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Abstract

Studies on radiation pressure in acoustics and optics have enriched one an-
other and have a long common history. Acoustic radiation pressure is used for
metrology, levitation, particle trapping and actuation. However, the dexter-
ity and selectivity of single-beam optical tweezers are still to be matched with
acoustical devices. Optical tweezers can trap, move and positioned micron
size particles, biological samples or even atoms with subnanometer accuracy
in three dimensions. One limitation of optical tweezers is the weak force that
can be applied without thermal damage due to optical absorption. Acoustical
tweezers overcome this limitation since the radiation pressure scales as the
field intensity divided by the speed of propagation of the wave. However, the
feasibility of single beam acoustical tweezers was demonstrated only recently.
In this paper, we propose a historical review of the strong similarities but
also the specificities of acoustical and optical radiation pressures, from the
expression of the force to the development of single-beam acoustical tweezers.

Keywords:
Radiation pressure in optics, Radiation pressure in acoustics, Acoustical
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1. Introduction1

Radiation pressure is a mean force exerted by a wave that, in many situ-2

ations, pushes an interface or a particle in the direction of propagation of the3
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wave. This is usually interpreted as a transfer of linear momentum when the4

wave is scattered. Since the wave at linear order is seen as an oscillation with5

no mean momentum, radiation pressure is a nonlinear effect. It is common6

to track back the beginning of the long and complex history of radiation7

pressure to Kepler in 1619. On observing the specific shape of a comet’s tail,8

he made the assumption that the radiation from the sun exerts a force on9

the comet’s tail which changes its shape. The theoretical formulation of this10

hypothesis was made more than two centuries later by Maxwell, who intro-11

duced the stress tensor due to electromagnetic waves [1]. Hence, it is possible12

to compute the magnitude of the so-called radiation pressure exerted by the13

EM waves which is proportional to the ratio between the energy flux and14

the speed of the light. Therefore, the magnitude of this second order effect15

is very weak and the experimental demonstration of this force remained a16

real challenge for a quarter of a century. At the beginning of the twentieth17

century, two different experiments proposed by Lebedev [2], and Nichols and18

Hull [3] validated Maxwell’s theory. On the acoustics side, the story began,19

as often, with the pioneering works of Lord Rayleigh [4, 5] who introduced20

the counterpart of the EM radiation pressure for acoustic waves. Shortly21

after Rayleigh’s first paper and considering the experimental observations22

made by Dvorak on acoustic fountains [6], Altberg [7] proposed to use the23

radiation pressure to measure the amplitude of ultrasonic waves.24

The experimental observation of the radiation pressure for electromag-25

netic and acoustic waves was a real challenge at this early stage. As men-26

tioned above, radiation pressure is due to second order effect. But many27

phenomena may lead to second order effect and can contribute to an appar-28

ent force and to erroneous interpretation. In optics, Crooks’ radiometer was29

claimed to be sensitive to radiation pressure. In fact, the force acting on30

Crooks’ radiometer was due to temperature gradient and its magnitude was31

larger than the one expected. Nichols and Hull [3] improved the radiome-32

ter to avoid this effect and succeeded in measuring the radiation pressure33

with an amplitude in agreement with Maxwell’s prediction. The situation34

is different in acoustics. Indeed, while non adiabatic behavior is common35

for gas, it is negligible for most liquids. However, wave attenuation occurs36

also due to viscosity. This is a transfer of a kind of linear momentum from37

the wave to the medium which generates a flow called acoustic streaming.38

This effect is small but grows with the propagation distance and time. It39

has to be distinguished from the radiation force, even though the distinction40

is not always simple [8]. Even though the energy is conserved, the situation41
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remains subtle since the definition of mean linear momentum is quite difficult42

as soon as the wave propagates in a material medium. Indeed the momentum43

can be split in the wave momentum and the medium momentum and this44

is somewhat arbitrary. This leads to the controversy between Minkowsky45

and Abraham’s momentum in optics. In acoustics, this also lead to many46

difficulties, and many papers are devoted to the concept of momentum and47

pseudo-momentum [9], [10]. Another difficulty, mostly in acoustics, comes48

from the different sources of nonlinearities (nonlinear terms appear both in49

the equation of momentum conservation and in the state equation). Com-50

bined with the notion of linear momentum for acoustic waves, this is at the51

core of the differences between Rayleigh and Langevin radiation pressure.52

Indeed, in acoustics Rayleigh and Langevin proposed two definitions of the53

radiation pressure due to a plane wave acting on an interface. This leads54

to different theoretical expressions of the radiation pressure, the Rayleigh’s55

radiation pressure is sensitive to the nonlinear parameter of the medium,56

while Langevin’s is not. Brillouin proposed a different approach which is not57

restricted to incident plane waves and he introduced a stress tensor which58

has many similarities with the Maxwell’s stress tensor [11].59

Radiation pressure offers the ability to apply forces without physical both60

in acoustics and in optics.61

In acoustics, levitation traps have been known for a long time [12], [13],62

[14]. Levitation traps are generally based on standing waves. For particles63

which are very small in comparison with the wavelength, Gorkov proposed an64

elegant theory. He derived a theoretical formulation of the radiation pressure65

valid everywhere in an acoustic field due to standing waves. This formulation66

is widely used because many acoustics applications meet Gorkov’s assump-67

tions. For instance, acoustic radiation pressure is widely used in microfluidics68

to act on particles carried by the flow, it is called acoustophoresis [15, 16].69

