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Abstract

This paper presents a theoretical study on the influence of a discrete element
in the nonlinear dynamics of a continuous mechanical system subject to ran-
domness in the model parameters. This system is composed by an elastic bar,
attached to springs and a lumped mass, with a random elastic modulus and
subjected to a Gaussian white-noise distributed external force. One can note
that the dynamic behavior of the bar is significantly altered when the lumped
mass is varied, becoming, on the right extreme and for large values of the
concentrated mass, similar to a mass-spring system. It is also observed that
the system response is more influenced by the randomness for small values of
the lumped mass. The study conducted also show an irregular distribution
of energy through the spectrum of frequencies, asymmetries and multimodal
behavior in the probability distributions of the lumped mass velocity.
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1. Introduction

A couple of engineering structure has small parts whose dimensions are
negligible compared to the entire structure, but its presence induces signif-
icant effects on its behavior. In this situation it is common to model the
structure as a continuous system with discrete elements coupled. The open
literature reports studies that use such continuous/discrete models for the
analysis of drillstrings [20], carbon nanotubes [3, 18], naval structure-motor
coupling [22], beams coupled with springs [13, 17], a damper [14] and/or a
discrete mass [2], etc.

Like any computational model, these continuous/discrete models are sub-
jected to uncertainties. These uncertainties are due to the variability of the
model parameters (physical constants, geometry, etc), and mainly due to the
possible inaccuracies committed in the model conception (wrong hypotheses
about the physics) [23, 24, 25].

In this sense, this work intends to analyze the influence of discrete el-
ements in a continuous mechanical system subjected to randomness in the
model parameters. For this, it is considered a one-dimensional elastic bar,
with random elastic modulus, fixed on the left extreme and with a lumped
mass and two springs (one linear and another nonlinear) on the right extreme,
with viscous damping, and subjected to an external force which is propor-
tional to a Gaussian white-noise. The theoretical study developed aims to
illustrate a consistent methodology to analyze the influence of coupled dis-
crete elements into the stochastic dynamics of nonlinear mechanical systems.
The results of this study complement a series of preliminary studies made on
the same subject [8, 9, 10, 11].

The work is organized as follows. The section 2 presents the deterministic
equation of the model, its variational form, and the discretization procedure
used to solve it. The stochastic modeling of the problem is shown in sec-
tion 3, as well as the construction of a probability distribution for the elastic
modulus, using the maximum entropy principle. In the section 4, some con-
figurations of the model are analyzed in order to characterize the effect of
lumped mass in the nonlinear dynamical system. Finally, in the section 5,
the main conclusions are emphasized.
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2. Deterministic modeling of the mechanical system

2.1. Strong form of the initial–boundary value problem

The mechanical system that will be studied in this work is presented
Figure 1. It consists of an elastic bar for which the left side is fixed at a rigid
wall, and the right side is attached to a lumped mass and two springs (one
linear and one nonlinear). For simplicity, from now on, this system will be
called the fixed-mass-spring bar or simply the bar.

x

u(x, t)

L

k

kNL

m

Figure 1: Sketch of a bar fixed at one end, and attached to two springs and a lumped mass
on the other extreme.

The bar displacement field1 u, which depends on the position x and the
time t, evolves, for all (x, t) ∈ (0, L)× (t0, tf ], according to

ρA
∂2u

∂t2
+ c

∂u

∂t
=

∂

∂x

(
EA

∂u

∂x

)
(1)

−

(
ku+ kNLu

3 +m
∂2u

∂t2

)
δ(x− L) + f(x, t),

where ρ is mass density, A is the cross section area, c is the damping coef-
ficient, E is the elastic modulus, k is the stiffness of the linear spring, kNL
is the stiffness of the nonlinear spring, m is the lumped mass, and f is a
distributed external force, which depends on x and t. The symbol δ(x − L)
denotes the delta of Dirac distribution at x = L, where L is the bar length.

1The field u is implicitly assumed to be as regular as needed for the initial–boundary
value problem of Eqs.(2) to (3) to be well posed.
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The boundary conditions for this problem are given by

u(0, t) = 0, and EA
∂u

∂x
(L, t) = 0, (2)

and the initial position and the initial velocity of the bar are

u(x, t0) = u0(x), and
∂u

∂t
(x, t0) = v0(x), (3)

u0 and v0 being known functions of x, defined for 0 ≤ x ≤ L. For instance,

u0(x) = α1φ3(x) + α2x, and v0(x) = 0, (4)

where α1 and α2 are constants, and φ3 is the third mode2 of the bar. Note
that u0 reaches the maximum value at x = L, see Figure 2 for instance. This
function is used to “activate” the spring cubic nonlinearity, which depends on
the displacement at x = L.

x

u0

L

Figure 2: This figure illustrates the graph of u0, the initial displacement of the bar.

