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Abstract—This paper presents a new kernel on fuzzy sets:
the cross product kernel on fuzzy sets which can be used to
estimate similarity measures between fuzzy with a geometrical
interpretation in terms of inner products. We show that that
kernel is a particular case of the convolution kernel and it
generalize the widely-know kernel on sets towards the space of
fuzzy sets. Moreover, we show that the cross product kernel on
fuzzy sets performs an embedding of probability measures into
a reproduction kernel Hilbert space. Finally, we experimentally
show the applicability and power of this kernel on a supervised
classification task on noisy datasets.

Index Terms—Kernel on fuzzy sets, similarity measures on
fuzzy sets, kernel on sets.

I. INTRODUCTION

Similarity measures between elements from a set are key
components in several areas of research. For instance, in
machine learning the concept of similarity measure is pri-
mal to find out regions within the data space with similar
characteristics. That is useful in the definition of tasks like
classification, clustering or density estimation. The same is
true in computer vision and image processing where well-
defined similarity measures play an important role in practical
tasks like image segmentation, object tracking and recognition.

A similarity measure is a value, that is close to zero for
objects with different properties That is, two objects are more
similar if that value is far away from zero. For instance, the
inner product is a similarity measure defined on elements from
a vector space. We emphasize the importance of the inner
product as similarity measure because it enables a geometrical
interpretation of a similarity measure, and hence, a geometrical
understating of algorithms that make use of it.

It is important to be noted that most of the data collected
from real word problems cannot be modeled as an inner
product space1. For example, in social data analytics, data
usually is given by collection of graphs; in bio-informatics,
the biological information is encoded by strings; in natural
language processing, procedures almost work with words and
grammars; in artificial intelligence, the data could be defined
by a set of logic predicates.

In the realm of fuzzy data analytics , i.e. data containing
fuzzy sets as observations as a result of modeling either point-
wise uncertainty or granular information [1], the concept of
similarity measure is a key concept. There has been extensive
research on defining similarity measures between fuzzy sets

1An inner product space is a vectorial space equipped with an inner product

and applying those similarity measures on real tasks [2].
However, most of the existing similarity measures between
fuzzy sets have a lack of geometrical interpretation within
geometrical spaces, i.e. Hilbert spaces, because such similarity
measures are defined on the space of fuzzy sets which is not
a vectorial space.

The main subject of this paper is to investigate similarity
measures for fuzzy sets with geometrical interpretation on
Hilbert spaces. In order to properly define similarity measures
on fuzzy sets with such characteristics we use the concept of
positive definite kernels.

A. Positive definite kernels

Positive kernels are functions acting as similarity measures
between elements from a set. They provide a way to com-
pute an inner product in Reproducing Kernel Hilbert Spaces
(RKHS) H for non-vectorial data. Formally, a kernel k is a
real-valued function defined on X × X with X being a non-
empty set. A kernel k is a positive definite function if it satisfy:

N∑
i=1

N∑
j=1

cicjk(xi, xj) ≥ 0, (1)

for all N ∈ N, {c1, . . . , cN} ⊂ R, {x1, . . . , xN} ⊂ X .
Positive definite kernels have the following properties

1) ∀x ∈ X there is a function φx = k(., x) ∈ H
2) ∀f ∈ H,∀x ∈ X 〈k(., x), f〉H = f(x), where 〈., .〉H

denotes the inner product in H.
Property 1) assures that for every element in the input space
there always exist a representer function of it in the RKHS.
Property 2) is called reproducing property which implies an
implicitly evaluation of inner products using kernels:

k(x, y) = 〈φx, φy〉H, (2)

where functions φy = k(., y) and φx = k(., x), are the
representative functions of elements x, y ∈ X , respectively.

B. Contributions

We claim the following contributions:
• We defined a new similarity measure for fuzzy sets using

kernels on fuzzy sets with a geometrical interpretation by
means of inner products.

• We showed several properties of the cross product kernel
on fuzzy set, for instance, we showed that it is a particular



case of the convolution kernel, it generalize the kernel on
sets, it embeds probability distributions into a RKHS.

• We experimentally showed the power of those kernels
through a supervised classification experiments on noisy
attribute datasets.