Even if 3D manipulations are possible, these kinds of devices do not allow70

a selective control of a single particle [17, 18] because of the nature of the71

acoustic field. Indeed, standing waves possess a lot of nodes and maxima72

where the particles can be trapped in cluster. Despite its success and the73

increasing number of applications based on this approach, it is probably not74

the best one to develop selective traps, ie tweezers.75

Solution was found in optics three decades ago by Ashkin who experi-76

mentally demonstrated the possibility to trap a single dielectric particle with77

a single-beam gradient force with a system called Optical Tweezers (OT in78

short). The first step which paves the way to the OT is the observation by79

3



Ashkin of the axial acceleration of particles illuminated by a laser beam and80

the presence of a transverse force which attracts the particles toward the81

beam axis [19]. This transverse force is now known as gradient force. The82

second step was proposed in the same paper [19]. In order to make an axial83

trap, Ashkin proposed to use a second laser sending a beam, whose prop-84

agation direction is opposed to the first one. Hence, the lateral forces are85

added while the axial ones subtract and do not engender an axial expelling.86

Particles are trapped. From this seminal work, the development of OT took87

sixteen years. In 1986, Ashkin et al. [20] proposed a new setup based on a88

sharply focused laser beam able to exert a negative pulling force on a particle89

located downstream from the focus. Hence, he demonstrated that a stable90

equilibrium position exists and that it is possible to trap a single dielectric91

particle with a single-beam gradient force. The negative force is due to a92

subtle effect of the back scattering field on the particle involving the physical93

properties of the particle and the incoming beam of light. The dexterity and94

selectivity of optical tweezers is significantly superior to others optical traps95

schemes and most applications of optical radiation pressure are made with96

optical tweezers.97

In acoustics, soon after, Du and Wu suggested theoretically to use ul-98

trasonic beams to trap and manipulate small elastic particles[21]. However,99

their analysis derived from Gorkov’s theory confirmed that every solid elas-100

tic particle was expelled from the intensity maxima by the gradient force.101

Surprisingly in Wu’s forthcoming experiment, the axial trapping failure was102

explained by the only presence of acoustic streaming [22]. Using a coun-103

terpropagating wave this axial expelling was canceled and trapping was ob-104

tained. This set-up is the acoustic equivalent of ”all-optical light trap” [23].105

More recently, two dimensional manipulation was achieved with a focused106

wave when the axial expelling is stopped by a membrane[24]. In optics,107

this scheme is coined ”single beam traps” [23], [19]. In a series of papers108

[25, 26, 27], we published the theory and the experimental observations of109

the first acoustical tweezers. The key was the shape of the beam. Indeed, pre-110

vious studies used plane waves, gaussian beams or focused beams which exert111

a pushing force on any solid particles. After a careful analysis of the scatter-112

ing problem [25], we proposed to use a singular beam, namely an acoustical113

vortex, which is a beam with a zero amplitude on its center [26, 27]. Finally,114

the experimental demonstration of the all-acoustical single beam tweezers115

was achieved by combining all these elements [27]. Figure 1 illustrates the116

concept of acoustical tweezers acting on a single elastic sphere. At the same117
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Figure 1: Schematic illustration of acoustical tweezers acting on a single elastic sphere.
Note that, the size of the sphere is overstated to be visible

time another experimental demonstration was published [28]. The scheme118

are very similar, based on the same previous results, used the same kind of119

fields and the same kind of particles, polystyrene spheres. The main differ-120

ence is that, the trapping is carried in air. Thus the buoyancy force is quite121

weak and the weight of the particle precludes any direct demonstration of122

the axial pulling force.123

The goal of this paper is to give the key concepts which make optical and124

acoustical tweezers fascinating devices able to control one particle remotely.125

Therefore, the radiation pressure due to EM or acoustical waves is presented126

in section 1. Special attention is paid to the derivation of Maxwell’s stress127

tensor and its analogous Brillouin’s stress tensor. These two tensors show128

that even though the radiation pressure is a nonlinear effect, it can be com-129

puted from the first order wave fields both in optics and acoustics. Therefore,130

solving the canonical problem of a sphere illuminated by an arbitrary shaped131

incident beam is mandatory. This is done thanks to the Generalized Lorenz-132

5



Mie Theory in optics and its counterpart in acoustics, which are discussed133

in section 3. The GLMT provides a complete framework allowing to express134

the radiation pressure exerted on a sphere from the physical properties of the135

sphere and the parameter of the beam. The special case of small particles136

compared to the wavelength is discussed for acoustic waves in order to make137

bridges with usual formulations (Gorkov theory). Section 4 is devoted to138

the comparison of optical and acoustical tweezers. In particular, the choices139

associated to the properties of elastic particles and the incident beam are140

discussed in details for the acoustical case. Finally, a presentation of the141

advantages and the drawbacks of the two kinds of tweezers is proposed.142

2. Radiation pressure and stress tensor143

In this section, we review and compare the mathematical expression for144

radiation pressure in optics and in acoustics. We emphasize the strong sim-145

ilarities of the final expressions even though the derivation is different to146

accommodate the specificity of each field. At the end, we compare the op-147

tical and acoustical radiation pressures exerted by a plane wave and their148

relations with pseudo-momentum.149

2.1. Radiation pressure tensor for an optical field150

The first step consists in writing the equation of conservation of mechan-151

ical momentum and taking the average in time. The change in momentum152

of free charges, Pmech, is related to the forces applied, i.e the Lorentz force:153

∂Pmech

∂t
=

∫
V

(ρE + J ∧B) dV . (1)

First we consider a homogeneous medium : ∇εrij = 0 and ∇µr
ij = 0, where154

εr and µr are respectively the relative permitivity and the relative perme-155

ability. The latin subscripts (i, j) are used for spatial coordinates. From this156

equation and using Maxwell equations for a homogeneous medium without157

any electrostriction or magnetostriction, one can easily derive a continuity158

equation [29]:159

∂

∂t

(
Pmech +

∫
V

GMdV

)
+

∫
V

∇ · (−M) dV = 0, (2)
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with160

