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Abstract:   

In this article, we study the angular plane waves expansion of the standing electric field 

within a reverberation chamber. For this purpose, we adapted a high resolution Root-MUSIC 

based method to the context of the reverberation chamber by using a decorrelation procedure 

to estimate the angles of arrival and complex amplitudes of the planes waves. Using FDTD 

simulations to get the standing electric field cartographies, we demonstrate, at low 

frequencies, that directions of arrival are slightly affected by the stirrer rotation whereas the 

wave amplitudes are strongly perturbed. This result indicates that stirrer works as a plane 

wave powers tuner. 

 

Key-words: reverberation chamber; directions-of-arrival; MUSIC; mode stirring; 

FDTD 

 

I. Introduction 

Reverberation chambers (RC) constitute a performing tool for radiated emissions and 

immunity measurements. They are electrically large multimoded cavities that use either 

electronic (Hill, 1994) or mechanical (Corona et al., 1996) stirring to reproduce, on the 

equipment under test (EUT), an average homogeneous and isotropic field. While fields within 

an RC are often described through their statistical distributions, it has been shown that they 

can be expanded on their angular plane wave spectra (Hill, 1998) (Moglie & Pastore, 2006). 
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As plane wave distributions are often used to model indoor and urban propagation channels, it 

is of great interest to use a similar representation in an RC in order to relate its performance to 

practical multipath environments where devices under test are used.  

The estimation of the directions of arrival (DOA) of wave fronts on an array of sensors is a 

common problem for many fields including radar, sonar (Iwata et al., 2001), radio astronomy, 

and mobile communications (Fuhl et al., 1997). Fourier analysis is the simplest technique to 

determine the plane wave angular distribution in space; however, it suffers from a poor 

angular resolution for a limited observation surface (as in an RC), generates secondary lobes 

that disturb the result interpretation and necessitates a high number of sensors. 

Other algorithms have been proposed to increase the angular resolution over conventional 

Fourier analysis. Super resolution techniques are advanced approaches possessing 

theoretically an infinite asymptotic resolving power: two sources can be theoretically resolved 

as closed and as weak as they can be. Limitations of resolving power come only from limited 

observation time. These techniques include multiple signal classification (MUSIC) (Schmidt, 

1986) (Laghmardi et al. 2009), Root-MUSIC (Barabell, 1983) (Hwang et al., 2008) and 

estimation of signal parameters via rotational invariance techniques (ESPRIT) (Roy et al., 

1989). We choose Root-MUSIC, one of the most powerful approaches, that returns the 

estimated discrete angular spectrum. This algorithm provides asymptotically unbiased 

estimates of the directions of arrival. 

Super resolution techniques are based on eigen-decomposition of the autocorrelation matrix 

generated by a received signal vector. As this decomposition is possible only with a full rank 

matrix, the plane waves impinging on the array must be not fully correlated. We will see that, 

in an RC, received signals are highly correlated. Therefore, we perform a matrix 

preprocessing that restores the matrix rank. 
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The algorithm used to estimate the plane wave spectrum within the working volume of a 

reverberation chamber is presented in Section II. This algorithm is independent of the way 

signals on sensors are obtained, using simulations or measurements. Only 2D-FDTD 

simulation results are used in this paper. After its validation for the canonical case of an 

empty rectangular cavity, our method is applied to a reverberation chamber equipped with a 

fixed stirrer and leads to very accurate results (Section III). By rotating the stirrer, we then 

analyze the plane wave spectrum variation in the RC at frequencies below the lowest useable 

frequency (LUF). The results obtained show that, whereas directions of arrival stay 

approximately constant, the plane wave powers are highly affected by the stirrer rotation 

(Section IV). We conclude that, at low frequencies, the stirrer principally works as tuner of 

plane wave powers.  

 

II.  Plane wave estimation algorithm 

MUSIC goniometer processes the signals received on a sensor array to compute the 

parameters of multiple incident wavefronts, which are the directions of arrival, the amplitudes 

and the phases of the waves. Root-MUSIC consists of a modification of this algorithm that 

improves the resolution performance, and is only applicable with an equally spaced sensor 

array. 