C. Previous work

Kernels on fuzzy sets is a new area of research on the
realm of similarity measures between fuzzy sets. Some of
those kernels are the intersection kernel on fuzzy sets which
is defined in terms of the T-norm operator and it turns out
to be positive definite [3]. The non-singleton Takagi-Sugeno-
Kang fuzzy kernel, which can be casted as an intersection
kernel. That kernel arise from the context of fuzzy systems
and have an interpretation as fuzzy equivalence relation [4].
The distance-based kernel on fuzzy sets is a kernel defined by
putting a distance function between fuzzy sets into the kernel
definition using the concept of distance substitution kernels
[5]. Practical application on those kernels were given within
the machine learning area, for instance the non-singleton
Takagi-Sugeno-Kang was applied on the supervised classifi-
cation of low quality data. Distance-based kernels on fuzzy
sets and intersection kernel on fuzzy sets were used on a
hypotheses testing task using heterogeneous data containing
attributes given by linguistic values.

II. THE CROSS PRODUCT KERNEL

Kernels on sets, have been widely used in machine learning
applications as similarity measures between two sets [6], [7].
They are defined as follows: Let Ω be a non-empty set
and let denote by G(Ω) the set of all non-empty countable
finite subsets of Ω. The cross product kernel is a real-valued
mapping k : G(Ω)× G(Ω)→ R defined by [6]:

kset(A,B) =
∑

x∈A,y∈B
k(x, y), (3)

where the k is a real-valued kernel on Ω× Ω.
The kernel kset defines a class of kernels on sets that depend

on k. If k is positive definite then kset defines a similarity
measure for any two sets A,B ∈ G(Ω) by:

kset(A,B) = 〈φA, φB〉H, (4)

where φA and φB are the representer functions in a RKHS
H for the sets A,B, respectively. For instance, if (Ω,A, µ) is
a finite measure space, and k : Ω × Ω → R is a continuous
function with finite integral2, then kset is given by3:

kset(A,B) =

∫∫
x∈A
y∈B

k(x, y)dµ(x)dµ(y). (5)

Kernels on sets are widely used in computer vision and
machine learning tasks. They are also used to empirically
estimate a kernels on probability measures. In the next section

2k is a µ-integrable function, i.e., k ∈ L1(µ). (Definition 10.1, [8]).
3If

∫∫
Ω
k(x, y)dµ(x)dµ(y) > 0, ∀µ ∈Mb(Ω), where Mb(Ω) is the set

of all finite signed Borel measures on Ω, then k is said to be integrally strictly
pd.

we define a kernel on fuzzy sets which can be used to define
similarity measures between fuzzy sets.

III. THE CROSS PRODUCT KERNEL ON FUZZY SETS

This section introduces a kernel on fuzzy sets. We study the
case when those kernels are positive definite and consequently
define similarity measures for fuzzy sets in terms of inner
products. We use the following notation. Fuzzy sets on Ω are
denoted by X,Y, Z. The membership function Ω→ [0, 1] of a
fuzzy sets X is denoted by X(.), consequently, notation X(x),
x ∈ Ω is the membership degree of x to the fuzzy set X . The
support of a fuzzy set X , i.e. {x ∈ Ω | X(x) > 0}, is denoted
by supp(X). Finally, the set of all the fuzzy sets in Ω is be
denoted by F(Ω).

Assuming that for all X ∈ F(Ω) the set supp(X) is a
nonempty finite countable set, we present the cross product
kernel on fuzzy sets in the following definition.

Definition 1 (The cross product kernel on fuzzy sets). Given
two real-valued kernels k1, k2 defined on Ω× Ω and [0, 1]×
[0, 1] respectively. The cross product kernel on fuzzy sets is a
function k× : F(Ω)×F(Ω)→ R given by:

k×(X,Y ) =
∑

x∈supp(X),
y∈supp(Y )

k1 ⊗ k2

(
(x,X(x)), (y, Y (y))

)
, (6)

where X(x) and Y (y) are the membership degrees for the
elements x, y ∈ Ω to the fuzzy sets X,Y , and ⊗ denotes the
tensorial product: k1 ⊗ k2 : (Ω × [0, 1]) × (Ω × [0, 1]) → R
defined by:

k1 ⊗ k2

(
x,X(x), y, Y (y)

)
= k1(x, y) k2(X(x), Y (y)). (7)

The cross product kernel on fuzzy sets define a class of
kernels on fuzzy sets depending on the base kernels k1, k2. The
next section shows how k× can be used to define a similarity
measure for two fuzzy sets by means of inner products in H.