2.2. Weak form of the initial–boundary value problem

Let Ut be a class of (time dependent) basis functions and W be a class of
weight functions. These sets are chosen as the space of functions with square
integrable spatial derivative, which satisfy the essential boundary condition
defined by Eq.(2).

2Further details in the section 2.4
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The weak formulation of the initial–boundary value problem above con-
sists in finding, for all w in W , a displacement field u in Ut such that the
following equations are satisfied

M(ü, w) + C(u̇, w) +K(u,w) = F(w) + FNL(u,w), (5)

M̃(u(·, t0), w) = M̃(u0, w), (6)

and

M̃(u̇(·, t0), w) = M̃(v0, w), (7)

where M is the mass operator, C is the damping operator, K is the stiffness
operator, F is the distributed external force operator, FNL is the nonlinear
force operator, and M̃ is the associated mass operator. These operators are,
respectively, defined as

M(ü, w) =

∫ L

0

ρA ü(x, t)w(x) dx+mü(L, t)w(L), (8)

C(u̇, w) =

∫ L

0

c u̇(x, t)w(x) dx, (9)

K(u,w) =

∫ L

0

E Au′(x, t)w′(x) dx+ k u(L, t)w(L), (10)

F(w) =

∫ L

0

f(x, t)w(x) dx, (11)

FNL(u,w) = −kNL
(
u(L, t)

)3
w(L), (12)

M̃(u,w) =

∫ L

0

ρAu(x, t)w(x) dx, (13)

where ˙ is an abbreviation for time derivative and ′ is an abbreviation for
spatial derivative.

2.3. Linear conservative dynamics associated

Consider the linear homogeneous equation associated to the Eq.(5),

M(u,w) +K(u,w) = 0, (14)
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obtained when disposing the dissipation and the external forces acting on the
mechanical system.

Assume that Eq.(14) has a solution of the form u(x, t) = eiνtφ(x), where
ν is the natural frequency, φ is mode and i =

√
−1 is the imaginary unit.

Replacing this expression of u in the Eq.(14), and using the linearity of the
operators M and K, one gets(

−ν2M(φ,w) +K(φ,w)
)
eiνt = 0, (15)

which, since eiνt 6= 0 for all t, is equivalent to

−ν2M(φ,w) +K(φ,w) = 0, (16)

a generalized eigenvalue problem.
In order to solve the generalized eigenvalue problem defined by Eq.(16),

the technique of separation of variables is employed, which leads to a Sturm-
Liouville problem [1], with denumerable number of solutions. Therefore,
this problem has a denumerable number of solutions, all of then such as the
following eigenpair (ν2n, φn), where νn is the n-th natural frequency and φn is
the n-th mode of the system.

Note that, the eigenfunctions {φn}+∞n=1 span the space of functions which
contains the solution of the Eq.(16) [6]. Also, as can be seen in [15], these
eigenfunctions satisfy, for all m 6= n, the orthogonality relations given by

M(φn, φm) = 0, (17)

and

K(φn, φm) = 0. (18)

The characteristics listed above made the modes of the system good
choices for the basis function, when one uses a weighted residual procedure
[12] to approximate the solution of the nonlinear variational problem defined
by Eqs.(5) to (7).

2.4. Modes and natural frequencies

According to [4], a fixed-mass-spring bar has its natural frequencies and
the corresponding orthogonal modes shape given by

νn = λn
c̄

L
, (19)
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and

φn(x) = sin

(
λn
x

L

)
, (20)

where c̄ =
√
E/ρ is the wave speed, and the λn are the solutions of

cot (λn) +

(
kL

AE

)
1

λn
−
(

m

ρAL

)
λn = 0. (21)

The first six orthogonal modes shape of the fixed-mass-spring bar with
m = 1.5 kg, whose the other parameters are presented in the beginning of
section 4, are illustrated in Figure 3. In this figure each sub-caption indicates
the approximated natural frequency associated with the corresponding mode.

