combinations (Fig 4 d.). Both spaces (input/output) are projected in a 2D Scatter Plot in which color and shape 

glyphs (cluster creation) can be added. The tree structure is presented in a Treemap (Shneiderman, 1992) in 

which each node corresponds to an input attribute with a splitting value. Each leaf of the tree specifies the 
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expected output value (with color scale), as a consequence of the particular input values described by the path 

from the root to that leaf (Fig 4). 

 

Fig 4. Screenshot of live system: (a) scatter plot of performance output variables; (b) scatter plot of design input 

variables (showing clustering results); (c) text representation of decision rules; (d) treemap visualization of 

decision tree; (e) adjustable sliders for ranges of input and output variables (Yan et al., 2011, 2012) 

The Rave tool (Daskilewicz & German, 2012) is a computational framework designed specifically as a research 

platform for design decision-support methods. It provides a "blank canvas" on which we can arrange graphs, 

tables, images, text, and user interface controls (automatically linked together). In order to visualize design 

points, this tool proposes several graphs as line plot, scatter plot, 3D scatter plot, scatter plot matrix, parallel 

coordinates plot, bar charts and density scatter plot (Fig. 5). Rave also provides continuous visualization. 

 

Fig 5. Screenshot of Rave tool (Daskilewicz & German, 2012) 

These graphs are useful for representing multidimensional sets of data with an unlimited number of alternatives 

(design points). Clearly, these graphs are adapted to this method especially when a designer generates a sample 

of design points, but the design space exploration activity consists of three phases: discovery, narrowing  and 

selection; and during the selection phase, designers face a reduced design space with a limited number of design 

points (compared to the first two phases). As already noted, exploring the design space is the embodiment of a 
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paradigm where designers shop for the best solution. In this context, it should identify the specific characteristics 

of this paradigm especially for the selection phase. 

4 Graphs For The Selection Phase 

In our context of achieving trade-offs and selecting an optimal solution, several graphs (design space 

representations) are available to us. As already mentioned, this is a case-representation of multidimensional sets 

of data with limited numbers of alternatives (design points). Based on the works of Miettinen (2014) and Keim 

(2000) (amongst others) about graph characteristics, we identify the values table, the table with heatmap, the 

combined values-heatmap table, radar chart and parallel coordinate plot (PCP). Gettinger et al. (2013) have 

already compared the values table, the heatmap and the PCP for multicriteria decisions and they conclude that it 

is necessary to check the efficiency of the combined values heatmap table. Also, these authors do not consider 

the radar chart in their work. Thus, we propose comparing the following three graphs to select an optimal 

solution (design decision) in design space exploration: the Combined Table (CT), the Parallel Coordinates Plot 

(PCP) and the Radar Chart (RC). The interactive graphs are available at the following address: 

http://these.aaa.alwaysdata.net/expe1/ 

4.1 Combined Table (CT) 

The Combined Table is a combination of table values and a table with a heatmap (Fig 6). In our implementation, 

each row is a design point (or alternative) and each column is a variable (or component). The interaction with the 

graph takes place on the labels at the top of each column. By clicking on these labels, the values in the columns 

are sorted from highest to lowest. In addition to the values in the table, we added a heatmap. Theoretically, 

heatmaps are matrices in which the cells are colored according to their values. We have already shown in (Abi 

Akle et al., 2013) that the most efficient visualization for a decision-maker would be a monochromatic heatmap 

in red. In each column, the highest value has a bright red cell. The colors used range from red for the column’s 

highest value to white for the lowest. In addition, on mouse over, the entire row of values (corresponding to an 

alternative or possible solution) is underlined and the alternative’s title appears at the top left of the interface. 

This representation is particularly useful for identifying patterns such as correlations (Cook et al., 2007). 