 

II.1.  The received signal 

Let us consider a linear equally spaced array of N identical omnidirectional sensors 

constituting the receiving antenna (Figure 1). P plane wave fronts impinge on this array from 

directions θi, iЄ{1,..,P}, defined from the array normal. These plane waves, generally 

considered as coming from P far-field point sources, are supposed to be narrowband and 

uncorrelated. The signal received by a sensor is a linear combination of the P plane wave 
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contributions with added noise. Thus, the N-dimensional vector X(tm) of the signals received 

by each sensor at time tm, also called time observation, can be written as: 

X(tm) = A S(tm) + B(tm)  (1) 

where S represents the complex amplitudes of the incident wave fronts (we take the phase 

reference point at sensor 1), and B describes the noise at the sensors. The N*P rectangular 

matrix A is the directional matrix whose columns are the P directional vectors.  

Each directional vector a(θi) is obtained by illuminating the N-sensors linear array by a unit 

wave plane of direction of arrival θi, iЄ{1,..,P}. For sensors along the y-axis with inter-

element spacing d (Figure 1) and λ the plane wave wavelength, the directional vector is given 

by :  a(θi) = (1  e
j2πd.sin(θi)/λ

  e
j4πd.sin(θi)/λ

 … e
j(N-1).2πd.sin(θi)/λ

)
T
.  

 

II.2.  The Root-MUSIC algorithm  

The N*N sample covariance matrix of the X vector is: 

  ( ) ( )( ) ( ) ( )
1

1
. .

M
H H

xx m m

m

R E X t X t X t X t
M

∆

=

= = ∑   (2) 

where (.)
H
 denotes the Hermitian transpose, E(.) the expectation operator and M the number of 

observed samples. 

Under the basic assumption that the incident signals and the noise are uncorrelated, Rxx is a 

full rank matrix which can be written: 

    2. . H

xxR A S A= + Σ    (3) 

where S
2
 = E(S(t).S(t)

H
) is a diagonal matrix containing the plane wave powers and Σ = 

E(B(t).B(t)
H
). In the following, the noise is assumed to be gaussian and spatially white so that 

Σ=σ2
I, where I is the unit matrix.  

If the number P of incident waves is less than the number of sensors N, then the minimum 

eigenvalue of A.S
2
.A

H
 is zero, which occurs (N-P) times. According to Eq. (3) and to the 
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eigenvector orthogonality property, the eigenvectors of Rxx corresponding to the highest 

eigenvalues form a basis of the signal subspace, whereas the (N-P) others form a basis of the 

noise subspace. As a consequence, signal and noise subspaces are orthogonal. Therefore, the 

product between an eigenvector of the noise-subspace and a vector a(θ) is null for all 

direction θ corresponding to an incident wave. This orthogonality is used in MUSIC by 

defining a pseudo-spectrum P(θ) as: 

    ( ) ( ) ( )θθ
θ

aVVa
P

H

NN

H

1=    (4) 

where VN = [eP+1, eP+2, … eN] is the matrix of noise-subspace eigenvectors. This function is 

maximal when θ corresponds to a signal incidence direction. 

An alternative to the tracing of the MUSIC pseudo-spectrum consists of determining the poles 

of this function. This is the strategy adopted in Root-MUSIC (Barabell, 1983). 

The denominator of P(θ) can be written: 

 ( ) ( ) ( )2 sin( ) 2 sin( ) 2 sin( )11 1

1 1 1

. .
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where G = VN.VN
H
, and gl is the sum of G-coefficients along the l

th
 diagonal.  

If we define the polynomial: 

    ( )
1

1

N
l

l

l N

D z g z
−

−

=− +

= ∑   (6), 

then the research of the directions of arrival is tantamount to one of the roots of D(z) on the 

unit circle (Castanié, 2006). The Root-MUSIC algorithm is known to offer better resolution 

performance and to require a lower signal-to-noise ratio than MUSIC itself. 

 

II.3.  Plane wave decorrelation procedure 



 6 

The presented algorithm in II.2 has been developed in the case of several independent time 

observations X(tm). We will show that an appropriate pre-processing makes it possible to use 

Root-MUSIC in the case of a single time observation. 