Mi,j = EiDj +BiHj − 1/2 (EkDk +BkHk) δij (3)

GM = D ∧B = E ∧H/c2n = So/c
2
n (4)

In these equations, c is the speed of light in vacuum, cn the phase velocity161

of light in the medium of index n. GM is known as the Minkowski pseudo-162

momentum, M is the Maxwell stress tensor and So is the Poynting vector.163

If the medium considered contains no free charge carrier, Pmech = 0, we ob-164

tain a continuity equation for the Minkowsky pseudo-momentum, GM [9],165

and −M is its flux. Note that the derived continuity equation, Eq. 2, is ob-166

tained with the assumption of a homogeneous medium. The general equation167

contains two terms proportional to ∇εrij0 and ∇µr
ij and is not a continuity168

equation. Hence Eq. 3 is based on the homogeneity of the medium, i.e in-169

variance with respect to a spatial translation of the material medium. This170

remark emphasizes the difference with the true linear momentum conserva-171

tion. Indeed, the linear momentum is related to the invariance with respect172

to translation of spatial coordinates [9].173

The radiation pressure is a mean force, the next step is to take the time174

average, noted 〈〉, of Eq. 3 for a medium with no free charge. Note that for175

any stationary of periodic field, the mean of the derivative in time is equal176

to zero. This yieds:177

∇ · 〈M〉 = 0 (5)

When there is an interface, for instance for a dielectric particle ∇εrij 6= 0,178

the conservation of 〈M〉 is no longer true and a force is applied. This force179

is equal to the integral of the stress tensor on the surface of the particle, Σ:180

F =

∫
S

〈M〉 · ndS (6)

where n is the unit vector normal to the surface element of the particle and181

pointing outward.182

However using the conservation of the flux of pseudo-momentum, Eq. 5,183

and the theorem of divergence, the integral can be performed on any closed184

surface, SR, outside the particle.185

F =

∫
S

〈M〉 · ndS =

∫
SR

〈M〉 · nRdSR (7)
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One last remark, the definition of Mi,j, Eq. 3, shows that all terms are186

quadratic quantities. This yields that this tensor can be computed at order187

2 with the linear fields.188

2.2. Radiation pressure tensor for an acoustical field189

In optics we have obtained a stress tensor, the Maxwell stress tensor, and190

identified the radiation pressure as the average of the stress applied on the191

particle surface. The radiation pressure is of second order since all terms192

appearing in the expression of the Maxwell stress tensor are quadratic with193

respect to the electric and magnetic fields. In acoustics, the stress tensor is194

well identified and, the force on the object is by definition the integral of the195

stress tensor on the surface of the particle. For a fluid the stress tensor σij196

reduces to the pressure −Pδij. However an acoustic wave is a displacement of197

the material particles of the medium of propagation. Therefore the surface of198

the object is moving and the amplitude of this displacement is proportional to199

the acoustic field. We can conclude that, as in the optical case, this quantity200

is at least of second order:201

F = −
∫
S(t)

PndS (8)

and the radiation pressure is the mean component of this force202

〈F〉 = −〈
∫
S(t)

PndS〉 (9)

To get an expression more tractable and make an analogy with optical ra-203

diation pressure, the fixed Euler coordinates are more convenient. The two204

points of view, Lagrange and Euler coordinates, are equivalent [30]. The ten-205

sorial theory of radiation pressure in Euler coordinates was established by206

Brillouin in a series of paper and an account of this contribution and these207

references can be found in his text book, [11]. As in optics, the first step is208

to write the continuity equation for momentum:209

∂ρv

∂t
+∇ · B = 0 (10)

Bij = ρvivj + Pδij (11)

where ρ is the specific mass and v the particle velocity. This equation can be210

integrated in a volume bounded on one side by the vibrating surface of the211
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particle and on the other side by a fixed surface in the fluid medium, Fig.212

2.2. Using the divergence theorem, we get:213 ∫
V (t)

∂ρv

∂t
dV +

∫
S(t)

B · n′dS +

∫
SR

B · nRdSR = 0 (12)

n′ is outward-pointing with respect to V (t) and hence is the opposite of n as214

defined in Eq. 9. The first term would cancel with time averaging if we could215

commute the integral volume and the derivative in time. This mathematical216

step is the Reynolds transport theorem:217

∂

∂t

∫
V (t)

ρvdV =

∫
V (t)

∂ρv

∂t
dV +

∫
S(t)

ρv (v · n′dS) (13)

Using this theorem, the continuity relation can be rewritten:218

∂

∂t

∫
V (t)

ρvdV +

∫
S(t)

Pn′dS +

∫
SR

B · nRdSR = 0 (14)

We can now take the average in time and as in the optical case use the fact219

that the mean of a time derivative cancels:220

F = −〈
∫
S(t)

PndS〉 = −
∫
SR

〈B〉 · nRdSR (15)

This expression is already comparable to the optical case, Eq. 7, the minus221

sign comes from the tensor used in acoustics, the flux of momentum, rather222

than a stress tensor. The radiation pressure is the integral of the flux of mo-223

mentum on a closed surface that delineates a volume containing the particle.224

To get this we needed to take into account the first specificity of acoustics :225

the surface of the object is vibrating due to the presence of the acoustic field.226

Since the radiation pressure is a second order effect, this vibration, while of227

weak amplitude, is not negligible. The second specificity is that we don’t228

directly get a quadratic expression of the linear fields. To proceed further,229

we need to perform a perturbative decomposition of the fields up to second230

order. Assuming no flow at rest, this yields at second order:231

v = v1 + v2 (16)