A. Positive Definite Kernels on fuzzy sets

In order to have an interpretation of the cross product kernel
on fuzzy sets in terms of inner products in a RKHS H we
restrict the kernels k1 and k2 to be positive definite.

Lemma 1. If k1 and k2 are real-valued positive definite
kernels, then the cross product kernel on fuzzy sets is a real-
valued positive definite kernel.

Proof. Operator ⊗ preserves positivity (Corollary 1.13, [9])
then k1 ⊗ k2 = k1k2 is a positive definite kernel on (Ω ×
[0, 1])× (Ω× [0, 1]). By closure properties of kernels, the sum
of positive definite kernels is positive definite. Consequently,
k× is positive definite.

Corollary 2. A positive definite cross product kernel on fuzzy
sets defines a similarity measure for two fuzzy sets X,Y ∈
F(Ω) as follows:

k×(X,Y ) = 〈φX , φY 〉H, (8)

Proof. The true of the above statement follows from the
reproducing property of positive definite kernels.



Corollary 2 basically says that k× is a similarity measure
for fuzzy sets with an implicit interpretation in terms of inner
products in a RKHS. This result enables the use of geometrical
algorithms, for instance kernel algorithms in machine learning,
on sets of fuzzy sets. i.e., fuzzy data. Those algorithms can be
used on elements φX ∈ H by means of the kernel k×. Another
consequence of Corollary 2 is that by means of 〈X,Y 〉F(Ω)

def
=

〈φX , φY 〉H, it is possible to induce an inner product on the
fuzzy set space which induce a topology on the space of fuzzy
sets. Moreover, it is still possible to use any kernels for k1 and
k2 in k×, i.e., negative or indefinite kernels. The geometrical
representation for such cases is guaranteed in pseudoEuclidean
and Krein spaces [9], [10].

B. Examples

Example 1. Table I shows four instances of the cross product
kernel on fuzzy sets when k2

(
X(x), Y (y)

)
= X(x)Y (y) and

k1 is a positive definite kernel.

k1(x, y) k×(X,Y )

linear
∑

x∈supp(X),
y∈supp(Y )

xyX(x)Y (y)

polynomial
∑

x∈supp(X),
y∈supp(Y )

(α〈x, y〉+ β)dX(x)Y (y)

exponential
∑

x∈supp(X),
y∈supp(Y )

exp(σ〈x, y〉)X(x)Y (y)

gaussian
∑

x∈supp(X),
y∈supp(Y )

exp(−σ‖x− y‖2)X(x)Y (y)

TABLE I
EXAMPLES OF CROSS PRODUCT KERNELS ON FUZZY SETS.

Kernels from Table I weight each element of the set by
their membership degree. In areas like machine learning and
data science that permits to incorporate into the classifier the
uncertainty of observations by means of the kernel.

Example 2. Let (Ω,A, µ) be a finite measure space. Let k1, k2

be continuous functions with finite integral. The kernel

k×(X,Y ) =∫∫
x∈supp(X),
y∈supp(Y )

k1 ⊗ k2

(
(x,X(x)), (y, Y (y))

)
dµ(x)dµ(y),

(9)

is a cross product kernel on fuzzy sets.

Example 3. Replacing measure µ of the previous example
with a probability measure P results in the following cross
product kernel on fuzzy sets:

k×(X,Y ) =∫∫
x∈supp(X),
y∈supp(Y )

k1 ⊗ k2

(
(x,X(x)), (y, Y (y))

)
dP(x)dP(y),

(10)

The previous example shows a way to included into the
kernel two important concepts on uncertainty modeling: fuzzy-
ness and randomess. Fuzzyness in the form of membership
functions and randomness because, independently of the de-
gree of membership of x to the fuzzy set X , the above
formulation considers the values x being outcomes of a
random variable with probability distribution P.

C. Generalization towards a product space

A generalization of k× to deal with a D-tuple of fuzzy sets,
i.e., (X1, . . . , XD) ∈ F(Ω1) × · · · × F(ΩD) is implemented
by the following kernel:

kπ×
(
(X1, . . . , XD), (Y1, . . . , YD)

)
=

D∏
d=1

kd×(Xd, Yd). (11)

If all the kernels kd× are positive definite then kπ× is positive
definite by closure properties of kernels. Another general-
ization based on addition of positive definite kernels is also
possible:

kΣ
×
(
(X1, . . . , XD), (Y1, . . . , YD)

)
=

D∑
d=1

αik
d
×(Xd, Yd).