 

Fig 6. Screenshots of Combined Table 

4.2 Parallel Coordinates Plot (PCP) 

The Parallel Coordinates Plot is defined as a graph displaying multiple criteria without drastically increasing the 

complexity of the display (Inselberg, 2009). In PCP, variable values are displayed on separate axes laid out in 

http://these.aaa.alwaysdata.net/expe1/
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parallel. The design points (or alternatives) are depicted as profile lines that connect points on the respective 

axes. According to Gettinger et al. (2013), this representation can be readily interpreted and provides a good 

overview. Furthermore, patterns such as positive, negative and non-trivial (multiple) correlations may be 

identified at a glance. In our implementation, the interaction is directly applied on the graph. To filter the values, 

simply place the mouse on one of the axes and, with a click, drag the cursor to obtain a desired range of the 

criteria like a window, outside which value vectors are excluded. In addition, the mouse, when moved above a 

line, is used to display the title of the design point (or alternative) at the top left of the interface (Fig 7). 

 

Fig 7. Screenshots of Parallel Coordinates Plot 

4.3 Radar Chart (RC) 

In a Radar Chart, variable values are displayed on separate axes laid out in a concurrent radial manner (Fig 8). 

As with PCP, the design points are depicted as profile lines that connect points on the respective axes. In our 

implementation, interactions are achieved by the mouse first on the points (on the axes) displaying the variable 

value and second on lines displaying the title of the design point (alternative). Filtering is done using a form. We 

chose to use a form so as to not overload the graph. In the field of health care (Saary, 2008), radar charts are seen 

as a form of powerful graph to effectively convey meaning of multivariate data. 
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Fig 8. Screenshots of Radar Chart 

5 Experimental Design 

To answer our research questions, we conducted a controlled experiment that adopted a within-subject approach. 

Each participant performed the experiment on three graphs tested consecutively. To diversify the participant 

selection process, we proposed an experiment based on three scenarios leading to the selection of one alternative 

where a car has to be chosen. The three scenarios have been imagined to mimic the design activity in a 

simplified framework in order to focus on the selection phase of the design process. Scenarios are designed with 

personas method (see for example (Long, 2009)) as brief marketing in which a profile target is described. For 

each of the three scenarios, trade-offs between conflicting objectives have to be achieved in order to select an 

alternative, ie. choose an ideal in a car purchasing situation according to the scenario. 

5.1 The Three Scenarios 

We designed the Power Scenario, Size Scenario and Journey Scenario. The three scenarios are defined as 

follows: 

 "Size" Scenario: The target user has a family of three children and a spouse. They work all day long in a 

big city where it is difficult to park. That is why you should select a car that is as small as possible in 

order to be able to park easily (width and length) but with sufficient internal volume for the target user 

and his/her family (height, trunk capacity and trunk (max-min) capacity)  

 "Power" Scenario: Looking for the most powerful car. The maximum speed of the vehicle must be as 

high as possible with the greatest acceleration (time to accelerate from 0 to 100km/h). The car should 

also have a high horsepower and significant motor torque. Finally, to ensure the car is as powerful as 

possible, you choose a car that is light (weight of the car). 

 "Journey" Scenario: The target user is someone who travels almost every weekend with his/her car. You 

therefore look for a car with a big petrol tank and minimum consumption levels, because the target user 

doesn’t want to stop often on the way to refuel, which would make the trip too expensive. Comfort is 

also an important factor: the car must be large (width and large trunk) and finally, a car with good 

handling should be selected (maximum rim diameter). 
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The data used in each graphical representation is the same: 40 cars with 18 variables (13 design parameters and 5 

performance variables) for each problem scenario (italic text in the scenario descriptions). The 18 variables are 

as follows: price, engine size, number of cylinders, horsepower, power (rpm), motor torque, car weight, width, 

length, height, tank, trunk (max. and min.) capacity, rim diameter, maximum speed, acceleration (time to reach 

100km/h), fuel consumption and CO² emissions. The cars’ names have been erased and replaced by a number 

(ranging from 1 to 40). Data is gathered from real cars. In order to obtain a wide range of data, we have chosen 

cars from different categories including large 4x4 and small city cars. In addition, all participants are aware that 

each criterion has the same weighting. 

5.2 Procedure 

The experiment is divided into three main steps (see Fig 9). The first step begins with a presentation of the 

experiment’s objectives and a preliminary questionnaire in order to obtain subject profiles and their pre-existing 

knowledge of the graphs tested. The second step is the main part of our experiment and consists of testing the 3 

graphical supports after a short training course. In this part, we ask the participant to read the scenario 

description, to "play" a role (as described in the scenario) and to use the graphic tool to deduce a single solution. 