P = P 0 + P 1 + P 2 (17)

ρ = ρ0 + ρ1 + ρ2 (18)

ca = c0 + c1 + c2 (19)
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where ca is the speed of sound in the medium.232

Many papers have been written to derive the equation giving the pressure233

at second order. This stage must be done very carefully and the boundary234

conditions must be taken into account [31], [32],[33]. For instance for a plane235

wave, i.e with an infinite lateral extension, or for a fluid which is laterally236

constrained by rigid wall, we get an expression that involves the non linearity237

of the state equation of the medium. This is the case studied by Rayleigh.238

However for practical cases, the radiation pressure is computed for an object239

embedded in a fluid or the wave is of limited extension. Contrary to the240

Rayleigh radiation pressure, here a static strain can relax laterally. This is241

the case presented in this review and the expression for the pressure at second242

order does not involve the nonlinear coefficient of the medium of propagation.243

These differences were first studied by Langevin and his analysis published244

by Biquard [34, 35].245

P 2
E =

1

2

(
1

ρ0

(
P 1

c0

)2

− ρ0
(
~v1
)2)

(20)

246

Bij = ρ0v1i v
1
j +

1

2

(
1

ρ0

(
P 1

c0

)2

− ρ0v1kv1k

)
δij (21)

As for Maxwell’s tensor, there is an isotropic term analog to a pressure and a247

tensorial term. However, the isotropic term is not the energy per unit volume248

yet. To ease the comparison with the optical case this last expression can be249

rewritten:250

Bij =
1

2ρ0

(
P 1

c0

)2

δij + ρ0v1i v
1
j −

1

2

(
1

ρ0

(
P 1

c0

)2

+ ρ0v1kv
1
k

)
δij (22)

The two tensors B andM can now be compared. Both involve two fields E, H251

and p, v respectively. The tensors split into an isotropic part and a tensorial252

part. The isotropic part is the energy density. The sum of the potential253

and kinetic energy in acoustics and the sum of the electric and magnetic254

energy in electromagnetism. These two energies yield two tensorial terms in255

optics. Acoustics gives an analog result but for a fluid medium the pressure256

field is a scalar. Note that the coefficient 1/(ρc20) is the bulk compressibility257

of the medium. However, one difference remains. For the optical case, we258

get the conservation of the pseudo-momentum while in acoustics we used259
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the conservation of momentum. We will see below that in the case studied260

here corresponding to the case derived by Langevin, this is also a pseudo-261

momentum. Here, we would like to emphasize one more time and after many262

papers on this subject that the momentum on an acoustic wave is null.263

2.3. The acoustic momentum and pseudo-momentum264

An acoustic wave is an oscillation of particles and no net flux is expected.265

Indeed, the momentum is266

ρv = ρ0v1 + ρ1v1 + ρ0v2 (23)

If we take the time average, we get:267

〈ρv〉 = 〈ρ1v1〉+ ρ0〈v2〉 (24)

So the mean mass flux is null if : 〈ρ1v1〉 = −ρ0〈v2〉. It can be demonstrated268

that this is the case for a plane wave, [36]. Counter-intuitively, 〈v2〉 points269

toward the source of sound. This quantity is a Eulerian quantity and rep-270

resents a physical quantity in a fixed position in space and not a quantity271

related to a given material particle. The mean velocity in Lagrangian coor-272

dinates, i.e. the mean velocity of material particles, is null as expected. 〈v2〉273

appears when the change of coordinates is performed and is the opposite of274

the Stokes drift. Using the state equations at first order, p1 = (c0)2ρ1, we275

get:276

ρ1v1 = P 1v1/(c0)2 = Sa/(c
0)2 (25)

So while the total momentum is null, there is a finite pseudo-momentum277

that can be written as a quadratic expression of linear fields. The pseudo-278

momentum is equal to the acoustic Poynting vector, Sa, divided by the square279

of the phase velocity in the medium. This is the relation obtained above with280

Minkowsky pseudo-momentum in the optical case, Eq. 4. In the next section281

we will see that the radiation pressure is related to this pseudo-momentum.282

2.4. Acoustical pseudo-momentum for a plane wave283

Let us consider a plane wave propagating along z and hence v1 = (0, 0, v1).284

The flux of momentum is :285

B = ρ0(v1)2δzz +
1

2

(
1

ρ0

(
P 1

c0

)2

− ρ0(v1)2
)
δij (26)
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286

〈B〉 · z = 〈E〉 = 〈Sa

c0
〉 = 〈c0ρ1v1〉 (27)

For this simple case, the radiation pressure is equal to the energy density,287

the Poynting vector divided by the phase velocity, or the pseudo-momentum288

times the phase velocity.289

2.5. Optical pseudo-momentum for a plane wave290

We consider a plane wave propagation along z and hence E = (E, 0, 0)291

and B = (0, B, 0). The Maxwell stress tensor is:292

M = εE2δxx +
1

µ
B2δy −

1

2

(
εE2 +

B2

µ

)
δij (28)

The component of the flux of pseudo-momentum along the direction of prop-293

agation, z is :294

−〈M〉 · z = 〈E〉 = 〈So

cn
〉 = 〈cnGM〉 (29)

The optical case is identical to the acoustical case but the mean of the295

Minkowski pseudo-momentum replaces the mean of the acoustic pseudo-296

momentum, ρ1v1.297

3. Radiation force on a sphere exerted by an arbitrary shaped in-298

cident beam299

As long as the free-field condition is fulfilled, Langevin’s expression of the300

excess of pressure can be used and the force is computed using Brillouin’s301

stress or pseudo-momentum tensor. The latter only involves quadratic ex-302

pressions of the first order field as recalled in the previous section. Hence,303

one needs to calculate the total linear field (the sum of incident and reflected304

waves) and then to compute the force from these quantities. In this paper we305

pay attention interaction of waves with spheres as it is a very important case.306