2.5. Discretization of the model equations

The Galerkin method [16] is employed to approximates the solution of
the variational problem given by Eqs.(5) to (7). In this weighted residual
procedure the displacement field u is approximated as

u(x, t) ≈
N∑
n=1

un(t)φn(x), (22)

where the basis functions φn are the orthogonal modes of the conservative
and non-forced dynamical system associated to the fixed-mass-spring bar,
and the coefficients un are time-dependent functions. This results in the
following system of nonlinear ordinary differential equations

[M ] ü(t) + [C] u̇(t) + [K]u(t) = f(t) + fNL
(
u̇(t)

)
, (23)

supplemented by the following pair of initial conditions

u(t0) = u0 and u̇(t0) = v0, (24)

where u(t) is the vector of RN in which the n-th component is un(t), [M ] is
the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix. Also,
f(t), fNL

(
u(t)

)
, u0, and v0 are vectors of RN , which respectively represent

the external force, the nonlinear force, the initial position, and the initial
velocity. The initial value problem of Eqs.(23) and (24) has its solution ap-
proximated by Newmark method [16], in which a Newton-Raphson iteration
is used to solve the nonlinear system of algebraic equations that arises from
the discretization.
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Figure 3: The first six orthogonal modes and the corresponding (approximated) natural
frequencies of a fixed-mass-spring bar with m = 1.5 kg.

3. Stochastic modeling of the mechanical system

3.1. Stochastic initial–boundary value problem

Consider a probability space (Θ,A,P), where Θ is sample space, A is a
σ-field over Θ and P is a probability measure. In this probability space, the
elastic modulus is assumed to be a random variable E : Θ → R, and the
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distributed external force a random field F : [0, L]× [t0, tf ]×Θ → R.
Due to the randomness of F and E, the bar displacement becomes a

random field U : [0, L]× [t0, tf ]×Θ → R, which evolves according to

ρA
∂2U

∂t2
+ c

∂U

∂t
=

∂

∂x

(
EA

∂U

∂x

)
(25)

−

(
kU + kNLU

3 +m
∂2U

∂t2

)
δ(x− L) + F (x, t, θ).

This problem has boundary and initial conditions similar to those defined
in Eqs.(2) and (3), by changing u for U only. Furthermore, the partial deriva-
tives now are not defined in the classical way, but in the mean square sense
[19].

3.2. Random external force modeling

The distributed external force acting on the bar is assumed as the form

F (x, t, θ) = σφ1(x)N(t, θ), (26)

where σ is the force amplitude, φ1 the bar first mode3, and N(t, θ) is a
Gaussian white-noise4 with zero mean and unit variance.

A typical realization of the random external force, given by Eq.(26), for
fixed position, is shown in Figure 4.

3.3. Random elastic modulus distribution

The elastic modulus cannot be negative, so it is reasonable to assume
the support of E as the interval (0,∞). Therefore, the probability density
function (PDF) of E is a nonnegative function pE : (0,∞) → R, which
respects the following normalization condition∫ ∞

0

pE(ξ) dξ = 1. (27)

3The choice of the spatial shape of the excitation seek for a configuration that is phys-
ically plausible and simple. The first mode meets both requirements.

4Remember that a white-noise is a random process which all instants of time are un-
correlated. In other words, the behavior of the process at any given instant of time has no
influence on the other instants.
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Figure 4: This figure illustrates a realization of the random external force at x = L.

Additionally, it is supposed that the expected value of E is a known
(finite) real number, i.e.,∫ ∞

0

E(ξ) pE(ξ) dξ = µE <∞, (28)

as well as the expected value of ln (E),∫ ∞
0

ln (E) pE(ξ) dξ = µln (E) <∞, (29)

being the latter requirement a sufficient condition to ensure that E−1 exists
almost sure, and is a second order random variable [23, 24].

Following the suggestion of [23, 24, 25], the maximum entropy principle
is employed in order to consistently specify pE. This methodology chooses
for E the PDF which maximizes the entropy function defined by

S [pE] = −
∫ ∞
0

pE(ξ) ln
(
pE(ξ)

)
dξ, (30)

subjected to the constraints given by (27), (28) and (29). These restrictions
effectively define the known information about E.

The gamma distribution is the one which solves the optimization problem
above, and its PDF is given by

pE(ξ) = 1(0,∞)
1

µE

(
1

δ2E

) 1

δ2E


1

Γ(1/δ2E)

(
ξ

µE

) 1

δ2E
− 1


exp

(
− ξ

δ2EµE

)
,

(31)
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where 1(0,∞) denotes the indicator function of the interval (0,∞), Γ indicates
the gamma function, and δE is a type of dispersion parameter, such that
1 ≤ δE ≤ 1/

√
2, defined as the ratio between the standard deviation and the

mean of E.