We call the chosen solution a "trade-off" because the scenarios are designed with five conflicting objectives. It is 

therefore necessary to make a trade-off. The training course is about finding the needed item (car) as well as 

interacting with graphs. The third step is a questionnaire with the aim of collecting subjective measurements 

(participant effort, confidence, etc.).  

 

Fig 9. Illustration of the procedure 

The total time for a complete session is about 1h10 (ie. 35h of experiments over 4 weeks). It is worth noting that 

for step 2, in order to avoid the effect of rank and order induced by the graph’s sequence, we use the 

counterbalance method. In our case, this means different graphic sequences (eg. PCP – RC – CT, PCP – CT – 

RC, CT – PCP – RC, etc.) and different scenario sequences. In addition, this method allows scenarios to be 

alternated for testing graphics and balancing the effect of participants' learning. 

5.3 Participants 

Subjects were recruited from various teams of scientists in our research building such as engineering design, 

mechanical, electronic, or computer engineering. All subjects were voluntary participants. The 30 subjects 

carried out the experiment on the three graphic supports (PCP, CT, RC). Thus, we obtained 30*3=90 test results 

(the experiment respects a within-subject approach). The mean age of the subject was 30.9 years (SD=7.3). The 

gender distribution was 53.3% women and 46.7% men. We observed that only 3.3% of participants had already 

used a PCP, 66.7% a Radar Chart and 33.3% a combined table.  

6 Measurements 

Variables were either measured during the tests with the CamStudio (http://camstudio.org/ ) tool or collected 

through the final questionnaire (n°2). 

6.1 Description Of Variables  

http://camstudio.org/
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The influence of the graph on trade-off assessment is measured with two variables: the time spent on decision-

making - selecting an optimal solution - and the quality index for the selected design point or selected car (the 

quality index calculation is described in the next section). Also, we noted the number of actions performed to 

finally choose a car and the time spent between actions in order to identify the influence of the graph on the path. 

For us, the path refers to the user engagement as defined by Boy and colleagues: “By engagement, we 

specifically mean a user’s investment in the exploration of a visualization.” (Boy et al., 2015). "Action" refers to 

all interactions with the graphic tool. It uses the "brush", "filter" or "sorting" functions. Every action is an 

indication of the designer’s mental activity (data mining). These four variables are collected during the scenario 

phase.  

We used a questionnaire at the end of the experiment to obtain "subjective" measurements: Influence of the 

graph on the cognitive load and Influence of the graph on the level of confidence. To measure cognitive load, we 

chose the DALI method (Pauzié, 2008) which is the method which provides the greatest breakdown of the 

cognitive load through its questionnaire compared to NASA TLX or SWAT (visual effort, for example). We also 

adapted DALI to our case (DALI is designed for driving so we adapted the questions for the design selection). 

Answers to questions are given on a scale of 0 to 100. Finally, to determine the influence of the graph on the 

level of confidence, we used an adapted Aloysius et al. (2006) method. For this, we have two variables: Level of 

certainty in the chosen solution and the Preference for one graph. As for the cognitive load, answers are given 

on a scale of 0 to 100. This set of measures is summarized in Fig 10. 

 

Fig 10. The experiment’s measurements 

6.2 Quality index 

As mentioned above, in all three scenarios, the subject was asked to explore possible solutions (design points) 

and select the ideal car according to the scenario. To do this, five performance variables have to be either 

maximized or minimized. There are a variety of performance metrics or quality indices with different uses. A 

number of works deal with metrics to compare observed Pareto solution sets (Wu & Azarm, 2001) (Tang et al., 

2005). There are also researchers who are interested in performance indices to compare Multi-Objective 

optimization algorithm quantitatively (Okabe et al., 2003). Overall, performance metrics are developed when 

simulations are run. In our case, there are no simulations, either from subjects or from us. We aim to 

automatically calculate an index to determine which graph allows designers to make the best decisions. In the 

following section, we describe the construction of a quality index linked to a design scenario from the Pareto 

dominance and a basic index.  