First of all, the Lorenz-Mie theory is presented. This theory holds for inci-307

dent plane waves on a sphere. When the incident beam is not plane, different308

strategies have been developed. Here we focus on the Generalized Lorenz-Mie309

theory and in particular its extension to acoustics radiation problems which310

permits to compute the scattered field for an arbitrary beam. Then, consid-311

erations on the beam shape coefficients is proposed. Finally, the regime for312

which the size of the particle is very small compared to the wavelength is313

studied both in acoustics and optics.314
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3.1. Scattering by a plane wave by a sphere315

The first derivation of the scattering of a plane wave by an elastic sphere in316

an inviscid fluid was developed by Faran [37]. Interested in the propagation of317

ultrasound through suspensions and emulsions like aerosols or other diphasic318

solutions an important contribution was made by Epstein and Carhart [38]319

that dealt with the scattering of a thermo-viscous fluid droplet suspended320

in a thermo-viscous fluid. Allegra and Hawley generalized this model to the321

case of a visco-elastic sphere [39]. This model is commonly refereed to as322

the ECAH model in acoustics. Importantly, an elastic medium supports the323

existence of a one compressional and two transverse shear waves. Mathemat-324

ically the displacement vector can be decomposed into its irrotational and325

solenoidal parts using Helmholtz decomposition. The latter is the curl of a326

potential vector A. As in electromagnetism, this decomposition allows some327

freedom and the vector potential A satisfies the gauge condition ∇ ·A = 0.328

An interesting analogy lies in that this acoustic potential A and both the329

electric and magnetic fields E, B are solutions of the vector Helmholtz equa-330

tion. Consequently, the same mathematical steps can be followed to retrieve331

the solution. Nevertheless, the early developments in acoustics all consid-332

ered the restricted case of a plane longitudinal wave incident on a spherical333

scatterer [37, 38, 39, 40]. Owed to this strong symmetry condition the vector334

potential in spherical coordinates (r, θ, φ) can be written A = (0, 0, A(r, θ))335

for a plane wave propagating along the z axis. The problem is thereafter336

considerably simplified inside the sphere and the scalar potential A is solu-337

tion of the scalar Helmholtz equation. It can be written as an infinite sum of338

spherical modes. The incident plane wave is expanded on the same spherical339

modes and applying the correct boundary conditions yields the expression of340

the unknown scattering coefficients necessary to calculate the total external341

field. One can thereafter evaluate the force exerted on a compressible sphere342

[41], [42].343

It is noteworthy that a transversely polarized wave immediately breaks344

the aforementioned azimuthal symmetry. It is the case for the scattering345

of electromagnetic waves and the modern solution often referred to as the346

Mie or Lorenz-Mie theory can actually be tracked back to Clebsch and his347

solution for the scattering of elastic waves by a rigid sphere [43, 44]. There are348

various examples of the resolution of this type of boundary-value problem in349

acoustics e.g. [45], [46]. A computationally useful method based on the ”T-350

Matrix” [47] was initially introduced in acoustics by Waterman [48, 49]. This351

matrix does not depend on the nature of the incident wave. It is completely352
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defined by the scatterer and the propagation medium.353

3.2. Scattering of an arbitrarily shaped beam by a sphere354

With the growing interest in contact-less particle manipulation, recent355

research has extended these approaches to the case of a particle located on the356

axis of an incident acoustic beam. Examples include axisymmetric beams [50,357

51] or the more complex wavefronts of a helicoidal bessel beam [52, 53]. To358

deal with the scattering problem, the Bessel beam was decomposed as a series359

of plane waves and the use of the previously cited results are straightforward.360

Using an angular spectrum decomposition of the incident field, this result was361

generalized to the case of a beam with arbitrary wavefront and the radiation362

pressure was computed in three dimensions [54].363

In optics, an important approach referred to as the Generalized Lorenz-364

Mie Theory (GLMT) was developed [55, 56, 57], [58]. In the GLMT, the365

problem under consideration is the scattering of an arbitrary incident wave366

by an arbitrarily located dielectric particle. This model was successful in367

obtaining the radiation pressure exerted by a beam of arbitrary wavefront368

regardless on the relative position of the sphere [59], [60]. This efficient369

approach was recently adapted to acoustics [25]. The incident wave is de-370

composed in the spherical basis centered on the sphere using beam shape371

coefficients. Note that even for a compressional incident acoustic wave, con-372

sidering an arbitrary wavefront or an arbitrary location of the particle breaks373

down the azimuthal symmetry A = (0, 0, A(r, θ)). Hence, as long as a spher-374

ical basis is considered, a set of Debye scalar potentials (ψ, χ) for which375

A = ∇∧ (rψ) +∇∧∇∧ (rχ) is used to solve the vectorial Helmholtz equa-376

tion on A. These potentials are solutions of the scalar Helmholtz equation377

so that ψ and χ can also be decomposed in the spherical basis. Hence the378

incident, scattered and elastic waves in the sphere are readily described by379

four independent potentials decomposed in spherical modes. The boundary380

value problem yields the unknown scattering coefficients that are shown to381

be identical to the usual plane wave case [25].382

At this stage, the total acoustic field can be computed and Eq.(15) yields383

the force exerted on the center of the sphere. It essentially depends on the384

material of the sphere and the fluid’s properties through the scattering coef-385

ficients on one side, and on the nature of the incident field and the position386

of the sphere through the beam shape coefficients on the other. An inter-387

ested reader can refer to [25] for further details on the derivation. Note that388