3.4. Stochastic solver: Monte Carlo method

Uncertainty propagation in the nonlinear stochastic dynamics of the bar
is computed by Monte Carlo (MC) method [21, 7]. This stochastic solver
uses a pseudorandom number generator to obtain many realizations of E
and F . Each one of these realizations defines a new Eq.(5), so that a new
weak problem is obtained. After that, these new weak problems are solved
deterministically, such as in section 2.5. All the MC simulations reported in
this work use 4096 samples to access the random system.

4. Numerical experimentation

The numerical experiments presented in this section adopt for the system
parameters the deterministic values shown in Table 1. Also, the random
variable E, is characterized by the mean µE = 203 GPa and the dispersion
δE = 0.1.

Table 1: This table presents the deterministic (nominal) parameters used in the numerical
simulations reported in this work.

parameter value unit

ρ 7900 kg/m3

A 625π mm2

L 1 m
c 5 kN/s
k 650 N/m
kNL 650× 1013 N/m3

σ 5 kN
α1 0.1 mm
α2 0.5× 10−3 —

The approximation to the solution of the weak initial-boundary value
problem of section 2.2, constructed as described in the section 2.5, uses 10
modes. As the 10-th natural frequency of the system is ≈ 23.08 kHz, a

11



representative frequency band of this dynamical system is B = [0, 25] kHz.
Thus, to analyze the dynamics of the system in this frequency band, it is
adopted a “temporal window” given by the interval [t0, tf ] = [0, 20] ms.

For sake of reference, a deterministic (nominal) model, with E = µE,
and f(x, t) = σφ1(x), is considered. Furthermore, a parametric study, with
m∗ = 0.1, 1, 10, 50, is performed to investigate the effect of the end mass
on the bar dynamics, where the discrete–continuous mass ratio is defined as

m∗ =
m

ρAL
. (32)

4.1. Evolution of the lumped mass velocity

The mean value of the lumped mass velocity, i.e, U̇(L, ·, ·), its nominal
value, and an envelope of reliability, wherein a realization of the stochastic
system has 98% of probability of being contained, are shown, for different
values of m∗, in Figure 5. By observing this figure one can note that, as the
value of lumped mass increases, the mean value tends to the nominal value.
That is, the system is “more random” for small values of m∗.

Also, the analysis of Figure 5 shows that, for large values of m∗, the decay
in the system displacement amplitude decreases significantly, i.e., the system
is not much influenced by damping as m∗ →∞.

Explanations for the observations made in the preceding paragraphs of
this section are provided by the analysis of the system orbit in phase space,
which is done in the section 4.2.

Furthermore, the amplitude of the confidence interval increases with time
for all values of m∗, i.e., the system uncertainty at x = L is greater in the
stationary regime. This is evident in the first three graphs, but remains true
in the fourth graph, and is due to the accumulation of uncertainties with the
increasing time.

4.2. Orbit of the lumped mass in the mechanical system phase space

The mean orbit, in the phase space, of the fixed-mass-spring bar at x = L
is shown, for different values of m∗, in Figure 6. Distinct behaviors, for the
different values of m∗ shown, can be observed.

For m∗ = 0.1, the mean orbit is quite different from the “disturbed”
nominal orbit observed. This is because the response of the nominal system
depends on the initial conditions for a long period, fact which is not observed
for the other values of m∗. This explains why the mean velocity tends to the
nominal velocity when m∗ increases.
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(c) m∗ = 10
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(d) m∗ = 50

Figure 5: This figure illustrates the mean value (blue line) and a 98% of probability
interval of confidence (grey shadow) for the random process U̇(L, ·, ·), for several values of
the discrete–continuous mass ratio.

The assertive made in the second paragraph of section 4.1, about how
the influence of the damping in the system decreases, can be confirmed by
analyzing the Figure 6, since the mean orbit of the system tends from a stable
focus to an ellipse as m∗ increases. So, the limit behavior of the bar right
extreme with m∗ → ∞ is a mass-spring system. This limit behavior, which
tends to a conservative system, occurs because, with the increasing of m∗,
most of the mass of the system becomes concentrated at the right extreme of
the bar. Thus, the bar behaves like a massless spring. Also, as the damping
is distributed along the bar and the mass of it became negligible, the viscous
dissipation becomes ineffective.
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Figure 6: This figure illustrates the mean orbit, in the phase space, of the fixed-mass-spring
bar at x = L, for several values of the discrete–continuous mass ratio.