6.2.1 Pareto Dominance 

Considering a multi-objective problem such as: 

min(F(x) = (f1(x), f2(x), …, fn(x)), n≥2  
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Where :  

 x  ∈ X 

 X is the decision space (or design parameter space) 

 Y is the objective space (or performance space) 

 And Y = F(X) 

We define dominance as : y dominates z if ∀ i ∈ [1 … n], fi(y) ≤ fi(z) and ∃ k ∈ [1 … n] | fk(y) < fk(z). 

And the Pareto Dominance is defined by: One solution xp ∈ X is Pareto-Optimal if ∄ x ∈ X | x dominates xp 

The representation of the set of Pareto-Optimal solutions in the objective space is called Pareto front. Finally, the 

performance evaluation of the dominated solutions is realized by calculating the Euclidian distance between the 

dominated solution and the Pareto front. In our case, we calculate the minimum distance between the dominated 

solution and non-dominated solutions d (Equation 1). 

𝑑 = min
𝑥

(√∑ (𝑥𝑖 − 𝑥𝑖
𝑝
)
2𝑛

𝑖=1 )   (1) 

 ∀ i ∈ [1 … n], where n is the number of performance variables. 

 ∀ x ∈ X dominated solution and xp ∈ X non-dominated solution. 

Then, for each scenario we apply the Pareto dominance principle and calculate the distance with the Pareto front 

for all the dominated solutions. Obviously, the distance allows us to compare the dominated solutions, but we 

need an additional index in order to compare the Pareto-Optimal solutions.  

6.2.2 Basic Index 

For each scenario, a basic index ij is calculated (Equation 2), after which a global basic index i is calculated 

(Equation 3).  The basic index is based on the Compromise Programming (CP) method, which appears to us the 

best fit to our case. CP assumes that any decision maker seeks a solution as close as possible to the ideal point. 

This is equivalent to minimizing the difference (i.e. distance) between utility at the ideal point and utility at a 

frontier point on the criteria map, a meaningful statement as minimizing distances to the utopia is the ethos of 

compromise programming. 

 𝑖𝑗 =
1

𝑛
∑ |

𝑓𝑘(𝑃)−𝑓𝑘(𝐴)

𝑓𝑘(𝐼)−𝑓𝑘(𝐴)
|𝑛

𝑘=1 , k=1 … n   (2) 

  

𝑖 = |
𝑖𝑗−𝑖𝑗𝑚𝑖𝑛

𝑖𝑗𝑚𝑎𝑥−𝑖𝑗𝑚𝑖𝑛

| (3) 

Where fk is a performance variable (n=5 for each scenario). fk(P) is the value of design point P for the variable 

fk. And: 

 If fk is maximized: fk(A)= the minimum value of fk and fk(I)= the maximum value. 

 If fk is minimized: fk(A)= the maximum value of fk and fk(I)= the minimum value. 

(I for the Ideal and A for the Anti-Ideal). We then calculate the global basic index i with equation (3) so as to get 

a value below or equal to 1, 1 being the best car considering the 5 variables of performance with an identical 

weighting. With this method, the three cases are comparable (cf. Fig11 a. and b.). 
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Fig 11. Illustration of the solution indexes: a) specific index and b) global basic index. 

 

6.2.3 Our Quality Index 

Our quality index distinguishes non-dominated from dominated solutions. It allows non-dominated solutions to 

be favored and dominated solutions to be "penalized". 

The quality index for the non-dominated solutions is the basic index rescaled from 0 to 1. Hence, a quality index 

is equal to 1 for the best and 0 for the worst solution in the set of non-dominated. 

The quality index for dominated solutions corresponds to the distance to the Pareto front multiplied by (-1). 

Thus, the dominated solutions receive a negative quality index. The closest solution to the Pareto front receives a 

quality index close to 0 and the solution furthest from the Pareto Front receives the most “negative” quality 

index.  

7 Results 

We use 8 variables for 6 experimental measurements (3 variables for the cognitive load): Time to completion 

(TIME); Quality index (QUALITY); Number of actions (NBR_ACTION); Time spent between actions 

(TIME_ACTION); Cognitive load: Effort of attention (ATTENTION); Visual effort (VISUAL);Perceived stress 

(STRESS); and finally Level of certainty (CERTAINTY). 