In our study of the reverberation chamber, the signal is analysed at a resonant frequency, so 

that we only have a single snapshot of the data. It implies that the phase differences between 

the incident plane waves are fixed, so that the signals are seen as highly correlated. Moreover, 

an RC is classically excited by a single antenna, so that the plane waves are all generated by 

the same source and not P uncorrelated sources as required for the application of MUSIC. 

When the sources (or plane waves) are highly correlated, the rank of Rxx matrix is no longer 

the number P of directions of arrival, but the number of groups of coherent sources that are 

uncorrelated with each other (Grenier, 1994). As a result, the rank of Rxx matrix is in our case 

equal to one (Gabriel, 1980) as all plane waves are fully correlated, and the estimation of the 

P directions of arrival is impossible using the Root-MUSIC algorithm. 

To overcome this problem, a spatial smoothing is applied to the data vector (Shan et al., 

1985). This operation guaranties the nonsingularity of the covariance matrix. For an array of 

identical sensors, the duality between time and space can be used. To obtain several samples, 

we take a subarray of Q adjacent sensors out of the whole array, from one edge of the array, 

and write the measured field values into a Q-dimensional vector X1. The second subarray is 

obtained by shifting the first one by one sensor. The corresponding values are stored into X2. 

This subarray translation introduces a phase difference between the observation vectors X1 

and X2, and is equivalent to a temporal shift. The input vectors Xi obtained from the (N-Q+1) 

subarrays constitute the observed samples used to calculate the covariance matrix Rxx as the 

average of the elementary covariance matrices of each Xi vector, using Eq. (2). It has been 

shown by Shan et al. (Shan et al., 1985) that if the number of subarrays is greater than or 

equal to the number of signals, then the modified covariance matrix is non-singular; thus 
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Root-MUSIC can be successfully apply to the smoothed covariance. In the studied examples, 

we will take subarrays having the recommended length N/2. 

Thus the use of translated subarrays to average the covariance matrix compensates the 

absence of time variation with the frequential signal. To improve the correlation matrix 

properties and to enhance the method accuracy, a second treatment is performed to the 

covariance matrix after spatial smoothing. As we will see, this method artificially increases 

the number of sensors, so that the fall of the sensor number due to the use of subarrays is 

partially compensated.  

When signals are completely uncorrelated, the correlation matrix is Toeplitz. We perform a 

second processing to reduce the coefficients variation on Rxx-matrix diagonals (Jansson & 

Stoica, 1999) (Phaisal-atsawasenee & Suleesathira, 2006). It consists of averaging the 

previous covariance matrix and the one obtained with the same sensors but ranged in 

decreasing order, from N to 1. We notice here RF the first covariance matrix, and RB the 

second one. The average covariance matrix RFB is given by: 

    RFB = (RF + J RF
H
 J)/2  (7), 

where J is an N*N exchange matrix given by 
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This averaging process leads to a hermitian and centro-symmetric matrix. 

 

II.4. Plane waves number estimation 

Root-MUSIC algorithm is a parametric method requiring prior knowledge of the number of 

plane waves to separate. In the canonical case of an empty parallelepipedic reverberation 

chamber (without stirrer), the number of plane waves is known analytically, but after the 
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stirrer introduction, this number in no longer known theoretically. To overcome this problem, 

we refer to the information theory criterion of Rissanen and Schwartz (Barron et al., 1998) 

(Wax & Kailath, 1985) (Athanasios et al., 2001). According to this criterion, the number of 

plane waves is the k value which minimizes the MDL (Minimum Description Length) 

quantity defined as: 

( ) MkNk
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∏
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  (9) 

for k varying from 1 to N-1. N is the number of sensors, M the number of time observations 

and Nii ≤≤1,λ̂  are Rxx-matrix eigenvalues. 

Because of the decorrelation procedure, we have N/2 sensors by subarray and the parameter k 

varies from 1 to N/2-1. The number of time observations is M = N/2-1. 

 

II.5.  Plane wave complex amplitudes 

After the determination of the number of waves using the MDL criterion, the use of the 

previously presented Root-MUSIC algorithm associated to the decorrelation procedure leads 

to directions of arrival. However, for a line of sensors parallel to y-axis, only ky component of 

wave vectors can be determined, and the angles of incidence are extracted using the equation 

ky=k0.sinθ, where k0 is the free space propagation constant. One ky value corresponds to two 

directions of arrival, θ and (π-θ), and both possible directions are considered while evaluating 

wave amplitudes. To resolve this ambiguity on symmetric directions of arrival, a second line 

of sensors parallel to the first one is used. 