(12)
Kernel kΣ

× is positive definite if only if αi ∈ R+ and all the
kD× kernels are positive definite.

IV. PROPERTIES

We show that cross product kernels on fuzzy sets satisfy:
• k× is a convolution kernel;
• k× generalize the cross product kernel on sets;
• k× embeds probability distributions into a RKHS.

A. Kernel k× is a convolution kernel

Convolution kernels [6], [7] are kernels on sets, whose
elements are discrete structures. We define them as follows.

Definition 2 (Convolution kernel). Let e and ~e =
(e1, e2, . . . , eL) elements of the sets E and E1 × · · · × EL,
respectively. Given the relation R ⊆ (E1×E2×· · ·×EL)×E,
with characteristic function:

R : E1 × E2 × · · · × EL × E → {true, false}
(~e, e) 7→ R(~e, e), (13)

and given the decomposition R−1(e) = {~e | R(~e, e) = true}.
The convolution kernel is a real valued function on E × E,
satisfying ∀e, e′ ∈ E:

kconv(e, e
′) =

∑
~e∈R−1(e),~e′∈R−1(e′)

L∏
l=1

kl(el, e
′
l), (14)

where kl, 1 ≤ l ≤ L are positive definite kernels on El × El.

Next, we prove that the cross product kernel on fuzzy sets is
a convolution kernel. This can be achieved by properly define
a relation among: 1) elements of fuzzy sets, 2) membership
degrees, and 3) fuzzy sets. That idea is stated formally in the
following proposition.



Proposition 3. The kernel k× is a convolution kernel.

Proof. Let be R a relation with characteristic function from
R : Ω × [0, 1] × F(Ω) to {true, false} such R(x,X(x), X)
is true only if x ∈ supp(X). Consider the decomposition:
R−1(X) =

{(
x,X(x)

)
| R(x,X(x), X) = true

}
. Replacing

those concepts into (14), we get the following convolution
kernel on F(Ω)×F(Ω):

kconv(X,Y ) =
∑(

x,X(x)
)
∈R−1(X),(

y,Y (y)
)
∈R−1(Y )

k1(x, y) k2

(
X(x), Y (y)

)

Which is k×(X,Y ).

B. Kernel k× generalizes the cross product kernel on sets

A set A ⊂ Ω can be characterized by its characteristic
function 1A : Ω → {0, 1}, which is 1 if x ∈ A and 0
otherwise. Hence, A set A could be viewed as a fuzzy set with
membership function 1A. From definition 1) and assuming that
k2 is the linear kernel we have:

k×(A,A′) =
∑

x∈supp(A),
y∈supp(A′)

k1

(
x, y
)
1A(x)1A′(y)

=
∑

x∈A,x′∈A′
k(x, x′),

which is exactly the kernel on sets kset from (4).

C. k× embeds probability distributions into a RKHS.

In order to show that, we denote by P the set of all the
probability measures on RD, probability measures by P and
random variables with probability distribution P by X. The
embedding of probability measure P ∈ P into a RKHS H is
the mapping from P to H defined by P 7→ µP = EP[k(X, .)],
where E denotes the expectation taken over X and k is a
positive definite kernel on RD ×RD [11]. With this in mind,
the kernel from Example 3 could be rewritten as

k×(X,Y ) = EP

[
k1 ⊗ k2

((
X, X(X)

)
,
(
X, X(X)

))]
(15)

Finally, if we define k′ = k1⊗ k2 and X′ = (X, X(X)) then
the mapping P 7→ µP = EP[k′(X′, .)] is a valid embedding of
P into a RKHS H induced by kernel k1 ⊗ k2.

V. EXPERIMENTS

The goal of this experiment is to test the efficacy of k×
as similarity measure on a supervised classification task. We
believe that a classification task provides a valid framework to
test the goodness of similarity measures, for instance, a support
vector machine (SVM) would have more generalization power
if a good kernel is used to estimate the similarity measure
between the observations within data.