First of all, we check if there are any “scenario effects” and/or “learning effects” according to the sequence order 

through the experiment. 

7.1 Scenario and learning effects 

We have a sample of N = 30 subjects and we are in a within approach (3 groups/ scenarios /sequences). Also, all 

measured variables during the test are quantitative. Therefore, we apply the ANOVA-within statistical test. The 

results are shown in Table 1. 

Table 1. ANOVA results for scenario and learning effects 

 ANOVA results for scenario effect ANOVA results for learning effect 

TIME F(2,58)=0.42 p=0.66 F(2,58)=5.91 p<0.01 

QUALITY F(2,58)=2.43 p<0.10 F(2,58)=0.58 p=0.57 

NBR_ACTION F(2,58)=1.59 p=0.21 F(2,58)=1.16 p=0.32 

a) 

b) 
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TIME_ACTION F(2,58)=0.20 p=0.82 F(2,58)=0.66 p=0.54 

ATTENTION F(2,58)=0.97 p=0.39 F(2,58)=1.23 p=0.30 

VISUAL F(2,58)=0.66 p=0.52 F(2,58)=0.91 p=0.41 

STRESS F(2,58)=1.24 p=0.30 F(2,58)=1.48 p=0.24 

CERTAINTY F(2,58)=0.48 p=0.62 F(2,58)=1.18 p=0.32 

 

The results of these tests concerning the scenario effect are not significant. So there is no “scenario effect” on the 

8 variables. The results of the tests concerning the learning effect, however, show a significant difference for the 

time to completion (see Fig. 12). 

 

Fig 12.Mean and Standard Error for the variable TIME during each sequence 

So we have to perform a post-hoc analysis thus we carry out t-test pairwise comparison:  

 [sequence 1]vs[sequence 2] t(29)=2.30  p< 0.03 

 [sequence 1]vs[sequence 3] t(29)=2.86  p< 0.01 

 [sequence 2]vs[sequence 3] t(29)=1.04  p< 0.31 

The results of the t-tests show that the time to completion is longer in sequence 1 than in sequences 2 and 3. This 

means for the rest of the analysis that we should split data between sequence 1 and sequence 2 and 3 when 

comparing time to completion with the 3 graphs. 

7.2 Effect of Graphs 

7.2.1 Influence of the Graph on the selected solution (TIME & QUALITY) 

In order to compare the response time between the three graphs during the sequence 1, we apply the ANOVA-

between statistical test with a sample of N=30 subjects. The results are not significant. We obtain F(2,27)=0.99 

and p=0.39. For sequences 2 and 3, we apply several t-tests because we are in a within approach (2 groups i.e. 2 

graphs using in the sequences 2 and 3) and we have a sample of N=10 subjects: [RC]vs[CT]: t(9)=2.01  p< 0.08; 

[PCP]vs[CT]: t(9)=0.19  p< 0.85 and [PCP]vs[RC]: t(9)=0.68  p< 0.51 (see Fig. 13).  

The results of these t-tests are not significant. There are therefore no significant differences between the three 

graphs for time completion. 

275,13

196 174,5

0

100

200

300

400

1 2 3



Abi Akle A., Minel S., Yannou B. (2016) 'Information Visualization For Selection In Design By Shopping', Research in Engineering Design, 28(1), pp. 

99-117, doi: 10.1007/s00163-016-0235-2 

 

15 
 

   

Fig 13. Mean and Standard Error for the variable TIME during sequences 2 and 3  

Then, we obtain F(2,58)=0.03 and p=0.98 for the quality index. The results for trade-offs are not significant. 

There are therefore no significant differences between the three graphs for the selected solution. 

Indeed, we observe good results (i.e. high quality index values) for the three graphs: i=0.78 with PCP, i=0.77 

with RC and i=0.77 with CT (see Fig 14). 

 

Fig 14. Mean and Standard Error for the variable QUALITY 

7.2.2 Influence of the graph on the path (NBR_ACTION & TIME_ACTION) 

As in the previous section, we have a sample of N = 30 subjects and it is a within approach (3 groups). Also, all 

measured variables during the test are quantitative. Therefore, we apply an ANOVA within statistical test (and 

the T-test for the post-hoc analysis). 