By neglecting the noise, Eq. (1) becomes X = A S, where (NxP) rectangular matrix A is 

calculated analytically using the found directions of arrival. X is a 2N-dimensional vector 

containing the observations on the two sensor arrays. A
H
A matrix is non singular because of 
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the orthogonality of a(θi) vectors, so by a simple matrix inversion we can find the plane 

waves complex amplitudes vector S: 

    S = (A
H
A)

-1
 A

H
 X  (10) 

Thus, amplitudes and phases of the received plane waves are known without any ambiguity. 

It has to be noticed that, as standing waves are generated within the cavity, if θi is a DOA and 

Ai the associated complex amplitude, then (θi-π) is also a DOA and the associated amplitude 

is the conjugate of Ai : 
( ) ( )ykxkjykxkj yxyx eAeA

++− + .. *  is real at every point (x,y). These two waves 

correspond to forward and backward travelling waves on the same propagation axis. 

 

This study could be extended to the 3 D case of electromagnetic field distribution, where two 

orthogonal lines of sensors should be used to estimate correctly the elevation and azimuthal 

angles (Harabi et al., 2007), however a particular attention should be taken to the orientation 

of sensors (antennas oriented along each axis) for electric field polarization consideration. 

In this paper, we validate plane wave extraction technique in a 2D case in order to avoid 

considering the electric field polarization and for computation time reduction. 

 

III. Simulations results     

III.1.  2D FDTD simulations  

In order to reduce the computation time, simulations are performed in this paper with a 2D 

RC. The simulated structure presents a cylindrical symmetry along z-axis. The fields are 

independent of z axis, so that only TM modes are excited with an electric field along z-axis. A 

2D-FDTD tool (Taflove, 1995) is used to calculate the field distribution within the 2D 

reverberation chamber.   

The simulated chambers, with and without stirrer, are of dimensions a=3.105m along x-axis 

and b=2.475m along y-axis as shown in Figure 1. The classical formula 6×f0 (f0 = empty 
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cavity cut-off frequency) (Mitra & Trost, 1997) for the LUF of chamber leads to 465MHz. A 

fine mesh of 414×330 rectangular Yee’s cells is used. Chamber walls as well as the stirrer are 

taken to be perfectly conducting, so that the boundary condition is that electric field tangential 

components are equal to zero on their surfaces. The cavity excitation is performed by 10 

punctual sources placed along a wall. This choice of numerous sources aims for a correct 

excitation of all the modes, whereas with a single punctual source a very weak amplitude is 

observed for a mode presenting a node near the excitation point. To obtain the frequential 

spectrum, a Dirac excitation imposes firstly on each of the sources a unit amplitude on Ez 

component at t=0. Once the studied resonant frequency is chosen, the field cartography is 

obtained with a sinusoid excitation at the chosen frequency to avoid the excitation of adjacent 

modes. We can notice that, even if 10 punctual sources are used, the excitations are not 

independent, so that the correlation problem mentioned in Section II.3 remains unchanged and 

the decorrelation procedure is used. 

Once electric field cartography is determined, the complex electric field is known on each cell 

of the mesh; so that each cell can be considered as an electric field sensor. To extract the 

directions of arrival, we use Ez-field real values from a line of 330 cells parallel to y-axis as an 

observation vector. Spatial smoothing applied to decorrelate the signals on the 330 sensors of 

the array is performed by using subarrays of 165 sensors. 

As already seen in Section II.5, the extraction of DOA from a single line of sensors does not 

allow distinguishing θ and (π-θ). To resolve this ambiguity, another line of sensors, parallel to 

and close to the first one, is used. The distance between the two sensor lines is 5×d, where d 

refers to intersensor distance which is equal to FDTD-cell dimension of 7.5 cm. The two lines 

are placed far away from the stirrer at x1= 3m and x2=3.0375m from the origin as presented in 

Figure 1.  
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The working volume of a reverberation chamber is the particular volume where the field is 

statistically isotropic and uniform when the RC is well stirred (beyond the LUF). It implies 

that plane waves have no preferred propagation direction, field polarisation nor phase. This 

means that, in this volume where the device under test is placed, propagation direction angles, 

polarisation angles and phases are uniformly distributed. In our 2D case, we define the 

working surface as being distant of λLUF/3 from the cavity walls as well as from the stirrer 

(Figure 1), where λLUF is the wavelength in free space at the LUF. We focus on the field 

properties on this particular surface of dimensions 1.778m along x-axis and 2.055m along y-

axis. 