a similar result was obtained independently [61]. However, the generalized389

15



scattering problem was not addressed and the results restricted to rigid (no390

internal propagation) spheres.391

The general treatment in Ref.[25] can be extended to account for various392

other physical effects. For example, the ECAH theory sets the necessary lin-393

ear equations and introduces the vectorial treatment for elastic, viscous and394

thermal waves each of which can follow the same decomposition (Helmholtz395

and Debye) into a set of scalar potentials. These physical effects have shown396

to have a major influence on the radiation force on small particles compared397

to the wavelength [62, 63, 64] and can be deduced from the ECAH theory398

[65, 66]. Other extensions to the case of elastic shells [67, 68] were proposed399

in the context of the development of sonar detection. These models can find400

applications in radiation force calculations [69, 70].401

3.3. Computation of the beam shape coefficients402

In the context of GLMT theories, a major task resides in the accurate403

description of the incident beam and its position relative to the center of the404

scatterer. The beam shape coefficients fulfill this task and many techniques405

exist to obtain them. Their review is outside the scope of the present paper406

and the interested reader can refer to [57, 71]. A numerically efficient im-407

plementation using rotation and addition theorems for spherical harmonics408

is available in optics [72] and was adapted to acoustics. Examples include409

helicoidal Bessel beams [25], focused axisymmetric and vortex beams [26].410

3.4. Acoustic radiation force in the long-wavelength limit411

When the spherical scatterer has a very small radius a compared to the412

incident wavelength, the radiation force can be considerably simplified. On413

the one hand, only two vibrational modes of the sphere are excited. The414

first one is an isotropic monopolar expansion mode. It occurs when the415

compressibility of the scatterer differs from that of the fluid. The second one416

has a dipolar radiation pattern and arises from the back and forth oscillation417

of the sphere when a contrast of density between the two phases exists. In418

the small sphere limit, a Taylor expansion of the spherical Bessel functions419

involved in the two first scattering coefficients yields two different acoustic420

contrast factors [27]:421

αm = α0
m/(1 + i

k3

4π
α0
m) (30)

αd = α0
d/(1− i

k3

12π
α0
d) (31)
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where k = ω/c0 is the wave number in the liquid and422

α0
m =

4

3
πa3

(
1− K0

Kp

)
(32)

α0
d = 4πa3

(
ρp − ρ0

2ρp + ρ0

)
. (33)

K0 = ρ(c0)2 is the bulk elasticity of the material in the fluid and Kp =423

ρp(4/3c2t − c2l ) in the solid. The sphere’s density, longitudinal and transverse424

wave speeds are noted ρp, cl and ct respectively.425

On the other hand, the beam shape coefficients are formally scalar projec-426

tions of the incident field on the spherical basis. In the same long wavelength427

limit, the beam shape coefficients can be written as linear combinations of428

the derivatives of the incident field taken at the center of the sphere [27].429

The final expression of the force for a small elastic sphere in an inviscid fluid430

reads:431

F = −1

2

{
<(αm)∇

(
1

2ρ0

(
|P 1|
c0

)2
)
−<(αd)∇

(
1

2
ρ0|v1|2

)
+

(
k

c0
=(αm)− k4

12πc0
<(αm)<(αd)

)
<(P 1v1∗)

+ρ0=(αd)=((v1 · ∇)v1∗)
}
. (34)

< and = denote the real and imaginary parts of these complex fields and ∗432

stands for a complex conjugations.433

The first two terms in Eq.(34) stand for an acoustic gradient force. The434

real part of the monopolar scattering factor is associated with the gradient435

of the potential energy density of the field while the real part of the dipolar436

scattering factor is linked to the gradient of the kinetic energy density. It is437

a force proportional to the volume of the sphere a3. Gorkov was probably438

the first to show that the radiation pressure of a standing wave field could be439

written as a gradient force [73]. His result is here recovered. The remaining440

term is called the scattering force and is associated to the imaginary parts of441

the scattering coefficients and a coupling between the monopolar and dipolar442

modes. Gorkov had also shown that the force exerted by a plane progressive443

wave was much weaker since there are no gradients in the fields’ energy444

density. Indeed the imaginary part of the monopolar and dipolar contrast445
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factors are multiplied by an additional factor (ka)3 � 1. Eq. 34 generalizes446

Gorkov’s result to account for the scattering force of an arbitrary wavefield.447

A similar result was obtained elsewhere [54].448

It is known that a very slight viscosity in the fluid suffices to drastically449

increase the magnitude of the scattering term of the force [62]. It is worth450

noting that the two acoustic contrast factors in Eq.(31) can me modified451

to account for the thermo-vicosity of the fluid or the visco-elasticity of the452

sphere [64, 66, 65, 70].453

3.5. Long-wavelength simplified expression in optics and acoustics454

The optical radiation force on a small dielectric sphere has a very similar455

expression [74],[75],[76]:456

• There are also two modes but this time both are dipolar and related to457

the contrast in dielectric permittivity and magnetic permeability. Note458

that there is a single dipolar mode in acoustics because we assumed an459

elastic sphere in a fluid medium. The radiation pressure on a spherical460

inclusion in a solid would involve transverse incident waves.461

• The real part of the scattering coefficient, the clausius-mossotti rela-462

tion is identical to the acoustic dipolar scattering coefficients if specific463

mass is replaced by either the dielectric permittivity or the magnetic464

permeability.465

• The scattering coefficients have a small imaginary part proportional to466

the square of the real part. This correction was recently introduced in467

optics [76].468

• The force can be split in a gradient and a scattering force. In optics this469

was inferred independently of the correct expression of the scattering470

coefficients [75] and compared to the full theory provided by the GLMT.471

• The gradient force is related to the energy density of the incident fields472

at the sphere center and the real part of the scattering coefficient.473

• The scattering force is weaker and related to the imaginary part of the474

scattering coefficient. In both cases there is a term proportional to the475

mean of the Poynting vector.476

18



There are of course differences due to polarizations. In acoustics, the wave477

is scalar and longitudinally polarized in the liquid and have longitudinal and478