The results for the performance of data mining are significant because we obtain F(2,58) =14.1 and p<0.01 for 

the number of actions carried out and F(2,58)=10.7 and p<0.01 for the average time between actions. So we 

perform a post-hoc analysis: t-test pairwise comparison (see Table 2). 

Table 2. Results for the t-test for the number of actions and the time between actions 

T-test pairwise comparison for the number of actions  for the time between actions 

[PCP] vs [RC] t(29)=3.81  p< 0.01 t(29)=3.90  p< 0.01 

[PCP] vs [CT] t(29)=4.22  p< 0.01 t(29)=5.02  p< 0.01 

[RC] vs [CT] t(29)=0.46  p= 0.65 t(29)=1.92  p< 0.07 

 

The results of these tests show that the PCP is the most efficient for data mining with an action number equal to 

9.67 and an average time between actions of 26.19 seconds compared to 3.97 action numbers for RC and 3.60 

for CT and 72.96 seconds between actions for RC and 50.29 seconds for CT (see Fig 15). 
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Fig 15. Mean and Standard Error for the variable NBR_ACTION (on the left) and TIME_ACTION (on the 
right) 

7.2.3 Graph’s influence on the designer 

In this analytical stage, we use Friedman (and Wilcoxon) for statistical analysis (N = 30) because the variables 

are ordinal (qualitative) and we consider a significance level α=5%. 

Cognitive load (ATTENTION, VISUAL & STRESS) 

The cognitive measurement is divided into three indicators: effort of attention, visual effort and perceived stress. 

The results for the three indicators are significant. We obtain csqr=8.87, df=2and p<0.01 for the effort of 

attention, csqr=8.15, df=2 and p<0.02 for the visual effort and csqr=19.27, df=2 and p<0.01 for the perceived 

stress. So we perform a post-hoc analysis: Wilcoxon pairwise comparison (see Table 3). 

Table 3. Results of the Wilcoxon tests for the three indicators of the cognitive load 

Wilcoxon pairwise 

comparison 

ATTENTION VISUAL STRESS 

[PCP] vs [RC] W=-193 p<0.03 W=-270 p<0.01 W=-254 p<0.01 

[PCP] vs [CT] W=57 p=0.28 W=6 p=0.48 W=144 p>0.05 

[RC] vs [CT] W=201 p<0.04 W=205 p<0.02 W=296 p<0.01 

 

The results of these tests show a significant difference for RC with the most effort with 63.28/100 attention 

(compared to 51.44 for PCP and 48.61 for CT), visual effort of 67.67/100 (compared to 54.39 for PCP and 53.00 

for CT) and a perceived stress of 64.12/100 (compared to 48.83 for PCP and 41.13 for CT). We cannot conclude 

any difference between PCP and CT. 

Confidence (CERTAINTY & PREFERENCE) 

The confidence measurement consists of two indicators: the level of certainty and preference (for path and to 

select one solution). 

We apply the Friedman test and the results for the level of certainty are not significant. We obtain csqr=1.22, 

df=2 and p=0.54. We therefore cannot conclude that there is a significant difference between the three graphs for 

this indicator (PCP=55.61/100; RC=50.44/100 and CT=63.83/100). 

Finally, the graph preference for the design process’ selection phase is tested with two modalities: the preference 

of one graph for path; and selecting one solution. Here, we use the Friedman test for statistical analysis because 

the answers are ranks and we have 3 within groups. 

The results for the preference are significant. We obtain csqr=16.47, df=2 and p<0.01 for data mining and 

csqr=9.8, df=2 and p<0.01 for decision-making. There is a difference between the three graphs for these two 

modalities. So, we perform a post-hoc analysis: Wilcoxon signed-rank test pairwise comparison (as N=30>20, 

we consider the W-value). For N=30 at p>0.05, W-value=137 (Table 4). 
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Table 4. Results of the Wilcoxon signed-rank test for the two indicators of preference 

Wilcoxon signed-rank test pairwise 

comparison 

for path to select one solution 

[PCP] vs [RC] W-value=65 (p<0.05) W-value=91 (p<0.05) 

[PCP] vs [CT] W-value=206  W-value=189 

[RC] vs [CT] W-value=85 (p<0.05) W-value=132 (p<0.05) 

 

The results of these tests show a significant difference for RC which is the least preferred graph with a rank=2.6 

for data mining (compared to 1.6 for PCP and 1.8 for CT) and rank=2.4 to select one solution (compared to 1.6 

for PCP and 1.9 for CT). 