Once the spectrum is estimated from 2D-FDTD simulation results, we measure its accuracy 

by reconstructing the electric field cartography on the working surface from the estimated 

directions of arrival, amplitudes and phases. This reconstructed cartography is compared to 

the one originally obtained from FDTD simulation, and the absolute difference between both 

electric fields is calculated on the working surface. We will use as an indicator the relative 

error obtained by normalizing this absolute difference by the average amplitude of the initial 

electric field on the whole working surface. 

 

III.2.  Plane wave spectrum in the empty RC 

To validate our approach, an empty rectangular cavity is examined, as the fields are known 

analytically in this case. We consider a cavity of dimensions a along x-axis and b along y-

axis, with a coordinate system origin placed at its corner. The TMmn0 modes, which satisfy the 

boundary conditions, have an Ez-field of the following form: 
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with a corresponding resonance frequency: 
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where c is the light speed in vacuum. 

By expanding the sine terms on exponentials, the resonant mode can be written as a 

superposition of four plane waves. 

 













+−−−=








 +−






 +−






 −






 + y
b

n
x

a

m
jy

b

n
x

a

m
jy

b

n
x

a

m
jy

b

n
x

a

m
j

zmn

z eeee
E

E

ππππππππ

4

0

 (13) 

The plane wave vectors are of the form k
r

= (kx, ky)
T
 = (±mπ/a, ±nπ/b)

T
, and the angles of 

incidence defined from x-axis are given by θ = arctan(ky/kx) and θ = arctan(ky/kx) + π. 

To validate our method, we examine the TM680 mode of theoretical resonance frequency 

564.88MHz. Following the previous analytic equations, one finds four plane waves of 

directions of arrival θ1 =59.13°, θ2 = -59.13°, θ3 =120.87°, θ4 = -120.87°, of the same 

amplitude equal to 0.25× Ez
0
. 

The simulation of the empty rectangular cavity using the FDTD method leads to a resonance 

frequency of 564.97MHz, and the electric field cartography is normalized to have a maximal 

Ez amplitude equal to one (Ez
0
 = 1 Volt/meter). The number of plane waves, theoretically 

equal to 4 for an empty cavity, is overestimated by MDL criterion as 20 planes waves are 

estimated; this overestimation is due to numerical noise that disturbs the waves number 

estimation process.  

The estimated DOA corresponding to the two highest eigenvalues are θ1 = 59.06°, θ2 = -

59.06°, θ3 = 120.94°, θ4 = -120.94° with the same amplitudes of 0.2493. The relative errors on 

directions of arrival and amplitudes are respectively about 0.1% and 0.3%. The amplitudes of 

the 16 other plane waves are very low, with a ratio between their amplitude and the one of the 

first modes below -41dB. This confirms that these modes can be considered as noise. The 

precision of our approach is also evaluated by comparing the initial and reconstructed 
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cartographies on the working surface. The mean relative error, calculated as the average 

relative error on the whole working surface, is less than 1.5 %.  

FDTD simulations as well as the DOA extraction method have been validated in this simple 

case where the angular spectrum is known analytically.  With the study of an RC equipped 

with a fixed stirrer, we will now validate our plane wave spectrum estimation technique in a 

more realistic cavity.  

 

III.3.  Plane wave spectrum in the RC equipped with a fixed stirrer  

The reverberation chamber is simulated with on oblique stirrer, rotated to 45° from the axes 

(Figure 1). We examine the field at the resonance frequency of 327.5MHz. The same lines of 

sensors as in the previous case are used to estimate the angular spectrum.  After computing 

the smoothed bidirective covariance matrix, we use the MDL criterion which estimates 20 

plane waves. The amplitudes of the 20 plane waves found by our algorithm are less disparate 

than for the empty cavity: the ratio between the maximal and the minimal amplitudes is of 

2.7. It seems to indicate the MDL criterion doesn’t overestimate the number of waves in this 

case. 

