
HAL Id: hal-01438705
https://hal.science/hal-01438705v1

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Ultrasonic characterization of orthotropic elastic bovine
bones

Philippe Lasaygues, Martine Pithioux

To cite this version:
Philippe Lasaygues, Martine Pithioux. Ultrasonic characterization of orthotropic elastic bovine bones.
Ultrasonics, 2002, 39 (8), pp.567-573. �10.1016/S0041-624X(02)00261-5�. �hal-01438705�

https://hal.science/hal-01438705v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Ultrasonic characterization of orthotropic elastic bovine bones

The aim of the present study was to determine the mechanical properties of bovine bones. An ultrasonic method was used to
determine acoustical parameters such as the longitudinal and transverse velocities in the longitudinal and two radial directions of
compact bone, i.e., in all directions of the plane. Waves propagating through bovine femoral bones were studied using an ultrasonic
scanner for linear and sectorial scanning. The mechanical parameters of compact bone, such the Young’s modulus and Poisson’s
ratio in the orthotropic case, were then determined from the measured velocities. The results are in line with those in the litera-
ture.

Keywords: Ultrasound; Compact bovine bone characterization; Orthotropic stiffness tensor; Elastic constants; Longitudinal velocity; Transversal
velocity

1. Introduction

In biomechanics, one of the principal descriptors of

the mechanical properties of a bone is its elastic prop-

erties. More recently, the elastic constants were used in

conjunction with (micro-)mechanical modeling to elu-

cidate details of bone (micro-)structure, which governs

failure or remodeling of bones, for example. We now

construct a numerical model of the microscopic behav-

iour of compact bone to analyse damage and failure of

compact bones. We need accurate knowledge of the

elastic constants of compact bone for this model. The

elastic characteristics of bones are conventionally mea-

sured by mechanical tests (compression, tension, flexion,

and torsion). The damage sustained by the sample with

these techniques makes it difficult to test it in other di-

rections or to use it again for other measurements. In

this study, the elastic characteristics of compact bone

were measured by an ultrasonic method. The theory of

elastic waves is essential because it relates the elastic

moduli of a material to the velocity of propagation of

these waves along arbitrary directions in a solid.

In this paper, we describe the inversion of ultrasonic

wavespeed measurements on a bovine bone to determine

its orthotropy and the appropriate number of elastic

constants needed to represent its elastic properties.

Similar methods of this kind have been used to study

compact as well as porous bones [1–11]. The method

developed is classic because many authors have tried to

apply the ultrasonic method. In the bibliography, a few

authors measured the longitudinal velocities only. Others

measured the longitudinal and transverse velocities, but

in this case, transducers are in contact with the samples,

and the samples are cubes with parallel faces that are

difficult to prepare in a bone. One advantage of our study

is that it yields rapid and accurate results, and does not

require the use of samples with precise dimensions and

perfectly parallel faces: rough preparations of the speci-

men are sufficient. The area under investigation must

have interfaces, which are approximately parallel (focus

of the transducers). Another important feature of the

method is that it is non-destructive. Furthermore, this

study is reproducible because we consistently used the

same experimental procedure on bone samples from

animals of the same age (about five years), sex (female),

and weight (about 400 kg).
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Waves propagating both longitudinally and trans-

versally through bovine femoral bones in all planar

directions were used here, and the experimental device

developed at the Laboratoire de M�eecanique et d’Acous-

tique (LMA) for ultrasonic medical imaging [12,13]

[29,30] was extended to include the measurement of their

mechanical properties. The acoustic device used allows

various degrees of freedom, since the position of both

the target and the transducers can be adjusted. In par-

ticular, one can apply rotation to the target, and move

the transducer receiver laterally. This makes it possible

to monitor the wave propagation occurring in a system,

which obeys the Snell–Descartes laws, and also measure

shear waves and determine their velocities in planar di-

rections. The latter point is original in ultrasonic

methods.

The bench was designed for performing both reflec-

tion and transmission measurements.

A brief summary follows of the basic theory and

its application in the conventional approach for deter-

mining elastic moduli in materials. The mechanical

parameters of bovine bone were then determined ex-

perimentally at various points on different specimens.

2. Conventional approaches

For a linear, anisotropic material, Hooke’s law trans-

lates the wave equation by the following equation:

q€uui ¼ Cijklekl;j ¼ Cijkluk;lj i ¼ 1; 2; 3 ð1Þ
where q is the density, €uui the ith component of the ac-

celeration of the volume, and ekl is the component of the

strain infinitesimal tensor. Cijkl is the fourth-rank sym-

metric stiffness tensor of the material. If a positive-def-

inite strain energy function is postulated for the

material, Cijkl will have only 21 independent compo-

nents.