transverse components in the solid sphere. In optics the wave is transverse479

in both media.480

4. Acoustical tweezers481

Applying controlled forces without contact is appealing. It has many482

practical applications, both in optics and in acoustics. Optical tweezers can483

manipulate sub-micrometric objects with a nanometer resolution and forces484

in the pico-newton range. They have found a huge amount of applications485

from fundamental physics to material science and biophysics [77, 78, 79, 80,486

81]. Acoustic traps can considerably increase the size of the manipulated487

particles and the force that can be exerted. From the first acoustic levitation488

traps [13, 14] to the recent regain in interest in the context of acoustofluidics,489

acoustic traps have addressed a significant panel of new applications [15,490

82, 83]. In this section we propose to review the recent demonstration of491

single-beam acoustical tweezers for which, in comparison to other traps, the492

development has been rather slow.493

Unlike optical trapping of high-index particles, solid elastic materials are494

not transparent to ultrasound. The mechanical index mismatch is such that495

the preeminent mechanism at the fluid/solid boundary is backscattering in-496

stead of refraction. Moreover, considering a large sphere in the geometrical497

acoustics regime (a � λ), not only the scattering force pushes the parti-498

cle but, the refracted rays that in optics usually contribute to the restoring499

gradient component build up to an additional expelling force in acoustics.500

Restricting ourselves to much smaller spheres and avoiding as a first step the501

more complex Mie scattering regime (a ≤ λ), a quick analysis of Gorkovs502

theory (see Eq.(15)) shows that a particle that is denser and stiffer than the503

surrounding medium experiences a gradient force that points away from in-504

tensity maxima. Hence, whatever the size of the solid particle, acoustic beam505

traps generally exhibit an unstable behavior and the history of acoustic par-506

ticle manipulation has almost always involved standing waves schemes.507

Holding on to the single-beam concept, it was recently recognized that508

specific fields called acoustic vortices could act as stable lateral [84] and three-509

dimensional traps [26]. The lateral trapping of vortex type beams was con-510

firmed experimentally in a planar configuration creating 2D annular Bessel511

function shaped traps [85]. Using a three-dimensional theory for acoustic512
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forces [25] is was possible to compute the axial trapping force of tightly fo-513

cused vortex beams [26]. It was concluded that a focused vortex beam of514

topological charge m = 1 could generate a negative axial gradient force to515

stably trap elastic particles in three dimensions. In fact, using sufficiently516

small spheres (a ≤ 0.15λ), the scattering force is greatly diminished on the517

axis of a vortex beam meanwhile the gradient component points this time518

towards the focus. Note that other types of beams were proposed in [26] to519

enhance the axial trapping efficiency similar to what is referred to as ”bottle520

beams” in optics [86, 87].521

The research field of structured wavefronts is again intimately related522

between optics and acoustics. Though the seminal paper published by Nye523

and Berry in 1974 first introduced the phenomenon of phase singularities524

within ultrasonic wave trains [88], the optics community rapidly pushed the525

concept forward towards a whole deal of fundamental studies and applica-526

tions [89, 90, 91]. Remarkably, a route to directly create a beam carrying527

a screw phase dislocation was first theoretically proposed in acoustics [92]528

at the time it was recognized that TEM∗01 laser modes could be generated529

[91, 93]. Experimentally demonstrated by Hefner and Marston [94]. Studies530

of their linear and non-linear behavior include the establishment of a law531

of conservation of their topological charge and pseudo-angular momentum532

[94, 95, 96], vortex parametric interaction [97], azimuthal shock waves [98]533

and their super-oscillation properties applied to sub-wavelength imaging [99].534

An example of a synthesized vortex beam is given in Fig.3. The ultrasonic535

field is generated by a 128 element piezoelectric array in a water tank using536

the inverse filter technique [95]. As for its optical counterpart, the energy is537

focused to a ring in the focal plane (panel a)). Note that a hydrophone deliv-538

ers a direct measurement of the spiraling phase structure while in optics the539

vortex beam generally has to interfere with a plane wave. It is noteworthy540

that a high numerical aperture acoustic lens was designed to focus the beam541

to a ring of diameter comparable to λ. The region of undefined phase is a542

line in three dimensions. Consequently, the entire propagation axis defines a543

silent zone (see Fig.3c)).544

The control achieved in creating tightly focused vortex beams led us to545

experimentally demonstrate the existence of a negative gradient force and in546

essence observe the first single-beam gradient trap for elastic particles with an547

ultrasonic beam [27]. In the first configuration a vortex was fired horizontally548

in the water tank while a polystyrene particle was approached near the focal549

region by an auxiliary tee. Figure 4 shows a photograph of a 400µm size550

20



x/�

y
/�

�2 �1 0 1 2

�2

�1

0

1

2

x/�

y
/�

�2 �1 0 1 2

�2

�1

0

1

2

�2 0 2

z
/

y/

5

4

3

2

1

0

1

2

3

4

5

1 0 1
0 1

a)

b) c)

Figure 3: Example of a synthesized vortex beam of topological charge m = 1. a) and
b), normalized intensity and phase (rad.) in the focal plane respectively. c), normalized
intensity along the propagation axis. Adapted from [65].
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acoustic lens trapped particle