7.3 Correlations 

The last part of the analysis is devoted to finding correlations between TIME and QUALITY, TIME and 

CERTAINTY and TIME and cognitive load (ATTENTION, VISUAL & STRESS). Firstly, we realize the 

measurements on all data, then per sequence and per graph. We use the Pearson product-moment correlation 

coefficient (R) and the coefficient of determination (R²). Moreover, we use the value of t associated with the 

calculated value of R, along with the corresponding p-value to assess the significance of any particular instance 

of R. 

TIME vs QUALITY 

The results obtained show that there is no correlation between the time to completion and the quality of the 

selected solution. 

TIME vs CERTAINTY 

We obtain significant results for the correlation between TIME and CERTAINTY (see Table 5). The 

measurement across all the data gives us a negative correlation with a 3.35% variability in TIME linked with 

variability in CERTAINTY. 

Table 5. Significant results for correlations between TIME and CERTAINTY  

Data N 
Mean 

CERTAINTY 

Mean 

TIME 
R R² t df p-value 

All 90 56.63 215.21 -0.18 0.03 -1.75 88 0.04 

CT 30 63.83 211.00 -0.63 0.40 -4.32 28 <0.01 

 

Unfortunately, this link is very low. However, the measurement of the data linked to the CT graph gives us a 

negative correlation with 40% of variability in TIME linked with variability in CERTAINTY (see Fig 16). So, 

there is a link (a trend) between time and the confidence of the subject when using the Combined Table: the 

longer the particpants take, the lower their level of confidence. 
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Fig 16. Plots of CERTAINTY vs. TIME per graphs 

TIME vs ATTENTION 

Table 6. Significant results for correlations between TIME and ATTENTION 

Data N 
Mean 

ATTENTION 

Mean 

TIME 
R R² t df p-value 

RC 30 63.28 241.87 -0.35 0.13 -2 28 <0.03 

CT 30 48.61 211.00 0.57 0.32 3.64 28 <0.01 

 

We obtain significant results for the correlation between TIME and ATTENTION (see Table 6). The 

measurements on the data linked to the RC and CT graphs give correlations. For the Radar Chart, it appears a 

negative correlation with 12.5% of variability in TIME linked with variability in ATTENTION (low link) and a 

positive correlation with 32% of variability in TIME linked with variability in ATTENTION for the Combined 

Table (see Fig 17). 

The results are unexpected. When using Radar chart, more the participants take time less they have effort of 

attention whereas more the participants take time more they have effort of attention when using the Combined 

Table. 

TIME vs VISUAL 

We obtain one significant result for the correlation between TIME (mean= 210.97) and VISUAL (mean= 53) 

with N=30, R²=0.17, t=2.36 and p=0.01. The measurement on the data linked to the CT graph gives us a positive 

correlation with 16.6% of variability in TIME linked with variability in VISUAL (see Fig 17). So, there is a link 

(low) between time and the visual effort when using the Combined Table: More the participants take time more 

they have visual effort. 

TIME vs STRESS 

Once again, we obtain one significant result for the correlation between TIME (mean= 211.00) and STRESS 

(mean= 41.13) with N=30, R²=0.23, t=2.88 and p<0.01. The measurement on the data linked to the CT graph 

gives us a positive correlation with 22.9% of variability in TIME linked with variability in STRESS (see Fig 17). 

So, there is a link between time and the perceived stress when using the Combined Table: More the participants 

take time more they have stress. 
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Fig 17. Plots of ATTENTION vs. TIME (on the left), VISUAL vs. TIME (on the center) and STRESS vs. TIME 

(on the right) 

7.4 Synthesis of results 

To sum up our results, we have a greater performance for the "path" (ie. data mining) with the graph Parallel 

Coordinates Plot (PCP). There is no distinction between the three graphs for the selected solution (both quality 

index and time indicators). Furthermore, the designer is less satisfied than with the graph Radar Chart (RC). The 

results are summarized in Table 7. 