For the cortical bovine bone microstructure, a hex-

agonal symmetry is identified, and only nine indepen-

dent elements were determined.

In many cases, the elastic wave measurements will

reply on plane waves. A plane wave solution to the

equation of motion is expressed in terms of the planar

displacements specified by~uuð~xx; tÞ, which are propagating

in the direction specified by the unit vector, the wave

normal ~pp. Hence

~uuð~xx; tÞ ¼ ~AA exp ix t �~xx~pp

v

!!

ð2Þ

where ~AA ¼ A~dd and A is the wave amplitude and ~dd the

polarization vector. ~xx is the position vector. x ¼ vk
the angular frequency of the wave and k the wave

number.

By replacing (2) in (1), we obtain an equation with

qv2 the eigenvalues. The resolution of this eigenvalue

problem is classic today and well-optimized [14–16]. The

aim of our work is not the resolution of the method but,

more prosaically, to apply the method to the mechanical

characterization of bovine bones which have a very

complex structure. In this study, bones are considered

orthotropic elastic material. The paragraphs which fol-

low rapidly explain the algorithm we use.

By introducing the Kelvin–Christoffel stiffnesses,

Cik � Cijklpjpl, the eigenvalues are the solution of the

characteristic equation det jCik � qv2dik j ¼ 0, where v is

the phase velocity of the wave.

The useful bone is orthotropic and the specific fibre

direction is x3-plane. In terms of abbreviated Voigt no-

tation, the corresponding Kelvin–Christoffel stiffnesses

are

C11 ¼ p21C11 þ p22C66 þ p23C55 C23 ¼ p2p3ðC23 þ C44Þ

C22 ¼ p21C66 þ p22C22 þ p23C44 C13 ¼ p1p3ðC13 þ C55Þ

C33 ¼ p21C55 þ p22C44 þ p23C33 C12 ¼ p1p2ðC12 þ C66Þ
ð3Þ

If vL, respectively vT, indicate the longitudinal velocity,

respectively the transversal velocity, along the x1-direc-

tion, we deduce coefficients in which the plane propa-

gates along the p1 ¼ 1 direction (i.e. p2 ¼ p3 ¼ 0) of the

material: C11 ¼ qv2L and C66 ¼ qv2T.

Similarly, if vL and vT are the corresponding wave

velocities, respectively in pure longitudinal mode and in

pure transverse mode in the x2-plane, the C22 coefficient

is directly obtained by a normal incidence measurement

in the x2-plane: C22 ¼ qv2L and C44 ¼ qv2T.

The coefficient C12, respectively C23, are obtained for

waves sent along the direction at 45� to the x1- and x2-

axes (i.e. p1 ¼ p2 ¼ 1=
ffiffiffi

2
p

, p3 ¼ 0), respectively to the x2-

and x3-axes (i.e. p1 ¼ 0, p2 ¼ p3 ¼ 1=
ffiffiffi

2
p

).

In the x1x3-plane with the fibres, and for a given di-

rection, ~pp ¼ ðcos h; 0; sin hÞ where h is the refraction

angle, we solve the characteristic equation and find:

C11 cos
2 hþ C55 sin

2
h� g 0 ðC13 þ C55Þ cos h sin h

0 C66 cos
2 hþ C44 sin

2
h� g 0

ðC13 þ C55Þ cos h sin h 0 C55 cos
2 hþ C33 sin

2
h� g

�

�

�

�

�

�

�

�

�

�

�

�

¼ 0 ð4Þ

2



where g ¼ qv ¼ qC2
b , the eigenvalues to be determined.

The resolution of this determinant is presented in Ap-

pendix A.

3. Measurement system and experimental testing config-

uration

It should be clear from the foregoing that wavespeed

data should be collected over a broad range of arbitrary

directions in a specimen in order to recover the whole set

of elastic constants. A number of ultrasonic measure-

ment techniques have been developed in which the

transducer is in contact with the specimen [17,18]. In our

case the specimen is immersed in a water bath and the

speeds of propagation of waves at various incident an-

gles correspondingly refracted into the specimen are

measured.