Figure 4: Photograph of a trapped polystyrene particle in a horizontal acoustical tweezers
setup. A zoomed range of the particle’s release is displaced with an overlap of images.
The particle’s trajectory shows the effect of gravity and acoustic streaming.

polystyrene sphere trapped in the focus of the helicoidal field. The particle551

levitates approximately 30mm away from the outer face of the lens as long552

as the vortex is emitted. When the source is turned off, an overlapped image553

stack of the release of the sphere is shown. It can be seen from the trajectory554

that at this scale that gravity plays a major role and remark the significant555

effect of acoustic streaming pushing the particle away from the focus.556

It was decided to demonstrate that the negative gradient force was so557

large that it dominated the axial stability in a vertical configuration. The558

experimental setup described in [27] was used to lift and trap buoyant par-559

ticles against their weight and the pushing force exerted by the streaming560

flow’s drag. Figure 5 is a photograph of a 340µm polystyrene bead trapped561

and levitated beneath the focus of the vortex beam. The bead was initially562

lying on an acoustically transparent polyethylene film. By precisely aim-563

ing the beam, the tweezers can accurately select the particle to be trapped.564

Other particles can be slightly affected but will not collect in the the focal565

volume.566
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Figure 5: Photograph of a 340µm diameter polystyrene sphere trapped in vertical acous-
tical tweezers. The trapped particle was selected among others that were lying on a thin
polyethylene film. Adapted from [27]
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5. Conclusion567

The radiation pressures exerted by sound or light have many similar fea-568

tures. This was shown with the expression of the stress tensor and the569

relation with pseudo-momentum. Not only these second order effects are570

similar but also when the linear problem of a spherical scatterer interacting571

with an incident beam is considered. The Generalized Lorenz-Mie theory572

has therefore recently found an adaptation to acoustic scattering and force573

calculations. Regarding the force in the long wavelength limit, it was shown574

that a beam exerted both a gradient and scattering force in acoustics in a575

similar fashion to the force exerted by an optical beam on a small dielec-576

tric dipole. The possibility to design manipulation traps for small particles577

is another appealing and common characteristic. Among all kinds of traps,578

optical tweezers stand out by their simplicity, accurate localized actuation579

and great dexterity. Quoting Ashkin [20]: ”The single-beam gradient force580

trap is conceptually and practically one of the simplest radiation pressure581

traps”. A feature which most certainly explains their wide application in582

various scientific fields. The attention of the acoustic community has essen-583

tially been turned towards standing wave traps where Gorkov’s theory has584

found a sound application. They have addressed a large panel of new appli-585

cations in the context of acoustical levitation or acoustofluidics [15, 82, 83].586

A recent review offers an extensive survey of various developed devices [100].587

The development of single-beam acoustical tweezers had been impaired by588

two main difficulties: the lack of a complete theoretical model able to predict589

the force exerted by acoustic beams and the capacity to synthesize acoustic590

beams with complex wavefronts as focused acoustical vortices. The complex591

wavefield synthesis method with a large array of piezo-electric transducers592

was adapted from previous studies on acoustical vortices [95, 96].593

The thermal damage, or ”opticution”, limit optical tweezers to applica-594

tions requiring very weak forces and to manipulate very small particles from595

atoms to molecules. Ultrasound are proven to innocuous for living cells and596

propagate without significant attenuation in many materials. This feature597

combined with the much larger forces applied at equivalent energy flux should598

give to single-beam acoustical tweezers an extended range of manipulation599

capacities for new applications in material science, fluidics and biophysics.600

[1] J. C. Maxwell, Art. 314. medium in which small spheres are uniformly601

disseminated, chapter ix. conduction through heterogeneous media, A602

treatise on electricity and magnetism 1.603

24



[2] P. Lebedev, Experimental examination of light pressure, Annalen der604

physik 6 (1901) 433.605

[3] E. F. Nichols, G. F. Hull, The pressure due to radiation, in: Daedalus,606

Vol. 38, 1903, pp. 559–599.607

[4] L. Rayleigh, Phil. Mag. 3 (1902) 338.608

[5] L. Rayleigh, Phil. Mag. 10 (1905) 364.609

[6] V. Dvorak, On acoustic repulsion, Am. J. Sci. 16 (1878) 22–29.610

[7] W. Altberg, ber die druckkrfte der schallwellen und die absolute mes-611

sung der schallintensitt, Annalen der Physik 316 (6) (1903) 405–420.612

[8] C. Eckart, Vortices and streams caused by sound waves 73 (1) (1948)613

68–76.614

[9] R. Peirls, Momentum and pseudomomentum of light and sound, Proc.615

Intl. School Phys. ”Enrico Fermi”, Elsevier Science Ltd, 1985, pp. 237–616

255.617

[10] M. McIntyre, On the ”wave momentum” myth, J. Fluid. Mech. 106618

(1981) 331–347.619

[11] L. Brillouin, Tensors in mechanics and elasticity, Academic Press, New620

York, 1964.621

[12] A. Eller, Force on a bubble in a standing acoustic wave, J. Acoust. Soc.622

Am. 43 (1) (1968) 170–171.623

[13] E. Trinh, Compact acoustic levitation device for studies in fluid dy-624

namics and material science in the laboratory and microgravity, Rev.625

Sci. Instrum. 56 (11) (1985) 2059–2065.626

[14] R. E. Apfel, Acoustic levitation for studying liquids and biological ma-627

terials, J. Acoust. Soc. Am. 70 (2) (1981) 636–639.628

[15] T. Laurell, F. Petersson, A. Nilsson, Chip integrated strategies for629

acoustic separation and manipulation of cells and particles, Chem. Soc.630

Rev. 36 (3) (2007) 492–506.631

25
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