As the solution is not analytically known with a stirrer, the accuracy of the spectrum 

evaluation can only be evaluated by the comparison between the initial and the reconstructed 

cartographies of Ez-field. As the mean relative error found is less than 3%, the method is 

considered as validated and can be used to study the variation of the plane wave spectrum due 

to the stirrer rotation.   

 

IV. Study of the stirrer rotating effect 

Two fundamental parameters of the RC operation are deduced from FDTD simulations: the 

frequency spectrum which is the Fourier transform of the impulse response and the 
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electromagnetic field cartography at each resonant frequency. By rotating the stirrer around its 

axis by steps of 2.5° from 0° to 180° (and not 360° for symmetry considerations), it is 

possible to follow the variation of resonant frequencies on a stirrer rotation and to deduce 

from it Ez-field cartographies for each stirrer position.  

We choose to follow the variation of a mode of resonant frequencies inferior than the LUF 

([323MHz-328 MHz], see Figure 2). Its frequency excursion is about 5MHz. In order to 

explain the influence this frequency variation can have on the cavity response, we also present 

the resonant frequency variation of the two adjacent modes. Their resonant frequency 

excursions are about 7 MHz. Although the relative resonant frequency variations are small 

(about 2 %), the related influence on the field properties is important. Thus a given frequency, 

for example 327.3MHz, can correspond to the resonant frequency of two different modes for 

different stirrer positions (see Figure 2), and these two modes will present very different field 

distribution. Moreover, this effect increases with the frequency due to the increase of the 

resonant mode density. The choice of a low resonant frequency in the paper is justified by the 

low density of modes and by the low density of plane waves on angular spectrum that permits 

an easier analysis than at high frequencies.  

For each stirrer position, once the resonant frequency and the associated Ez-cartography are 

determined, we use the presented plane wave estimation algorithm to estimate all the plane 

wave parameters (DOA, complex amplitude). 

For a better legibility, we focus on the DOA comprised between 0° and 90°. Five plane waves 

are found on this interval upon 20 waves in total. We first of all examine the plane wave DOA 

as a function of the stirrer position (Figure 3). We observe that directions of arrival are 

slightly affected by the stirrer rotation. The whole couples of DOA and associated amplitude, 

found on a complete stirrer rotation, are represented in a polar diagram (Figure 4), where the 

angle indicates the DOA and the radius the plane wave power. In agreement with the remark 
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drawn with Figure 3, we can notice that DOA are grouped together around 5 principal 

directions. On the contrary, a large variation of wave powers is observed, with a variation of 

the wave amplitudes that reaches more than 45dB. We conclude that, below the LUF, the 

stirrer can be used as plane wave power tuner.  

 

V.  Conclusion 

This paper presents a method to estimate the plane wave spectrum within a reverberation 

chamber. In our frequential study of the cavity, Root-MUSIC method cannot be directly 

applied because of the high correlation between wave fronts. Particular attention is paid to this 

problem, and a pre-processing is applied to decorrelate the received signals. The study of the 

canonical case of the empty cavity shows that directions of arrival, amplitudes and phases of 

the plane waves are obtained very precisely with relative errors below 0.3%. The accuracy of 

this method is also demonstrated for an RC equipped with a stirrer, with a mean difference 

between the cartography issued from FDTD and the one reconstructed from the extracted 

wave parameters below 3% at about 565MHz.  

With this method we attempt to contribute to a better understanding of the stirring process 

within an RC. Thus a study of the stirrer rotation effect on plane wave DOA and powers is 

presented. For the studied frequency band, situated below the LUF, the stirrer rotation 

generates a large variation of wave powers whereas its effect on DOA distribution is very 

low. 
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Figure 1. Geometry of the 2D RC studied  
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Figure 2. Resonant frequency variation versus stirrer rotation angle 

 
 

Figure 3. Directions of arrival of 5 plane waves for all stirrer positions 
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Figure 4. Polar diagram of plane wave directions of arrival and powers on a stirrer rotation 
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