Accordingly, the general architecture (Fig. 1) of the

mechanical system is composed of a main symmetric

arm that holds two transverse arms with which two

transducers can be moved in parallel angular scanning is

carried out by rotating either the main arm or the object

holder carries out. The transducers can be positioned

and oriented accurately, permitting both linear and sec-

torial scanning. All the movements are produced by six

stepping motors sequentially driven by a programmable

translator-indexer device fitted with a power multi-

plexer. The translator-indexer device and the power

multiplexer are integrated in a control rack that also

includes other remote controls, such as that adjusting

the distance traveled by the transverse arms, or the out-

of-water setting automatism. The increments are multi-

ples of 0:75	 10�2 mm for translations and of (1	
10�2)� for rotations [13].

To obtain accurate results by taking bone heteroge-

neity into account, we used a higher frequency (1 MHz)

and focused transducers. Focused transducers made it

possible to target small surfaces and perform measure-

ments at different points on the bone sample.

For each point, we carry out a sweep of 5 mm. This

sweep of focused transducers synthesizes an antenna of

several elements. The front of the synthetic wave course

medium following a slice of height corresponds to the

vertical resolution of the transducers. Consequently,

the ‘‘wave plane’’ and 2D diagram hypothesis are re-

spected.

4. Identification of bovine bone elastic constants

4.1. In vitro wavespeed measurements

Bovine bones were assumed to be elastically ortho-

tropic. x3 denotes the axis parallel to the fibres of the

bone (Fig. 2), and x2 the axis to be parallel to the

thickness of the compact area of the bone.

Four fresh bovine femoral bones were studied. The

bones were frozen prior to the experiments. The epiph-

yses were cut so that we could focus only on compact

bone. Two test-pieces were obtained by first cutting

bones in the axial direction and then removing the

marrow from each part (Fig. 2a and b). Then, to in-

vestigate this orthotropic specimen, we cut out small

samples (Fig. 2c–e) and set them in water at room

temperature. The robot held each sample in either the

horizontal or the vertical position, depending on the

type of experiment.

We studied the density of bovine bone samples which

are very compact. To do this, we used two significant

measurements. The first, based on the Archimedes

principle, gives the average density of each sample. The

second, using X-ray tomodensitometry, gives a local

density in the plane perpendicular to the wave front [30].

Analysis of the results shows that the overall measure-

ment corresponds to the arithmetic mean of the values

recorded by X-ray tomodensitometry. With X-ray to-

modensitometry, we obtain a narrow variation of bo-

vine compact bone density. This can be explained by the

lamellar structure of bovine bones, so that the fibres

constituting the bone are all oriented in the same di-

rection. The compact zone of the bovine bones is then

considered homogeneous or weakly heterogeneous. We

can also take ultrasonic measurements of various points,

relatively brought closer together, allowing us, strictly

speaking, to take account of this slight heterogeneity of

the medium. Consequently, for each sample and each

measurement point, the density used for calculations is

the total value average (Tables 1 and 2).Fig. 1. Experimental measurement system.
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We then determined the acoustical thickness e by

e ¼ d � vw
t1 þ t2

2

� �

ð5Þ

where d is the distance between the two transducers, t1
and t2 are the time taken by the reflected echo to travel

between each of the bone surfaces taken by the wave

system, and vw is the water velocity (Fig. 3a).

We finally determined the longitudinal and transver-

sal celerity v

v ¼ vw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ vwDt

e

vwDt

e
� 2 cos h

� �

q ð6Þ

where Dt is obtained by cross correlation between the

reference signal without the sample and the signal ob-

tained at the angle of incidence with the sample (Fig. 4),

and h is the angle of incidence of the emitted wave (Fig.

3b).

Using the isotropic hypothesis, assumed by many

authors, the transverse velocity is expressed as half the

Fig. 2. Direction of observation of bovine bone samples: (a) vertical position, (b) horizontal position, (c) radial direction (vertical position), (d) radial

direction (horizontal position), (e) longitudinal direction (axis 0x3).

Table 1

Longitudinal (vL) and transverse (vT) velocities in the (0x2) direction

Experiments vL (m/s) vT (m/s)

Bone 1

Horizontal position 3383 
 20 2048 
 45

Point 1 3315 
 20 2002 
 34

Point 2 3655 
 23 1888 
 28

Point 3 3191 
 22 2026 
 38

Vertical position 3247 
 15 1713 
 30

Point A 3055 
 18 1767 
 29

Point B 3460 
 21 1773 
 25

Bone 2

Point A 3414 
 16 1822 
 25

Point B 3430 
 16 1833 
 26

Point 1 3352 
 16 1953 
 24

Point 2 3347 
 16 1953 
 50

Point 3 3317 
 16 1953 
 41

Point 4 3487 
 21 2067 
 44

Point 5 3352 
 20 1949 
 40

Point 6 3583 
 21 1997 
 36

The density of the two samples is 1:8	 103 kg/m3.