Fuzzy datasets can be used to model observations with
point-wise uncertainty introduced from several sources, for
instance noise measurements. Modeling observations with

fuzzy sets provides a way to disbelieve the widely accepted
assumption that a observation is the result of an exact mea-
surement, instead, all the computations are carried out on the
fuzzy version of the data. With this in mind, we used PIMA
and SONAR attribute noise data sets from the KEEL-dataset
repository [12] to perform the experiments.

We used MATLAB and R for the experiments, the code
used in the experiments can be obtained from https://github.
com/jorjasso/crossProductKernel-noisyData.

A. Datasets

Each PIMA and SONAR attribute noise data set is a set of
twelve datasets which are noisy versions from the original
PIMA or SONAR datasets. Each of those twelve datasets
either from PIMA or SONAR are grouped in three categories,
four sets of data per category. The categories are: noisy train
- noisy test, noisy-train - clean test and clean train- noisy test
(see Table II). See details of the noisy algorithm injection
algorithm in [13] All the PIMA attribute noise data sets
contain 768 observations belonging to one of two classes. The
proportion of observations within classes is 35%−65%, conse-
quently they are unbalanced datasets. Each dataset contains 8
independent variables. All the SONAR attribute noise data sets
contain 208 observations within two classes. The proportion of
observations within classes is 47%− 53%. The datasets have
60 independent variables. Table II summarizes the PIMA and
SONAR attribute noise data sets used in this experiment.

TABLE II
SUMMARY OF THE PIMA AND SONAR ATTRIBUTE NOISE DATASETS

Dataset %Noise Dataset %Noise

pima-5an-nn 5% sonar-5an-nn 5%
pima-10an-nn 10% sonar-10an-nn 10%
pima-15an-nn 15% sonar-15an-nn 15%
pima-20an-nn 20% sonar-20an-nn 20%
pima-5an-nc 5% sonar-5an-nc 5%
pima-10an-nc 10% sonar-10an-nc 10%
pima-15an-nc 15% sonar-15an-nc 15%
pima-20an-nc 20% sonar-20an-nc 20%
pima-5an-cn 5% sonar-5an-cn 5%
pima-10an-cn 10% sonar-10an-cn 10%
pima-15an-cn 15% sonar-15an-cn 15%
pima-20an-cn 20% sonar-20an-cn 20%

B. Experimental methodology

We used the attribute noise data sets on a supervised classifi-
cation task. In order to use kernel on fuzzy sets, we applied two
fuzzification approaches on the original data. Such procedure
estimate a membership degree for the values within the dataset.
Further, to have a better estimate of the generalization error, we
carried out nested cross-validation experiments using a SVM
and those kernels. In the next sections we describe the two
fuzzification approaches, the kernel setup and the nested cross-
validation experiments.



C. Fuzzification

We constructed an augmented version each noise data set by
adding information of the membership degrees of the values in
the data. To that end, we modeled each independent variable
per class with fuzzy sets using two fuzzification approaches :

a) First fuzzification approach: For each dataset in Table
II, we constructed a fuzzy set for each independent variable
per class, that procedure resulted in 16 fuzzy sets. i.e., 8
fuzzy sets per class. Each fuzzy set was constructed using
a Gaussian membership function with parameters µ, σ. i.e.,
exp(−0.5(x − µ)2/σ2). Those parameters were estimated in
the following way: For each independent variable in a specific
class, we estimated the first, second and third quartile of the
distribution of values of that independent variable, we denote
them as q1, q2, q3, respectively. Then we used the following
setup: µ = q2, and σ = |q3 − q1|/(2 ∗

√
2 ∗ log 2). This

setting correspond to the full width at half maximum used in
signal processing. Finally, we augmented each dataset from
Table II with the membership values of each value within
the observation using those 16 fuzzy sets. This fuzzification
approach is summarized in Algorithm 1. noisy datasets are
denoted by D, number of observations by N and the number of
independent variables by D. Each observation xi is an element
from RD and yi is a value in {−1, 1}. We denote the output
fuzzy dataset by MF and the fuzzy sets by Xd.