4.3. Power spectral density of the lumped mass velocity

The energy distribution of the bar through the frequency spectrum can
be seen in Figure 7, which shows the mean power spectral density (PSD) of
the lumped mass (steady state) velocity and its nominal value.

The presence of the white-noise forcing excites the mechanical system in
all frequencies of the band B. This is made evident by the various peaks
in the mean PSD function, each one occurring in a frequency that is very
close to a natural frequency of the system. It is important to note that the
peaks of the nominal and of the mean PSD occur practically at the same
frequencies. Once the forcing does not influence the natural frequencies,
the only random parameter to promote changes in natural frequencies is E,
whose the randomness is reasonably low.
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A larger number of peaks can be seen in the high frequencies, but the peak
with greater height, and thus, the more energy, is always the first frequency
of the spectrum. As the spatial dependence of the forcing is given by the first
mode, as can be seen in Eq.(26), the low frequency of the spectrum receives
an “extra contribution” of energy beyond the white-noise.

However, as m∗ increases, the natural frequencies of the associated con-
servative system decrease, which is not observed in the case of the bar. This
difference in the system behavior, as well as irregular redistribution of energy
along the spectrum, when m∗ changes, may be due to cubic nonlinearity.
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Figure 7: This figure illustrates estimations to the PSD of the random process U̇(L, ·, ·),
for several values of the discrete–continuous mass ratio.
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4.4. Probability density function of the lumped mass velocity

The difference between the system dynamical behavior is even clearer
if one looks at the PDF estimations5 of the normalized random variable
U̇(L, tf , ·), which are presented in Figure 8. Note that in this context normal-
ized means a random variable with zero mean and unit standard deviation.
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(a) m∗ = 0.1
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(b) m∗ = 1
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(c) m∗ = 10
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(d) m∗ = 50

Figure 8: This figure illustrates estimations to the PDF of the (normalized) random vari-
able U̇(L, tf , ·), for several values of the discrete–continuous mass ratio.

In all cases the PDF presents an asymmetry around the (zero) mean as
can be seen in the Table 2, which shows the probability of the normalized
random variable U̇(L, tf , ·) be less than or equal to the mean, for several
values of the discrete–continuous mass ratio.

5These estimates were obtained using a kernel smooth density technique [5].
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These asymmetries indicate if it is more probable the velocity be higher
or lower than the mean, according to the area under the PDF curve to the
right or to the left of the mean, respectively. The observed values are in
agreement with what is seen in the envelopes of reliability of Figure 5.

Table 2: This table presents the probability of the normalized random variable U̇(L, tf , ·)
be less than or equal to the mean, for several values of the discrete–continuous mass ratio.

m∗ probability

0.1 ≈ 0.52
1 ≈ 0.50
10 ≈ 0.28
50 ≈ 0.53

Furthermore, it is possible to observe a multimodal behavior in some
of the PDFs shown in the Figure 5. This multimodal behavior indicates a
high number of realizations close to the values that correspond to the peaks.
Therefore, it can be concluded that the regions near the peaks are areas of
greater probability for the system response. Note that these areas change
irregularly when m∗ is varied.

5. Concluding remarks

This work presents a model to describe the nonlinear dynamics of a elas-
tic bar, attached to discrete elements, with viscous damping, random elastic
modulus, and subjected to a Gaussian white-noise distributed external force.
The elastic modulus is modeled as a random variable with gamma distribu-
tion, being the probability distribution of this parameter obtained by the use
of the maximum entropy principle.

An analysis of the model is performed, indexed by a dimensionless pa-
rameter which describes the ratio between the discrete/continuous mass of
the system. This analysis shows that the dynamics of the random system
is significantly altered when the values of the lumped mass are varied. It is
observed that this system right extreme behaves, in the limiting case where
the lumped mass is very large, such as a mass-spring system. Also, one can
note an irregular distribution of energy through the spectrum of frequencies,
maybe induced by the cubic nonlinearity. Furthermore, the probability dis-
tributions of the lumped mass velocity present asymmetries and multimodal
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behavior, being this multimodality associated with the existence of areas of
greater probability for the dynamic system response.
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