Table 2

Longitudinal and transverse measurements in different directions (orthotropic)

Experiments vL (m/s) vT (m/s) q (kg/m3)

Bone 3 (longitudinal direction, axis 0x3) 4271 
 20 2065 
 50 2:1	 103

Bone 3 (radial direction, vertical position, plane 0x2x3) 3235 
 15 1686 
 20 2:1	 103

Bone 3 (radial direction, horizontal position, plane 0x1x2) 3321 
 15 1981 
 31 2:1	 103

Bone 3 (radial direction, axis 0x1) 3515 
 16 2082 
 40 2:1	 103

Bone 4 (longitudinal direction, axis 0x3): 4027 
 13 1981 
 35 1:9	 103

Bone 4 (radial direction, vertical position, plane 0x2x3) 3349 
 11 1730 
 20 1:9	 103

Bone 4 (radial direction, horizontal position, plane 0x1x2): 3350 
 11 1976 
 37 1:9	 103

Bone 4 (radial direction (axis 0x1)) 3472 
 11 1973 
 40 1:9	 103
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longitudinal velocity: vT ¼ vL=2. This leads to a constant

Poisson’s ratio m ¼ 0:33.
In our case, to observe transverse and longitudinal

waves separately and because the critical hc was between

25�6 hc6 40�, we applied a 60� rotation to the bone

samples. To accurately describe the bone heterogeneity,

measurements were carried out at several points (Fig. 2a

and b) with samples in the vertical and horizontal po-

sitions (Table 1).

4.2. Recovery of elastic constants

Both vL and vT were measured in the radial planes

and in the longitudinal axis of the bone. The ultrasonic

method was used to measure longitudinal and transverse

velocities in the radial and fibre (longitudinal) di-

rections. Their thickness ranged between 1 and 2 cm

(Fig. 2).

The results for celerity are in given Table 2 and the

matrix rigidity values in Table 3. To validate our results,

we compared them with the literature [1,3,5,6,10,19–28].

A fairly wide dispersion was observed in the Poisson’s

ratio, Young’s modulus and longitudinal velocities ob-

tained on compact bone. For example, Poisson’s ratio

ranged between 0.16 and 0.35. In the few studies in

which Poisson’s ratio has been determined, the values

ranged between 0.1 and 0.5. In the literature, the lon-

gitudinal velocity values varies between 2700 and 4200

m/s; in our studies they ranged between 2900 and 4500

m/s. Elastic constants were also compared with figures

in the literature. Our results are quite in line with the

literature.

5. Conclusion

The ultrasonic method proposed here is an original

approach to the study of bone characteristics because

Fig. 4. Set of transmission signals versus incidence angle obtained with

one sample at 1 MHz.

Fig. 3. Principle of wave recording in (a) echo mode and (b) transmission mode.

Table 3

Elastic constants of bovine bone (orthotropic)

Bone 3 Bone 4

C11 (GPa) 23.5 22

C22 (GPa) 26 23.5

C12 (GPa) 6.55 7.6

C13 (GPa) 8.35 7.5

C23 (GPa) 8.2 7.7

C33 (GPa) 34.6 31.7

C44 (GPa) 9.2 7.6

C55 (GPa) 6 5.6

C66 (GPa) 6.05 5.8

E1 (GPa) 20.6 18.7

E2 (GPa) 23.4 20

E3 (GPa) 30.2 28

G12 (GPa) 3 2.9

G13 (GPa) 3 2.8

G23 (GPa) 4.6 3.7

m12 0.12 0.26

m13 0.2 0.17

m21 0.21 0.28

m23 0.18 0.17

m31 0.29 0.26

m32 0.24 0.25
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the bone is free to rotate around the clamp axis. This

makes it possible to monitor wave propagation, to

measure shear waves, and to determine the velocities of

these waves (CT) in all the longitudinal and radial di-

rections and for all angles of rotation of the samples.

The latter point is an original feature that conventional

ultrasonic methods do not provide.

The longitudinal velocity and Young’s modulus ob-

tained here are in line with the figures in the literature.

Basic assumption is that bone is orthotropic. Here, the

values of the longitudinal velocity in the fibre direction

(4000–4400 m/s) were greater than those in the radial

direction (3000–3600 m/s). Young’s modulus therefore

ranged from 14 to 21 GPa in the radial direction and 20

to 25 GPa in the longitudinal direction. Poisson’s ratio

ranged from 0.16 to 0.32 in the radial direction and 0.34

to 0.35 in the longitudinal direction. For the future, as

only a few measurement points were used in the present

experiments, it was difficult to finely analyze the distri-

bution of the bone characteristics in different regions of

the samples. One approach consists in establishing the

velocity map of the sample.