Algorithm 1 First fuzzification approach
Input: D = {(xi, yi)}Ni=1

Output: MF =
{(
xi, X1(x1

i ), . . . , XD(xDi ), yi
)}N
i=1

for each class yi do
for d = 1 to D do
q1, q2, q3 = quantile(xd1≤i≤N , (0.25, 0.5, 0.75))
µd = q2

σd = |q3 − q1|/(2 ∗
√

2 ∗ log 2)
Xd(.) = exp(−0.5(.− µd)2/σ2

d)
end for

end for

b) Second fuzzification approach: The procedure is al-
most similar to the first fuzzification approach, however, the
membership function of each fuzzy set is a scaled version of
the empirical probability density function of the distribution
of values of each independent variable per class. That is,
for each independent variable we estimated the histogram
of their values in a particular class. In order to create a
valid membership function, we interpolated the scaled values
from the histogram such that we end up with a [0, 1]-valued
function. Algorithm 2 describes this fuzzification approach.

D. Kernels

We used the linear kernel and the Gaussian kernel as
baseline kernels, they were applied on datasets from Table
II. We used the linear, exponential and Gaussian kernels for
k× listed in Table I. We denoted those kernels by fuzzy linear
- I, fuzzy exp - I and fuzzy Gaussian - I, respectively, if they

Algorithm 2 Second fuzzification approach
Input: D = {(xi, yi)}Ni=1

Output: MF =
{(
xi, X1(x1

i ), . . . , XD(xDi ), yi
)}N
i=1

for each class yi do
for d = 1 to D do
h = histogram(xd1≤i≤N )
h = h/max(h)
Xd(.) = linearInterpolation(h)

end for
end for

were used on the augmented data from the first fuzzification
approach. Otherwise, if they were used on the augmented data
from the second fuzzification approach we denoted them by
fuzzy linear - II, fuzzy exp - II and fuzzy Gaussian - II.

E. Nested cross validation experiments

In order to have a good estimate of the true generalization
error, we performed a nested cross-validation experiment as
sugested in [14] which uses an internal loop to perform model
selection and an outer loop to access the model performance.
We used the nested cross-validation procedure on each of the
eight models given by a SVM with one of the eight kernels
previously described. We used the Area Under the Curve
(AUC) metric as performance metric.

We tested each classifier (a SVM with one of the eight
kernels) using the five partitions available for each PIMA ans
SONAR attribute noise data set from the Keel repository. Each
partition contains a pair of train and test subsets of the original
data. For each of the five partitions, we performed model
selection on the training subset, for this purpose, we estimated
the hyper-parameters of the classifier with the smallest ten
fold cross-validation error. The hyper-parameters were the
kernel parameter and the regularization parameter for the
SVM. Those parameters were estimated from a grid of hyper-
parameters. We trained a SVM with the kernel using that best
hyper-parameters on all the training data for that partition,
further, we evaluated the performance of the classifier in the
remaining test set using the AUC metric. Finally, we reported
the mean of the AUC value across the test sets of the five
partitions.

F. Results

Figure 1 presents from left to right the results for the clean
train - noisy test, noisy train - noisy test, and noisy train -
clean versions of the PIMA dataset, respectively. The x-axis
shows the injected noise level. the y-axis shows the mean of
the AUC across the five test partitions from the nested cross-
validation procedure. We observed that a SVM with either a
linear or a Gaussian kernel has worst performance than a SVM
with the cross product kernels on fuzzy sets. Support vector
machines with kernels on fuzzy sets are not only superior in
terms of the AUC metric than the baseline case but they are
more robust to the noise injection because the AUC metric
remains somewhat constant. On the other hand, the SVM with



(a) (b) (c)

Fig. 1. Results for the PIMA attribute noise data set.

(a) (b) (c)

Fig. 2. Results for the PIMA attribute noise data set.

the linear and Gaussian kernels suffer a decay in the AUC
metric if the noise level is increased. Figures 2 from left to
right the results for the clean train - noisy test, noisy train
- noisy test, and noisy train - clean versions of the SONAR
dataset, respectively On all the cases we have that the cross
product kernel on fuzzy sets outperforms the baseline kernels.
and it is more noise resistant.

VI. CONCLUSION

Cross product kernel on fuzzy gives a new approach to
compute similarity measures between fuzzy sets. They allow
a geometrical interpretation of similarity measures between
fuzzy sets in RKHS’s. Consequently, kernel algorithms like
SVM’s can embed the point-wise uncertainty of observations
into the kernel definition via a kernel on fuzzy sets. Besides
proving some properties of that kernel we empirically showed
the practicality and power of those kernels through experi-
ments on supervised classification on attribute noise datasets.
Our findings suggest that those kernels not only outperform
classical kernels but are more noise resistant.
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