The correlation analysis enables us firstly to note that, overall, the selection of a good design is not related to the 

time that participants spent on the graphs. Moreover, we observe, on the use of CT, there is a link, a trend 

between the time to completion and cognitive workload and time and trust. It seems that time is linked to the 

cognitive effort by the participants. Conversely, participants take more time and more confidence decreases. 

More broadly, it suggests to us that the participants experienced an important cognitive workload are those who 

remained longer on the graph. Reasonably, we find that the duration of the exercise is linked to the difficulty 

perceived by the subject, for the CT. The results are reversed for the RC. Participants who spent few time on the 

RC have felt a strong effort of attention. The results for the RC are difficult to interpret, perhaps should we 

promote designers to spend more time on the RC in order to reduce the effort of attention. At last, in line with 

the cognitive workload results, participants who spent time on the graph CT have little confidence in their 

selected solution. 

Finally, we should therefore conclude that the Parallel Coordinates Plot (PCP) is the best graphic support to help 

designers select one optimal solution whilst exploring the design space. 

Table 7. Synthesis of results 

 Path Selected solution Designer satisfaction 

Best graphs PCP none PCP ≡ CT 

Worst graphs CT ≡ RC RC 

 

8 Conclusion & Discussion 

In conclusion, our experiment enables us to make certain recommendations regarding the choice of graph for the 

selection phase in Design by Shopping. More specifically, we deliver a directive for the choice of a graph 

representing design points to efficiently select an optimal solution in a set of feasible solutions defined by their 

design and performance value vectors. 

Indeed, our results show that it is more efficient to use the Parallel Coordinate Plot, which performs better in our 

experiment. It is worth noting that our recommendations apply design multi-criteria decisions or, in other words, 

trade-offs between conflicting objectives to obtain an optimal solution. Finally, we propose using two graphs on 

the same screen. The Parallel Coordinate Plot is particularly useful for data mining and selecting an alternative, 
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while the combined table specifically provides detailed information (eg. specific values). Nevertheless, both 

graphs must match (linked views) ie. if a filter is applied to one graph, the data must be automatically filtered on 

the second graph. 

Eikenes and Morrison (2010) argue and show that the interface is not just a flat layer between the user and 

computer, but is rather a complex, mediating, cultural artefact. Thus, appropriate distinctions between designer 

profiles, such as expert designer or novice designer, can help improve results. As shown by Wolf et al. (Wolf et 

al., 2009), there are procedural differences in how novices and experts use multi-dimensional data visualization 

and exploration tools when solving an engineering design problem. In the same way, increasing the training 

phase could substantially enhance the difference between the three graphs for the design selection phase because 

we observe a poor use of the PCP (only 3.3% of participants have already used a PCP). In fact, Wolf et al. (Wolf 

et al., 2011) have already shown the importance of training for the entire process of exploring the trade space. In 

addition, we believe that an indicator after the training phase could provide valuable information about the result, 

thus enabling the participant to measure the graph’s practical level. This would, for instance, allow us to identify 

a lack of practice at the origin of non-optimal decisions, for instance.  

Since knowledge of the three graphs is very heterogeneous (3.3% of participants have already used a PCP, 

66.7% a Radar Chart and 33.3% a combined table), we cannot impose a time limit, because the results would 

reflect a lack of use of graphical tools. Thus, greater training which measures practice would allow us to add a 

time limit and reveal richer results. 

Obviously, our experiment focuses on the selection phase; it would be advisable to develop this approach by 

identifying graphs adapted to designers for the entire process. Firstly, this will test whether the PCP is the best 

graph for the selection phase included in the process of exploring the design space, ie. following the generation 

of design points - reduction of space design loop. Secondly, it will enable us to verify that the PCP is a graph that 

can support all of the phases of the process in an effective manner. Finally, it may be useful to envisage the use 

of graphical tools in a collaborative framework such as that used in (Canbaz et al., 2012, 2013). 
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