Moreover, the viscosity in compact bones should be

investigated to determine whether any dispersion occurs.

This study should be performed using a method to de-

termine the velocities and attenuation at various fre-

quencies. We also recommend applying these results to

burnt quantitative images of compact, cancellous bones

and osteoporosis bones [29]. For human bones we could

then take the age, weight, etc. of the person into ac-

count. Finally, the results of this study can be used in a

numerical model of bones to analyze structural failure

[30].

Appendix A. Resolution of the characteristic equation

This appendix presents the various steps in the reso-

lution of characteristic equation Eq. (4).

The resolution of the determinant gives the following

equation:

ðb� qC2
bÞðq2C4

b � qC2
bAþ BÞ ¼ 0 ðA:1Þ

where

A ¼ C11 cos
2 hþ C33 sin

2
hþ C55

B ¼ ðC11 cos
2 hþ C55 sin

2
hÞðC55 cos

2 hþ C33 sin
2
hÞ

�ðC13 þ C55Þ2 cos2 h sin2
h

b ¼ C66 cos
2 hþ C44 sin

2
h

8

>

>

<

>

>

:

Finally, the system to solve is

b� qC2
b ¼ 0

ðq2C4
b � qC2

bAþ BÞ ¼ 0

�

ðA:2Þ

The first equation gives the first eigenvalue b. The cor-

responding unit eigenvector component is [0, 1, 0], and

this vector is orthogonal to the excitation plane (x1, 0,

x3). This is the transverse mode not exciting in fluid.

The second equation gives the other two eigenvalues

2qC2
b ¼ A


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � 4B
p

ðA:3Þ
The plus sign corresponds to the quasi-longitudinal

wave and the minus sign corresponds to the quasi-

transverse wave.

To determine coefficients C33, C55, and C13, let us

assume Y1 ¼ C33, Y2 ¼ C55, and Y3 ¼ C13, and a ¼ C11

(known).

Let ak ¼ cos2 hk and and bk ¼ qCbk be the result of a

k-measurement, with hk the refraction angle and Cbk the

celerity of the longitudinal or transverse wave. We

found the following equation:

fkðY1; Y2; Y3Þ ¼ Ak
1Y1 þ Ak

2Y2 þ Ak
3Y

2
3 þ Ak

4Y1Y2

þ 2Ak
3Y2Y3 þ Ak

5 ðA:4Þ
where

Ak
1 ¼ ð1� akÞðaak � bkÞ

Ak
2 ¼ aa2k � bk

Ak
3 ¼ �akð1� akÞ

Ak
4 ¼ ð1� akÞ2

Ak
5 ¼ �bkðaak � bkÞ

8

>

>

>

>

<

>

>

>

>

:

ðA:5Þ

and k 2 f1;Ng with N the total number of measure-

ments. Eq. (A.4) gives rise to an N-equations system

with three unknowns.

To find Y1, Y2, and Y3, we define the Euclidean norm

and the functional F ðY Þ ¼
P

k bkðfkðX ÞÞ2 where bk
(06 bk 6 1) is a weighting factor that can be used to

increase or decrease the influence of measure k. X is the

vector of the unknown, which is minimized using a

Newton method. The Xi determined are good approxi-

mations of the zeros of the functional F. From all these

calculations, we obtain:

max
i6 3

F ðXiÞj j6 10�11 ðA:6Þ

It is well known that the first-arrival signal detected in

an ultrasonic waveform is usually most easily identified

in a waveform, provided the source and receiver sepa-

ration is not too great. The question then is what rela-

tionship exists between a material’s elastic constants and

this longitudinal wave signal [14,15]. To determine this,

the Kelvin–Christoffel stiffnesses are separated into an

isotropic and a small anisotropic component. The

functional dependence between the wavespeed and the

elastic constants is similar for phase and group velocity

values [15]. For an orthotropic solid, there are particu-

larly simple relations between the ultrasonic phase ve-

locities measured along particular directions and the

elastic constants [14,15]. Hence, measuring all the wave-

speeds, longitudinal and shear, along each of the three

principal orthogonal acoustic axes of the material,

makes it possible to determine six of nine elastic moduli

6



needed to completely characterize an orthotropic ma-

terial. These results are tabulated in [16].
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